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Week 1: Regression Basics

1 What is Regression?

2 Covariance, Correlation

3 Conditional Distribution

4 Lines: Slopes and Intercepts

5 Residuals

6 Least Squares
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Regression: What is it?

Investigate relationship between Y (response) and X1,X2, . . .
(explanatory variables) is expressed as:

Y = f (X1,X2, . . .) + ε.

ε is noise with zero mean: if we fix the values of X1,X2, . . ., then

E (Y |X1 = x1,X2 = x2, . . .) = f (x1, x2, . . .).
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Correlation ρxy : corr(X ,Y ) = Cov(X ,Y )
SD(X )SD(Y ) ∈ [−1,+1].
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Regression improves on correlation by allowing us to make predictions.
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Option 2: conditional distributions

The conditional distribution of Y given X contains much more information
than correlation. And can be used for prediction!

Example: Suppose we see (old) house price data comprised of pairs
(price ×103 dollars, size×103 sq.ft.) as such:
(100, 1.5), (85, 1.4), (75, 1.0), (90, 1.5).

What is your prediction for a 1, 500 sq.ft. house?

Good guess: (100 + 90)/2 = $95, 000.

In our guess, we used (a summary of) the conditional distribution of
Y given X.
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Why is the conditional distribution not enough?

Example: Suppose we see house price data comprised of pairs (price
×103 dollars, size×103 sq.ft.) as such:
(100, 1.5), (85, 1.4), (75, 1.0), (90, 1.5).

What is your prediction for a 1,300 sq.ft house?

Good guess?

No data for a 1,300 sq.ft. house.

Our prediction has to rely on a key intuition:
“A 1,300 sq.ft house cannot be that different from a 1,400 sq.ft or a
1,200 sq.ft. house”.

We need a model that will allow extrapolation!
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Linear Regression Model In a linear regression, that

extrapolation will be linear in nature.
Recall that the equation of a line is:

Ŷ = b0 + b1X ,

where b0 is the intercept and b1 is the slope.

In the house price example

our “eyeball” line had b0 = 35, b1 = 40.

predict the price of a house when we know only size

35 + 40× 1.3 = 87, 000 dollars.

The intercept value is in units of Y ($1,000).

Slope is in units of Y per units of X ($1,000/1,000 sq ft).
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Yi 

Xi 

Ŷi 
ei = Yi – Ŷi = Residual i  

The line is our predictions or fitted values: Ŷi = b0 + b1Xi .
The residual ei is the discrepancy between the fitted Ŷi and observed Yi

values, i.e.,
ei = Yi − Ŷi .

Note that we can write Yi = Ŷi + (Yi − Ŷi ) = Ŷi + ei .

Connor Dowd ARA w/ Panos Toulis – Autumn 2018 – Midterm Review 8/58



Least squares

A reasonable goal is to minimize the size of all residuals:

Trade-off between moving closer to some points and at the same time
moving away from other points.

Since some residuals are positive and some are negative, we need one more
ingredient.

|ei | treats positives and negatives equally.

So does e2i , which is easier to work with mathematically.

Least squares chooses b0 and b1 to minimize
∑n

i=1 e
2
i .
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The residuals from least squares regression are “stripped of all linearity”.

> plot(size, reg$fitted-price, pch=20, xlab="X", ylab="Residuals")

> text(x=3.1, y=26, col=2, cex=1.5,

+ paste("corr(e, x) =", round(cor(size, reg$fitted-price),2)))

> text(x=3.1, y=19, col=4, cex=1.5,

+ paste("mean(e) =", round(mean(reg$fitted-price),0)))

> abline(h=0, col=8, lty=2)
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corr(e, x) = 0
mean(e) = 0
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Week 2: Inference

1 Sampling Distribution

2 Statistical Significance

3 Regression Model

4 Inferential Setup

5 Confidence Intervals

6 P Values

7 Bootstrap?

8 Prediction vs Confidence Intervals
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Sampling Distributions

These different possible distributions create the sampling distributions.
But we don’t have those datasets! How to proceed?

1 Assume a model that generates them! Use b0, b1 to make inference
about model.

(coming next) Simple Linear Regression model (SLR).

2 Pull yourself up by the bootstrap.
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Simple linear regression (SLR)

Y = β0 + β1X + ε, ε ∼ N (0, σ2).

It is a model, so we are assuming this relationship holds for some

fixed but unknown values of parameters:

β0, β1, σ
2.

The error ε is independent, additive, idiosyncratic noise. Implies

regression model:

E (Y |X ) = β0 + β1X .

B SLR (“simple” = only one X ; “linear” = linear in X ).
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IMPORTANT! β0 is not b0, β1 is not b1, and ε is not e.

True regression line is fixed (but unknown).
Least-squares line changes wrt observed data(=random).

E[Y |X] = �0 + �1X

X

Y

ei

"i

Ŷ = b0 + b1X

(We use Greek letters to remind us.)
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Statistical significance

B But what it means that b1 = 35 is a fluke?

Rephrase question (think of X=house price, Y=house price):

For same X do you expect same Y ?

No! Variance even for same X coming from other factors.

Connor Dowd ARA w/ Panos Toulis – Autumn 2018 – Midterm Review 15/58



Inference setup

model least squares comments

Y = β0 + β1X + ε Ŷ = b0 + b1X

β0 b0 intercept

β1 b1 slope

ε e = Y − Ŷ noise/residuals (obs-pred)

σ2 s2 or σ̂2 noise error

Goal: Do inference on β0, β1, σ
2.

Intuitively: use b0, b1,
∑

i e
2
i , respectively.

The key concept for inference is sampling distribution.
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Sampling distribution of b1 (theory)

It turns out that b1 is normally distributed:

b1 ∼ N (β1, σ
2
1).

b1 is unbiased: E[b1] = β1, mean centered at true value.
What is that expectation over?

The sampling variance σ21 determines estimate precision:

σ21 = Var(b1) =
σ2∑

(Xi − X̄ )2
=

σ2

(n − 1)s2x
.

It depends on three factors:
1 sample size (n) – sample size increases, b1 → β1;
2 error variance (σ2) – more noise means less information;
3 X -spread (sx) – more var in X means more information!
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Sampling distribution of b0

The intercept is also normal and unbiased:

b0 ∼ N (β0, σ
2
0).

The variance is given by:

σ20 = Var(b0) = σ2
(

1

n
+

X̄ 2

(n − 1)s2x

)
.

– usually more variance in intercept than in slope.

The sampling variance depends on four factors:
1 sample size (n),
2 error variance (σ2) and X -spread (sx), and
3 squared mean of explanatory variables, X̄ 2.
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Confidence intervals : illustration

The “frequentist” interpretation.

P
[
β1 ∈ (b1 ± 2σ1)

]
= 95%

What is probability over?

CI determines a range of plausible values
for unknown parameter.

Center of range = point estimate.

Length of range = uncertainty.
True β1
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p-values tell us more

Test β1 = 0. Figure is standardized distribution under null.

T1 =
b1 − 0

s1
∼H0 tn−2.

p-value = area of shaded region. Using R:

T1 = (b1 - 0) / s1 # test statistic

pval = 2 * pt(-abs(T1), df=n-2)

This is a two-sided p-value, which are usually used with symmetric distributions.

Lower p-value = stronger evidence to reject H0.

For level 0.05: Reject if p-value ≤ .05.
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Bootstrap: illustration
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Prediction Intervals Suppose Ŷf is our prediction for Y based on

Xf .
If we use Ŷf , our prediction error has two pieces

ef = Yf − Ŷf = Yf − b0 − b1Xf .

E[Yf |Xf ] = �0 + �1Xf

Ŷf

Yf

}
{"

ef

Xf

fit error b0 + b1Xf
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⇒ The prediction (conf.) interval needs to widen away from X̄
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Week 3: Multiple Regression

1 Interpretation

2 Categoricals: Dummies & Factors

3 Interactions

4 Polynomials
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The MLR Model

The MLR model is linear but with more variables:

Y = β0 + β1X1 + · · ·+ βdXd + ε, ε ∼ N (0, σ2),

or equivalently

Y |X1, . . . ,Xd
iid∼ N (β0 + β1X1 + · · ·+ βdXd , σ

2).

Recall the key assumptions of our linear regression model:

(i) The conditional mean of Y is linear in the Xj variables.

(ii) The additive errors (deviations from line) are iid:

independent from each other,
identically distributed; Normal, in particular.
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Interpretation

Interpretation of model parameters can be extended from SLR:

βj =
∂E[Y |X1, . . . ,Xd ]

∂Xj
.

∂ is from calculus and means “change in”

Holding all other variables constant, βj is the change in the regression
function (=conditional expectation of Y ) per unit change in Xj .
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Reading Model Summary Information
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MLR topic 1: Categorical variables

Allows to drill down to subpopulations.
In R a categorical variable is called factor.

The simplest factor is binary (also known as dummy variable or indicator);
e.g.,

temporal effects (1 if Holiday season, 0 if not);

spatial (1 if in Midwest, 0 if not).

We use special notation:

1[X=r ] = 1 if X = r , 0 if X 6= r .

Use R − 1 dummies for a factor X with R possible levels.
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Example: Credit Data

E[Balance|Student] = β0 + β11[Student=yes].

Model says:

E[Balance|Student = no] = β0.

E[Balance|Student = yes] = β0 + β1.

Easy in R:

> summary(lm(Balance ~ Student))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 480.37 23.43 20.50 < 2e-16 ***

StudentYes 396.46 74.10 5.35 1.49e-07 ***

∗ Expected balance for non-students = $480.37.
∗ Expected balance for students = $480.37 + 396.46 = 876.83.
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MLR topic 2: Interactions

Suppose X1 is a dummy variable.

Y = β0 + β11{X1=1} + β2X2 + β31{X1=1}X2 + · · ·+ ε.

∂E[Y |X1 = 0,X2, . . .]

∂X2
= β2.

∂E[Y |X1 = 1,X2, . . .]

∂X2
= β2 + β3.

∗ The model includes interaction of X1 with X2 (β3 term).

∗ Slope of X2 effectively depends on X1.
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Interactions with R are easy!

> reg = lm(Balance ~ Rating * Student)

> summary(reg)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) -423.37117 26.14584 -16.193 < 2e-16 ***

Rating 2.54543 0.06747 37.728 < 2e-16 ***

StudentYes 311.99938 85.86752 3.633 0.000316 ***

Rating:StudentYes 0.24609 0.22372 1.100 0.272002

For non-students, the SLR and LS models are, resp.:

Balance= −423.37 + 2.54× Rating + ε.

E[Balance|Rating]= −423.37 + 2.54× Rating.

For students, the SLR and LS models are, resp.:

Balance= −111.37 + 2.79× Rating + ε.

E[Balance|Rating]= −111.37 + 2.79× Rating.
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MLR topic 4: Polynomial regression

Polynomial regression is special case of variable transformation.

We simply take powers of single variable X :

E[Y |X ] = β0 + β1X + β2X
2 + · · ·+ βmX

m.

You can fit any mean function if m is big enough.

Usually, m = 2 does the trick.
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Week 4: Diagnostics

1 Model Assumptions

2 Leverage (outliers?)

3 Q-Q plots

4 Constant Variance

5 Non-linearity

6 Log-log (and elasticities)

7 Multi-collinearity
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Multiple linear regression

We are going to check the following model assumptions:
1 Errors are identically distributed as normals...

Topic A: outliers.

2 ...with constant variance σ2.
3 E(Y |X1, . . . ,Xd) is linear in X1, . . . ,Xd .

Topic B: log-log model.
Topic C: multicollinearity.
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Why bother?

If the model assumptions do not hold then

prediction can be biased;

standard errors and confidence intervals may be wrong;

could lead to model improvements (e.g., transformations).

Plots of residuals e = Y − Ŷ are our #1 tool.
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Theoretical sampling distribution of ei

If MLR model is true:

ei ∼ N (0, σ2[1− hi ]), hi =
1

n
+

(Xi − X̄ )2

(n − 1)s2X
.

The hi term is referred to as the i th observation’s leverage:

It is that point’s share of the data (1/n) plus its proportional
contribution to variability in X .

Leverage is minimum when Xi = X̄ .

∗ Notice that if n = very large, the residuals ei “obtain” the same distribution as
the errors εi , i.e., approximately ei ∼ N (0, σ2).
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Standardized residuals

We can use the familiar standardization trick:

ri =
ei

σ
√

1− hi
∼ N (0, 1).

These transformed ei ’s are called the standardized residuals.

Replace σ2 with s2 (studentized residuals).

In R use rstudent(fit) for studentized residuals.

B Great result. Now we can check deviations from MLR assumptions by looking
at whether studentized residuals look normal (or t-distributed).
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R suite of diagnostics

> plot(fit) # ideal plots look as follows:
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What to do about non-constant variance?

No easy solutions. There are generally three things to do:

Transformations! (coming later)

Subpopulation analysis.

Model e2 ∼ X

Robust standard errors (“sandwich” estimator ).

> library(sandwich)

> # classical std errors:

> summary(fit)$coefficients[, 2]

(Intercept) x1 x2

0.1399635 0.1413205 0.1404328

> # robust std errors

> sqrt(diag(vcovHC(fit)))

(Intercept) x1 x2

0.1406091 0.1964196 0.1900342

∗ Before using: install.packages("sandwich").
∗ Robust error takes into account heteroskedasticity.
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3. Non-linearity check

Probably the most common model violation.

Linearity may hold under some transformation of X or Y .

Example is polynomial regression (e.g., Y = X + X 2 + ..).

In general, think about in what scale you expect linearity.

∗ Diagnostics so far may reflect failure of linearity.
∗ No general test for that.
∗ More interesting to focus on general classes of models.

Connor Dowd ARA w/ Panos Toulis – Autumn 2018 – Midterm Review 40/58



Topic B: the log-log model

If we expect Y ≈ X β then use the log-log model:

log(Y ) = β0 + β1 log(X ) + ε.

log(Y ) is a very common transformation;

e.g., if Y has only positive values (e.g. sales) or is a count (e.g. # of
customers).

log(X ) is also common to reduce spread in X .

Recall that

log is always natural log, with base e = 2.718 . . ., and

log(ab) = log(a) + log(b),

log(ab) = b log(a).
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Price elasticity

In marketing, the slope coefficient β1 in the regression

log(sales) = β0 + β1 log(price) + ε,

is called price elasticity.

The model is multiplicative: E[sales|price] = A ∗ priceβ1 .

Interpretation:
β1 = % change in sales per 1% change in price.
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Topic C. Multicollinearity

Multicollinearity refers to strong linear dependence between some of the
variables in MLR model.

The usual marginal effect interpretation is lost:

change in one X variable leads to change in others.

Coefficient standard errors will be large, such that multicollinearity leads to
large uncertainty about the bj ’s.
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Multicollinearity is not a big problem in and of itself, you just need to
know that it is there.

If you recognize multicollinearity:

Understand that the βj are not true marginal effects.

Consider dropping variables to get a more simple model.

Expect to see big standard errors on your coefficients (i.e., your
coefficient estimates are unstable).

Can check with vif(fit). Problem if numbers > 5.

Use machine learning tools...

Remember that significance is harder to assess. Recall that in the
Advertising data newspaper was significant on its own, but not in
presence of radio.
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Week 5: Model Selection

1 R2?

2 F-Test

3 Bonferonni

4 Model Building?

5 AIC

6 Stepwise w/ AIC

7 LASSO

8 Cross-Validation

9 Bias-Variance
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Weakness of R2

R2 = cor2(ŷ , y)

R2 only depends on model fit but not model size.

Always improves if we add more variables...

...even if those variables are just noise.

> ad$bogus = rnorm(length(ad$TV))

> reg = lm(sales ~ TV + bogus, data=ad)

> summary(reg)$r.sq

[1] 0.6181036 # R^2 improves but ’bogus’ is just noise

∗ We need a more careful way of assessing R2 increase!
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Akaike information criterion (AIC)
Assesses the quality of a model (like R2, but better!):

AIC = 2 ∗ model size + 2 ∗ model error.

Smaller AIC is better.

Extends beyond MLR. Has better theory than R2.
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Basic Model Selection with F-test

H0 : β1 = β2 = · · · = βd−1 = 0.

H1 : at least one βj 6= 0.

Use the following test statistic (F -value):

f =
R2/(d − 1)

(1− R2)/(n − d)
.

This F -test tries to formalize the idea of a big R2.

Someone figured out the distribution of f if H0 is true.

So, if observed f is big wrt to that distribution then regression is
“worthwhile”:

The test is contained in the R summary for any MLR fit.
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Extended Model Selection with F-test

Suppose that we have k variables in the base model and we are thinking
off adding d − k new variables.

Essentially, we are asking: “Add more variables to the model?”

H0 : Y = β0 + β1X1 + . . .+ βk−1Xk−1 + ε.

H1 : Y = β0 + β1X1 + . . .+ βk−1Xk−1 + βkXk + . . .+ βd−1Xd−1 + ε.

An equivalent way to set this hypothesis:

H0 : βk = βk+1 = · · · = βd−1 = 0.

H1 : at least one βj 6= 0 for j ≥ k .

Use anova(base.model,large.model) and look at p-value.
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Bonferroni correction

F-test tests all betas together, if you want to test jointly, you need to
use Bonferonni corrections.

If you test m nulls then reject when p-value < 0.05/m.
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Universe of variables

The universe of variables is LARGE!
includes all possible variables that you think might have a linear effect
on the response,

. . . and all squared terms . . . and all interactions . . . .

You decide on this universe through your experience and domain
knowledge (and are limited by data availability).
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1. Forward stepwise regression

1 Run Y ∼ Xj for each variable, then choose the one leading to the
smallest AIC to include in your model.

2 Given you chose covariate X ?, now run Y ∼ X ? + Xj for each
remaining j , again based on smallest AIC.

3 Repeat this process until none of the expanded models lead to smaller
AIC than the previous model.

This is called “forward stepwise regression”.
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Notes on stepwise regression

You can’t be absolutely sure you’ve found the best model.

Forward stepwise regression follows greedy approach and is going to
miss groups of variables that are only influential together.

Usually leads to dense models, which is not ideal.

It’s not perfect, but it is pretty handy.
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LASSO

We’re going to skip most details here. The short version is:

min

1

n

∑
(Yi − Ŷi )

2 + λ

p∑
j=1

∣∣bj ∣∣


This expression has three pieces:

1 First term is standard RSS.

2
∑p

j=1

∣∣bj ∣∣ measures the model’s complexity

LASSO fit get you lots of bj = 0.
Final model is variables with bj 6= 0.

3 λ determines how important the penalty is;

Choose by cross-validation (R does all the work).

This leads to sparse solutions and scales very well.

Connor Dowd ARA w/ Panos Toulis – Autumn 2018 – Midterm Review 54/58



3. Cross-validation

How does LASSO choose the penalty? (λ value)

Cross-validation (CV).

CV is a model assessment tool like R2 and AIC. But it is also very
different:

It directly estimates the model’s generalization error.

Does not rely on model assumptions/approximations.

Very easy to implement (could be slow though).

∗ Next: in-sample and out-of-sample error (generalization).
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Cross-validation

In k-fold cross-validation:

Split the data in k folds of equal size.

For every fold i = 1, 2, . . . , k :

Train in all folds other than i .
Calculate MSEi at fold i .

Cross-validation estimate of generalization error:

CV =
1

k

k∑
i=1

MSEi .

Very powerful way to detect and prevent overfitting!
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Summary

assessment building selection

Classical
R2 Nested models F-test

-inc. with model size -cannot scale -MLR assumptions

Modern
AIC forward regression AIC

+Generally useful +Automated,-Greedy -May be inaccurate

Hot
CV error Regularization CV

+Easy to implement +Sparse models +Broadly applicable
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Good luck!

Questions?
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