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@ Regression Discontinuity Donuts:
@ Synthetic Controls with Spillovers: Examples and Simulations
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Regression Discontinuity Donuts
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Main result
Under:
© natural extensions of standard assumptions,
© known or data-determined derivative bounds,
© and straightforward assumptions about selection

we get partial identification for causal effects — and validity while
conducting inference for the partially identified set.




Outline of Procedure

@ Set a confidence level «, and k < a.
@ Estimate the k — 1 derivatives of u; at the edge of the donut.

© Predict uy at ¢, using its first k — 1 derivatives and a Taylor
projection.

© Estimate 7(xg) = p1(x0) — po(x0) and build a 1 — a + « Cl.
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Outline of Procedure

Set a confidence level o, and k < «.

Estimate the k — 1 derivatives of u; at the edge of the donut.

© 00

Predict p; at c, using its first k — 1 derivatives and a Taylor
projection.

© Estimate 7(xg) = p1(x0) — po(x0) and build a 1 — a + « Cl.
Find a set C; that contains the ,ugk) with probability 1 — /2

Use the extreme values of C; to find the maximal errors in the Taylor
projection above.

@ Add those maximal errors for each side to the 1 — o« + x Cl for 7.
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Derivative Bounds

Condition 1: Derivative Bounds Exist

There is a known k > 0 such that
@ u(x) € [y u] Vx € x
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Derivative Bounds

Condition 1: Derivative Bounds Exist
There is a known k > 0 such that

@ u(x) € [y u] Vx € x

For data-driven bounds, we also need to attain the bounds somewhere:
(1] ugk)(x) = Iy for some x € x/D

Q ,ugk)(x) = u; for some x € x/D
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Derivative Bounds

Condition 1: Derivative Bounds Exist

There is a known k > 0 such that
@ u(x) € [y u] Vx € x
For data-driven bounds, we also need to attain the bounds somewhere:

(1] ugk)(x) = Iy for some x € x/D

Q ,ugk)(x) = u; for some x € x/D

We don't need to know /; or us, but we need to be able to estimate them
"'well'.

Notice that this condition does not allow other treatment policies with a
discontinuity in x which affects Y.



Regularity Conditions

Condition 2: Regularity

O (Y. X,T) are i.i.d. from a DGP as described above.

k+2) . .
Q ,ug *2) is continuous
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Condition 2: Regularity

O (Y. X,T) are i.i.d. from a DGP as described above.

k+2) . .
Q ,ug *2) is continuous

© The density of X, f is absolutely continuous and bounded away from
zero over the region of interest .

@ o2() is positive, bounded away from 0, and has two continuous
derivatives.




Regularity Conditions

Condition 2: Regularity

O (Y. X,T) are i.i.d. from a DGP as described above.

k+2) . .
Q ,ug *2) is continuous

© The density of X, f is absolutely continuous and bounded away from
zero over the region of interest .

@ o2() is positive, bounded away from 0, and has two continuous
derivatives.

O sup E [|eiPexp(lei|)|xi = x] < o0
Xex

which implies E [|€;|36‘XP(|€i|)] < 09




Local Polynomial Conditions

Condition 3: Kernel and Bandwidth for Local Polynomial

@ The kernel function K(+) has support (—1,1), outside of which it
takes value 0.

@ K(-) is symmetric, positive, bounded, and integrates to 1 over its
support.

@ The bandwidth h = h, is set such that as n — oo, h, — 0 and
nh3 — oo.
@ 4 n>h, Vn




Local Polynomial Conditions

Condition 3: Kernel and Bandwidth for Local Polynomial

@ The kernel function K(+) has support (—1,1), outside of which it
takes value 0.

@ K(-) is symmetric, positive, bounded, and integrates to 1 over its
support.

@ The bandwidth h = h, is set such that as n — oo, h, — 0 and
nh3 — oo.
@ 4 n>h, Vn

We use the kernel Kp(x) = K(x/h)/h.

These are standard conditions for local polynomial regressions.
See Fan, Heckman, and Wand [1995].



Donut Exclusion

Condition D: Donut Exclusion

@ There is a known interval D = (d_, d;) such that all individuals who
manipulate are contained to the interval, and would be contained in
the counterfactual where they do not manipulate.

@ There is only one policy with a threshold relevant to the outcome
variable inside the region [d_ — €, d} + €] for some € > 0.
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Donut Exclusion

Condition D: Donut Exclusion

@ There is a known interval D = (d_, d;) such that all individuals who
manipulate are contained to the interval, and would be contained in
the counterfactual where they do not manipulate.

@ There is only one policy with a threshold relevant to the outcome
variable inside the region [d_ — €, d} + €] for some € > 0.

| define manipulation as the difference between the observed running
variable, and the value in the counterfactual where all individuals
treatment statuses were fixed in advance.



Coverage for ¢

Define C such that ®(C) — O(—C)=1—«

SE1701 = [%l - C&//\/ﬁ, 7ﬁu + Ca’u/ﬁ}

Under conditions 1-4, and the condition that nh2*t3 — 0,
for all a € (0,1/2),

lim Pl¢ C$1_a] =1 —a

n—o0
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Academic Probation - All Data
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Academic Probation - Drop Donut
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Academic Probation - Inside Bandwidth
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Academic Probation - Fit Local Polynomials
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Academic Probation - Fit Local Polynomials
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Academic Probation - Identified Region
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Academic Probation - CR for Set
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Academic Probation - CR for elements of set
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Synthetic Controls with Spillovers:

Examples and Simulations
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Example: California Prop 9
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Synthetic Controls Setting

Y11 Y12 .. nT ,7+1 } treated unit

Y21 Y22 ... Yo7 | Y2,T+1

control units

YnN1 YnN2 - YN, T | YN, TH1

1T treatment

y1,7+1(1) = y1,741(0) + «
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Abadie, Diamond, and Hainmueller (2010)
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Synthetic Control Estimator

Synthetic control weights:

R T
21 .
(B1> = argmin g (y1.e — z — Y{b)?,

(z,0')eW 3
where Yy = (y1,6,y2,t,-- -, yne) and W =R x {0} x Ay_q

i.e. by are normalized weights — they sum to one, are non-negative,
and we force a weight of 0 on the ‘own’ observation.

z is included because of the work in Ferman and Pinto (2017) showing
an intercept is necessary for unbiased procedures.
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Spillover effects in synthetic control

The synthetic control estimator

&=y, 741(1) = 91,74100) = y1,741 — Yr1b — 2

can be severely biased in the presence of spillover effects:

@ As in a diff-in-diff setting, if treatment can affect your control group -
your ATE may be biased.

@ SCM is particularly vulnerable as it may put extra weight on the same
units that are ‘contaminated’.

@ This can be bad luck — but more worryingly, similar units may actually
be prone to spillovers.

@ Regularization properties of simplex are suddenly a potential
downside.
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True treatment effect = 5
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Linear Spillover effects

Remember: «; = y; 741(1) — yi 74+1(0)
i.e. In the counterfactual, had treatment not occurred anywhere, how
different was unit i?

Let
Qay

a2
o =

ay
Assume linear spillover effects: av = Ay
@ A known

@ v unknown parameters
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Synthetic control weights for all units

We estimate the weight vectors and intercepts for each unit.
For each i,

R T
Zj . "2
- :argmlng (yit—z—Y:b')7,
<bi> (z,b)eW; =5 "t '

with i-th entry of b; being 0, and b; € Ay (non-negative, sum to one).

Yt = (}’1,t7)/2,t7 s ).yN,t),
Define z; = plim 2; and b; = plim b;. Let

Z1 bll

zZN by
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Abadie, Diamond, and Hainmueller (2010)
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Abadie, Diamond, and Hainmueller (2010)
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Two-Sample Tests

New test + R package
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Comparing two samples

@ Frequently we want to compare two samples, and see if they come
from the same distribution.

@ Many well known tests are in use for this purpose. T-test, Anova, etc.

@ Non-parametric tests, which require few assumptions to work, often
are very conservative, or only test for difference in one of a few
moments of a distribution.
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ECDF test statistics

@ ECDF based tests are in this class — they are defined by taking some
norm on the two empirical cumulative distributions.

@ Randomization versions of these tests avoid need to be conservative —
but are only as powerful as the test statistic allows.
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ECDF test statistics

@ ECDF based tests are in this class — they are defined by taking some
norm on the two empirical cumulative distributions.

@ Randomization versions of these tests avoid need to be conservative —
but are only as powerful as the test statistic allows.

@ | discuss a new ECDF statistic which performs exceptionally well and
is motivated by theory.
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ECDF test statistics

ECDF based tests are in this class — they are defined by taking some
norm on the two empirical cumulative distributions.

@ Randomization versions of these tests avoid need to be conservative —
but are only as powerful as the test statistic allows.

@ | discuss a new ECDF statistic which performs exceptionally well and
is motivated by theory.

| implement that statistic (and other ECDF tests) in an R package —
twosamples.
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ECDF Statistics - Kolmogorov-Smirnov

ECDF
!
1

Value
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ECDF Statistics - Kuiper

ECDF
!

Value
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ECDF Statistics - Cramer-Von Mises

WH | —
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Value
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ECDF Statistics - Variance of ECDF

Variance Estimate

Value
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ECDF Statistics - Anderson-Darling
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ECDF Statistics - Cramer-Von Mises
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ECDF Statistics - Wasserstein

ECDF

Value
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ECDF Statistics - Proposal

ECDF
L“—L

Value

Dowd Dowd Defense April '21 47/54



Power Simulations

Normal w/ Mean Shift
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Power Simulations

Normal w/ Variance Inflation

Test
FTEST
DTS

— KUFER

— Wwass

— AD
VM
K5

% Rejected

FALSE
» TRUE

Number of Observations
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Power Simulations

Normal w/ Mean and Variance Shift

FALSE
* TRUE

Test
TS
WASS
— AD
— oM
— KUFER
KS
TTEST

% Rejected

Number of Observations
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Power Simulations

Mixture of Normals — Mean/Variance Constant — Kurtosis changed

Test
TS
KUIPER
— WAsS
— AD
— VM
XS
TTEST

% Rejected

FALSE
» TRUE

4000
Number of Observations
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Power Simulations

Mixture of Normals — Bimodal, Constant mean

Test
TS
KUIPER
— WAsS
— AD
— VM
XS
TTEST

% Rejected

FALSE
» TRUE

4000
Number of Observations
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R package on CRAN

Publicly available since 2018.

Randomization tests, with test statistics in C4++

Includes KS, Kuiper, CVM, AD, WASS, and proposed test statistics.
~ 600 downloads/month
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Thank you all
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