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Main result

Under:

1 natural extensions of standard assumptions,

2 known or data-determined derivative bounds,

3 and straightforward assumptions about selection

we get partial identification for causal effects – and validity while
conducting inference for the partially identified set.
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Outline of Procedure

1 Set a confidence level α, and κ < α.

2 Estimate the k − 1 derivatives of µt at the edge of the donut.

3 Predict µt at c , using its first k − 1 derivatives and a Taylor
projection.

4 Estimate τ(x0) = µ1(x0)− µ0(x0) and build a 1− α + κ CI.

5 Find a set Ct that contains the µ
(k)
t with probability 1− κ/2

6 Use the extreme values of Ct to find the maximal errors in the Taylor
projection above.

7 Add those maximal errors for each side to the 1− α + κ CI for τ .
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Derivative Bounds

Condition 1: Derivative Bounds Exist

There is a known k > 0 such that

(i) µ
(k)
t (x) ∈ [lt , ut ] ∀x ∈ χ

For data-driven bounds, we also need to attain the bounds somewhere:

1 µ
(k)
t (x) = lt for some x ∈ χ/D

2 µ
(k)
t (x) = ut for some x ∈ χ/D

We don’t need to know lt or ut , but we need to be able to estimate them
’well’.
Notice that this condition does not allow other treatment policies with a
discontinuity in χ which affects Y .

Dowd Dowd Defense April ’21 12/54



Derivative Bounds

Condition 1: Derivative Bounds Exist

There is a known k > 0 such that

(i) µ
(k)
t (x) ∈ [lt , ut ] ∀x ∈ χ

For data-driven bounds, we also need to attain the bounds somewhere:

1 µ
(k)
t (x) = lt for some x ∈ χ/D

2 µ
(k)
t (x) = ut for some x ∈ χ/D

We don’t need to know lt or ut , but we need to be able to estimate them
’well’.
Notice that this condition does not allow other treatment policies with a
discontinuity in χ which affects Y .

Dowd Dowd Defense April ’21 12/54



Derivative Bounds

Condition 1: Derivative Bounds Exist

There is a known k > 0 such that

(i) µ
(k)
t (x) ∈ [lt , ut ] ∀x ∈ χ

For data-driven bounds, we also need to attain the bounds somewhere:

1 µ
(k)
t (x) = lt for some x ∈ χ/D

2 µ
(k)
t (x) = ut for some x ∈ χ/D

We don’t need to know lt or ut , but we need to be able to estimate them
’well’.
Notice that this condition does not allow other treatment policies with a
discontinuity in χ which affects Y .

Dowd Dowd Defense April ’21 12/54



Regularity Conditions

Condition 2: Regularity

1 (Y,X,T) are i.i.d. from a DGP as described above.

2 µ
(k+2)
t is continuous

3 The density of X, fx is absolutely continuous and bounded away from
zero over the region of interest χ.

4 σ2t () is positive, bounded away from 0, and has two continuous
derivatives.

5 sup
x∈χ

E
[
|εi |3exp(|εi |)|xi = x

]
<∞

which implies E
[
|εi |3exp(|εi |)

]
<∞.
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Local Polynomial Conditions

Condition 3: Kernel and Bandwidth for Local Polynomial
(i) The kernel function K (·) has support (−1, 1), outside of which it

takes value 0.

(ii) K (·) is symmetric, positive, bounded, and integrates to 1 over its
support.

(iii) The bandwidth h = hn is set such that as n→∞, hn → 0 and
nh3n →∞.

(iv) ∃ η ≥ hn ∀n.

We use the kernel Kh(x) = K (x/h)/h.

These are standard conditions for local polynomial regressions.
See Fan, Heckman, and Wand [1995].
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Donut Exclusion

Condition D: Donut Exclusion
(i) There is a known interval D = (d−, d+) such that all individuals who

manipulate are contained to the interval, and would be contained in
the counterfactual where they do not manipulate.

(ii) There is only one policy with a threshold relevant to the outcome
variable inside the region [d− − ε, d+ + ε] for some ε > 0.

I define manipulation as the difference between the observed running
variable, and the value in the counterfactual where all individuals
treatment statuses were fixed in advance.
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Coverage for φ

Define C such that Φ(C )−Φ(−C ) = 1− α

S1−α =
[
τ̂l − C σ̂l/

√
n, τ̂u + C σ̂u/

√
n
]

Theorem 1

Under conditions 1-4, and the condition that nh2k+3 → 0,
for all α ∈ (0, 1/2),

lim
n→∞

P[φ ⊆ S1−α] = 1− α
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Academic Probation - All Data
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Academic Probation - Drop Donut
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Academic Probation - Inside Bandwidth
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Academic Probation - Fit Local Polynomials
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Academic Probation - Fit Local Polynomials
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Academic Probation - Identified Region
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Academic Probation - CR for Set
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Academic Probation - CR for elements of set
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Tau Set
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Synthetic Controls with Spillovers:
Examples and Simulations
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Example: California Prop 9
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Synthetic Controls Setting

y1,1 y1,2 . . . y1,T y1,T+1

y2,1 y2,2 . . . y2,T y2,T+1

...
...

. . .
...

...

yN,1 yN,2 . . . yN,T yN,T+1

} treated unit control units

↑ treatment

y1,T+1(1) = y1,T+1(0) + α
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Abadie, Diamond, and Hainmueller (2010)
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Synthetic Control Estimator

Synthetic control weights:(
ẑ1
b̂1

)
= arg min

(z,b′)′∈W

T∑
t=1

(y1,t − z − Y ′tb)2,

where Yt = (y1,t , y2,t , . . . , yN,t)
′ and W = R× {0} ×∆N−1

i.e. b̂1 are normalized weights – they sum to one, are non-negative,
and we force a weight of 0 on the ‘own’ observation.

z is included because of the work in Ferman and Pinto (2017) showing
an intercept is necessary for unbiased procedures.
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Spillover effects in synthetic control

The synthetic control estimator

α̂ = y1,T+1(1)− ŷ1,T+1(0) = y1,T+1 − Y ′T+1b̂1 − ẑ

can be severely biased in the presence of spillover effects:

As in a diff-in-diff setting, if treatment can affect your control group -
your ATE may be biased.

SCM is particularly vulnerable as it may put extra weight on the same
units that are ‘contaminated’.

This can be bad luck – but more worryingly, similar units may actually
be prone to spillovers.

Regularization properties of simplex are suddenly a potential
downside.
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Linear Spillover effects

Remember: αi = yi ,T+1(1)− yi ,T+1(0)
i.e. In the counterfactual, had treatment not occurred anywhere, how
different was unit i?

Let

α =


α1

α2
...
αN


Assume linear spillover effects: α = Aγ

A known

γ unknown parameters
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Synthetic control weights for all units

We estimate the weight vectors and intercepts for each unit.
For each i , (

ẑi
b̂i

)
= arg min

(z,b)∈Wi

T∑
t=1

(yi ,t − z − Ytb
′)2,

with i-th entry of b̂i being 0, and b̂i ∈ ∆N (non-negative, sum to one).
Yt = (y1,t , y2,t , . . . , yN,t)

′

Define zi = plim ẑi and bi = plim b̂i . Let

Z =

z1...
zN

 , B =

b
′
1
...
b′N


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Abadie, Diamond, and Hainmueller (2010)
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Abadie, Diamond, and Hainmueller (2010)

Passage of Proposition 99 
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Two-Sample Tests
New test + R package
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Comparing two samples

Frequently we want to compare two samples, and see if they come
from the same distribution.

Many well known tests are in use for this purpose. T-test, Anova, etc.

Non-parametric tests, which require few assumptions to work, often
are very conservative, or only test for difference in one of a few
moments of a distribution.
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ECDF test statistics

ECDF based tests are in this class – they are defined by taking some
norm on the two empirical cumulative distributions.

Randomization versions of these tests avoid need to be conservative –
but are only as powerful as the test statistic allows.

I discuss a new ECDF statistic which performs exceptionally well and
is motivated by theory.

I implement that statistic (and other ECDF tests) in an R package –
twosamples.
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ECDF Statistics - Kolmogorov-Smirnov
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ECDF Statistics - Kuiper
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ECDF Statistics - Cramer-Von Mises
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ECDF Statistics - Variance of ECDF
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ECDF Statistics - Anderson-Darling
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ECDF Statistics - Cramer-Von Mises
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ECDF Statistics - Wasserstein
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ECDF Statistics - Proposal
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Power Simulations
Normal w/ Mean Shift
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Power Simulations
Normal w/ Variance Inflation
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Power Simulations
Normal w/ Mean and Variance Shift
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Power Simulations
Mixture of Normals – Mean/Variance Constant – Kurtosis changed
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Power Simulations
Mixture of Normals – Bimodal, Constant mean
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twosamples

R package on CRAN

Publicly available since 2018.

Randomization tests, with test statistics in C++

Includes KS, Kuiper, CVM, AD, WASS, and proposed test statistics.

≈ 600 downloads/month
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Thank you all

Dowd Dowd Defense April ’21 54/54


	Regression Discontinuity Donuts
	Synthetic Controls with Spillovers:  Examples and Simulations
	Two-Sample Tests  New test + R package
	Thank you all

