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Abstract

Synthetic control methods are often used in treatment effect estimation with panel data where only

a few units are treated and a small number of post-treatment periods are available. Current estimation

and inference procedures for synthetic control methods do not allow for the existence of spillover effects.

However, this assumption doesn’t hold in many empirical applications. In this paper, we consider esti-

mation and statistical inference for synthetic control methods, allowing for spillover effects. We propose

estimators for both direct treatment effects and spillover effects and show they are asymptotically un-

biased. Moreover, we propose an inferential procedure that is based on Andrews (2003)’s end-of-sample

instability tests (P -test). Similar to Andrews’ results, we show this procedure is generally inconsistent

but asymptotically unbiased. In simulations, we confirm that the presence of spillovers renders current

methods biased, whereas our methods yields corrects size and has good power properties. We apply our

method to an empirical example that investigates the effect of California’s tobacco control program as

in Abadie et al. (2010).

1 Introduction

The synthetic control method (SCM) has gained popularity in empirical studies since its introduction in

Abadie and Gardeazabal (2003). SCM is often used in treatment effect estimation where we observe a

panel of data going back in time, but only a few units are treated and a small number of post-treatment

periods. This happens frequently in the US when we consider state polices and have state-level aggregate

data. One common approach to this setting is differences-in-differences, which treats the control group

as parallel to the treatment group, and looks at the average difference between the two. The basic insight

of SCM is to model the relationship between the treated and untreated units using pre-treatment data,
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essentially trying to create a data-driven weighted average. Then SCM uses the post-treatment data to

predict the counter-factual values of the treated unit, which gives us the “synthetic control”.

However, SCM and all of its variants assume explicitly or implicitly that untreated units are not

affected by the treatment. That is, they rely on the Stable Unit Treatment Value Assumption (SUTVA).

This is natural, since SCM uses post-treatment control units to predict the counter-factual values of the

treated units. If SUTVA does not hold, the resulting treatment effect estimator could be heavily biased.

In this paper, we relax SUTVA and look into the case where spillover effects are allowed. We consider

a model with spillover effects and provide a method that estimates treatment effect and spillover effects

simultaneously. We also propose an inferential procedure that allows people to test for hypotheses such

as no treatment effect or no spillover effects.

To fix ideas, we consider the Rubin’s potential outcome model, with only one unit being treated.

That is, let

yi,t =


yi,t(1), if dt = 1,

yi,t(0), otherwise,

(1)

and

dt =


1, if i = 1 and t = T + 1,

0, otherwise,

(2)

for i = 1, . . . , N and t = 1, . . . , T + 1. The treatment indicator dt = 1 means unit 1 is treated at time t,

and dt = 0 means otherwise. Note that only unit 1 is treated (at t = T + 1). We consider the case where

N is fixed and T goes to infinity. For simplicity, we only consider the case with one post-treatment period.

Everything discussed here can be naturally extended to cases with multiple post-treatment periods.

Let αi = yi,T+1(1) − yi,T+1(0), which can be the treatment effect or spillover effect depending on

i. If we are interested in estimating the treatment effect α1, a popular choice is the synthetic control

estimator. Let xt = (1, y1,t, y2,t, . . . , yN,t)
′, then a synthetic control weight estimator for a given closed

convex set Λ ⊂ RN+1 is

β̂Λ = arg min
β∈Λ

T∑
t=1

(y1,t − x′tβ)2. (3)

An estimator of α1 is given by

α̂1 = y1,T+1 − x′T+1β̂Λ, (4)

i.e. the counter-factual value y1,T+1(0) is approximated by x′T+1β̂Λ. Popular choices of Λ include the

original synthetic control method in Abadie and Gardeazabal (2003) and Abadie et al. (2010) {0} ×

{0} × ∆N−1, The demeaned synthetic control in Ferman and Pinto (2016) R × {0} × ∆N−1, and the

modified synthetic control in Li (2017) R × {0} × RN−1
+ .1 We will mainly use the demeaned synthetic

control restriction in this paper. That is, we do not restrict the intercept but require other coefficients

1Where ∆N−1 = {θ ∈ RN−1 : θi ≥ 0 for each i,
∑N−1
i=1 θi = 1} is a (N − 1)-dimensional simplex.
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to be positive and sum up to one. Intuitively, this can be seen as relaxing the common notion that

SCM requires your treated unit to be on the ‘interior’ of your data. The demeaned SCM can also be

seen as imposing a large degree of regularization on the data – as for n− 1 coefficients, the LASSO style

restriction of summing to no more than 1 is imposed. Note that the choice of restrictions depends on what

a researcher believes about the DGP and that our analysis extends to most choices. See Doudchenko

and Imbens (2016) for a discussion.

Under SUTVA and regularity conditions within a factor model, this estimator is shown to be incon-

sistent but asymptotically unbiased by Ferman and Pinto (2016). However, in the presence of spillover

effect, this estimator can be severely biased. The reasons are (i) xT+1 is contaminated by the spillover

effect, which results in a biased estimator of y1,T+1(0). (ii) The spillover often happens in the control

units that the synthetic control method puts a lot of weight on, since they are more related to the treated

unit.

The goal of this paper is to relax the SUTVA condition and to perform estimation and tests. We

consider a factor model as the data generating process. To facilitate the estimation, we assume that

the treatment effect and the spillover effects are linear in some underlying parameters. For each unit,

we estimate a linear model between it and all the other units, using SCM with pre-treatment data.

Thanks to the linear spillover structure, we are able to obtain asymptotically unbiased estimators for the

treatment and spillover effects. We also characterize the asymptotic distribution of the estimator.

Furthermore, we propose an inferential procedure based on Andrews (2003)’s end-of-sample instability

test (P -test). We first generalize P -test to the synthetic control method without spillover effects, and then

generalize it further to incorporate cases with spillover effects. Similar to P -test, our testing procedures

use the idea of approximating the null distribution of the statistic using pre-treatment data.

This paper mainly contributes to three streams of literature. First, it complements the fast-developing

literature on synthetic control inference by relaxing SUTVA. Due to its popularity among empirical

researchers, many formal results have been developed for statistical inference in similar settings. For

example, Conley and Taber (2011) consider hypothesis testing in a similar data structure where only

a few units are treated and both pre- and post-treatment periods are short. They consider difference-

in-difference, which can be treated as a special case of SCM, and use control units to form the null

distribution of the statistic. In Ferman and Pinto (2017) and Hahn and Shi (2016), similar ideas are used

to conduct placebo tests that permute across observed units. Among all, Chernozhukov et al. (2017) is

the most related to our work, since they also use outcomes across time periods rather than across units

like the above citations. Unlike other works, Li (2017) proposes an innovative testing procedure that is

based on the idea of projection onto convex sets and results in Fang and Santos (2014). However, none

of the papers mentioned above allows for existence of spillover effects. Our methods provides formal

statistical results in this setting, without assuming SUTVA.

3



Second, we contribute to the spillover effects estimation literature. In this literature, Manski (1993)

introduces the reflection problem and since then the linear-in-means model has become a prominent tool

in studies of spillover effects. Duflo and Saez (2003) use a randomized experiment approach to deal with

the spillover effects. For the panel data settings, Manresa (2016) assumes a stable network structure

across time and uses Lasso to estimate the spillover effects. However, the literature seldom looks at the

panel data setting with only a few treated units and short post-treatment periods. This is partly because

we don’t usually have enough information about the spillover effects in this particular setting. In our

setting we are able to delimit the amount of information needed ahead of time. Specifically, we overcome

this problem by requiring that the spillover structures be pre-specified and follow a pattern that is linear

in some underlying parameters. With that pre-specification, under our identification condition we can

estimate the spillover effects and perform statistical tests on the spillovers.

Third, our results extend the literature on Andrews (2003)’s end-of-sample instability tests. Andrews

(2003) uses data across time periods to approximate the null distribution of the test statistic, and apply

this idea to OLS, IV, and GMM. Chernozhukov et al. (2017) propose a permutation method that is more

general, but similar in cases where serial correlation matters. We extend this idea to the SCM case, and

further to more complicated cases with spillover effects. As Andrews and Kim (2012) extends Andrews

(2003)’s results to the co-integrated cases, we also show that our method is still valid for a co-integrated

factor model.

The remainder of this paper is organized as follows. Section 2 introduces a factor model with spillover

effects, proposes an estimator of the spillover effects and derives its asymptotic distribution. Section 3

considers P -test introduced by Andrews (2003) and Andrews and Kim (2012), and explains how it can

be applied in our settings. Section 4 extends our methods to cases with multiple treated units and/or

multiple post-treatment periods. Monte Carlo simulation results are presented in Section 5. In Section

6, we present an empirical example of our method. Section 7 concludes.

2 Estimation

2.1 A factor model with linear spillover effects

We follow Ferman and Pinto (2016) and consider a factor model such that for i = 1, . . . , N and t =

1, . . . , T + 1,

yi,t(0) = δt + λ′tµi + εi,t, (5)

where λt is F -dimensional common factors, and εi,t is noise that is uncorrelated with λt. For notation

simplicity, write Yt(0) = (y1,t(0), . . . , yn,t(0))′, Yt = (y1,t, . . . , yn,t)
′, and εt = (ε1,t, . . . , εn,t)

′.
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As a reminder we are looking at additive treatment effects of the form:

Yt(1) = Yt(0) + α

Assume that the spillover effect is a linear transformation of some unknown parameter γ ∈ Rk, i.e.

α = Aγ. Typically, γ has much less dimensions than α does. Here are some examples that fit in this

framework.

Example 1. Assume the spillover effect shrink as the geometric distance goes up, where for i = 2, . . . , N ,

αi = b exp(−di) for some b and di is the distance between unit 1 and unit i. Then, we have

A =



1 0

0 exp(−d2)

...
...

0 exp(−dN )


, γ =

α1

b

 .

Example 2. Assume every control units are equally affected by the spillover effects, i.e.

A =



1 0

0 1

...
...

0 1


, γ =

α1

b

 .

Example 3. Assume the spillover effect takes place at some known locations but not the others, while

the levels of spillover effects are allowed to vary across those units. For example, there are spillovers at

locations whose distance to unit 1 is less than d̄. Then, the treatment and spillover effect vector can also be

represented by Aγ. Write the index set of spillover-exposed units as {kj}pj=1 = {i ∈ {2, . . . , N} : di ≤ d̄},

then

A =

1 0

0 A∗

 , γ =



α1

αk1
...

αkp


,

where A∗ ∈ R(N−1)×p is such that the kj-th row of A∗ is a row unit vector with one at the j-th entry,

and it has zeros everywhere else.

In order to back out the spillover effects, we re-formulate the model in the following way. For each i

and t, we write yi,t(0) as a constant plus a weighted average of other outcomes at time t. That is, let

yi,t(0) = ai + Yt(0)′bi + ui,t, (6)
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where the i-th entry of bi is 0, where ai and bi are probability limit of the synthetic control weight

estimator and ui,t is defined by this equation. Namely, let

âi
b̂i

 = arg min
(a,b)∈Wi

T∑
t=1

(yi,t − a− Ytb′)2, (7)

where Wi = {β = (β0, β1, . . . , βN )′ ∈ R× RN+ : βi = 0,
∑N
j=1 βj = 1}. Then, let

ai = plim âi, bi = plim b̂i, (8)

and we only consider cases where they are well-defined (see Lemma 1 for examples where âi and b̂i

converge). Stacking equation (6) for all i’s gives

Yt(0) = a+BYt(0) + ut, (9)

where a = (a1, . . . , aN )′, i-th row of B is b′i and ut = (u1,t, . . . , uN,t)
′. For t = T + 1, this becomes

(I −B)(YT+1 − α)− a = uT+1, (10)

where YT+1 = (y1,T+1, . . . , yN,T+1)′. We want to use this equation to estimate the spillover effect.

Note that (6) is not obtained by solving for λt using (5). In general, ai and bi will the probability limit

of regressing yi,t on other outcomes using synthetic control methods, which typically does not coincide

with the weights that reconstruct the factor loadings (Ferman and Pinto (2016)).

Define M = (I −B)′(I −B). Our identification condition is:

Condition ID. Identification Condition A′MA is non-singular

Remarks: 1. This implies (I − B)A has full rank, this means that the submatrix of (I − B) obtained

by eliminating columns that correspond to irrelevant units has full rank.

2. Clearly then A must perform some degree of dimension reduction for us to identify point estimates,

the extent of which depends on the variation in B.

3. Variation in B is what will identify our parameters.

We focus on two sets of technical conditions in our discussion.

Condition ST (model with stationary common factors). Assume {(δt, λt, εt)}t≥1 is stationary, ergodic

for the first and second moments, and has finite (2+δ)-moment for some δ > 0. Assume cov[Yt(0)] = Ωy

is positive definite.
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Remarks: 1. We show in the proof of Lemma 1 that in this case (under the identification condition):

bi = arg min
w∈W (i)

(w − ei)′Ωy(w − ei), (11)

ai = E[yi,1(0)− Y1(0)′bi], (12)

where ei is a unit vector with one at the i-th entry and zeros everywhere else, and W (i) = {(w1, . . . , wN ) ∈

RN+ : wi = 0,
∑
j 6=i wj = 1}. Note that bi does not in general recover factor structure, in the sense that

µi 6= (µ1, . . . , µN )bi in general.

2. We do not impose any restriction on the factor loadings {µi}Ni=1 except for Ωy being positive

definite. In the stationary case, the key for the treatment estimator to be unbiased and the test proposed

below to be valid is to include an intercept in the optimization problem (7).

Condition CO (model with cointegrated I(1) common factors). Rewrite Equation (5) as

yi,t(0) = (λ1
t )
′µ1
i + (λ0

t )
′µ0
i + εi,t, (13)

and δt can be either in λ1
t or λ0

t . Assume {(λ0
t , εt)}t≥1 is stationary, ergodic for the first and second

moments, and has finite 4-th moment. Without loss of generality, E[εi,t] = 0. Assume {λ1
t}t≥1 is I(1).

Further assume for each i, yi,t(0) is such that weak convergence holds for T−1/2∑[rT ]
t=1 yi,t(0) ⇒ νi(r),

where ⇒ is weak convergence and process νi(r) is defined on [0, 1] and has bounded continuous sample

path almost surely. For each i, let W (i) = {(w1, . . . , wN ) ∈ RN+ : wi = 0,
∑
j 6=i wj = 1}. Assume for each

i, there exists w(i) ∈ W (i) such that µ1
i =

∑N
j=1 w

(i)
j µ1

j . That is, (w(i) − ei) is a cointegrating vector for

Yt(0), where ei is a unit vector with i-th entry being one and zeros everywhere else.

2.2 Estimation

We form estimators for (a,B) using synthetic control methods as in (7). We do that for each i = 1, . . . , N ,

pretending i is the treated unit and other units are controls. Then, the estimators for a and B are

â = (â1, . . . , âN )′ and B̂ = (b̂1, . . . , b̂N )′, respectively. Let M̂ = (I − B̂)′(I − B̂) be an estimator for M .

Let an estimator of γ be such that

γ̂ = arg min
g∈Rk

‖(I − B̂)(YT+1 −Ag)− â‖

= (A′M̂A)−1A′(I − B̂)′((I − B̂)YT+1 − â). (14)

Note that the FOC implies

A′(I −B)′uT+1 = 0, (15)
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i.e. it requires some weighted sum of the residuals to be zero. Then the treatment and spillover effect

vector α can be estimated by α̂ = Aγ̂.

Assumption 1. (a) {ut}t≥1 is stationary, and has mean zero.

(b) A′MA is non-singular.

(c) ‖â− a‖ = op(1), ‖B̂ −B‖ = op(1)

(d) ‖(B̂ −B)YT+1(0)‖ = op(1).

Remark: 1. Part (c) is fairly strong in the sense that it excludes polynomial time trends.

Lemma 1. Either Condition ST + Condition ID or Condition CO + Condition ID implies Assumption

1.

Theorem 1. Suppose Assumption 1 holds. Then, α̂ − (α + GuT+1) →p 0 as T → ∞, where G =

A(A′MA)−1A′(I −B)′. Moreover, E[GuT+1] = 0.

The structure of the limiting distribution is similar to the case as in Ferman and Pinto (2016), as

it’s inconsistent but asymptotically unbiased, in the sense that the difference between the estimator and

the true value has mean zero. Note that linearity of α in γ is crucial here in order for us to obtain the

asymptotic unbiasedness.

2.3 Efficiency

Now we form an estimator of α with possibly lower variance. For a positive define matrix W ∈ RN , we

minimize ‖W 1/2εT+1‖ instead of ‖εT+1‖. The resulting estimator is

γ̂W = arg min
g∈Rk

‖W 1/2((I − B̂)(YT+1 −Ag)− â)‖

= (A′M̂WA)−1A′(I − B̂)′W ((I − B̂)YT+1 − â), (16)

where M̂W = (I − B̂)′W (I − B̂). The corresponding estimator for α is α̂W = Aγ̂W . Let Ω = Cov[u1]

and W e
T be a consistent estimator of Ω−1. Then the efficient estimator of α is defined by

α̂e = α̂We
T

(17)

Let MW = (I − B)′W (I − B), GW = A(A′MWA)−1A′(I − B)′W for some weighting matrix W ,

W e = Ω−1, Me = MWe , and Ge = GWe . Then,we have the following results.

Proposition 1. Suppose Assumption 1 holds, WT is a consistent estimator for W , and W e
T is a consistent

estimator for W e. Then, α̂WT − (α + GWuT+1) →p 0, and specifically, α̂e − (α + GeuT+1) →p 0, as

T →∞. Moreover, (Cov[GWuT+1]− Cov[GeuT+1]) is positive semi-definite.

In practice, we need to estimate Ω, and the drawback is that we need relatively large sample size

(large T ) to have a good approximation.

8



3 Andrews’ P -Test

In this section, we discuss formal results on inference. In Section 3.1, we consider the case without

spillover effects, and state the assumptions under which Andrews’ P test is valid. In Section 3.2, we

generalize P test to cases where spillover effects cannot be ignored.

At a high level, the test operates by using a leave-one-out procedure across time periods. That

for each time period j = 1, ..., T , we hold out j and estimate the weights and intercepts using t =

1, ..., j − 1, j + 1, ..., T . Then we can combine those weights with our observed outcomes in time period

j to create a ‘treatment effect estimate’ α−j . When we perform this procedure for each pre-treatment

time period, we create a null distribution for αT+1. Then we can compare that null distribution to our

observed effects to perform inference on a variety of hypotheses.

3.1 Cases without spillover effects

Suppose for now there is no spillover effects, i.e. α2 = · · · = αN = 0. We want to test for the existence

of treatment effect on unit 1. The null and alternative hypothesis of interest are


H0 : α1 = 0,

H1 : α1 6= 0.

(18)

The test procedure we consider here is the end-of-sample instability test (P -test) in Andrews (2003).

A relevant work is Chernozhukov et al. (2017). Since we allow for serial correlation and only look at

one post-treatment period, we will use moving blocks permutation with each block having only one unit,

when applying the test procedure in Chernozhukov et al. (2017). This effectively makes their test exactly

P -test in Andrews (2003).

We assume the α1 is independent of T under H1. That is, we consider fixed, not local, alternatives,

as in Andrews (2003) and Andrews and Kim (2012). That is, α1 does not change as T grows, which

facilitates our analysis of the test statistic under H1.

Now we translate our hypothesis into the linear formulation considered in Andrews (2003). Namely,

we have

yt =


a1 + Y ′t b1 + u1,t, for t = 1, . . . , T ,

a∗1 + Y ′t b1 + u1,t, for t = T + 1.

(19)

A non-zero treatment effect is equivalent to a shift in the intercept a1 (or equivalently, change of the

distribution of u1,t, at t = T + 1). The null and alternative hypothesis (18) become


H0 : a∗1 = a1,

H1 : a∗1 6= a1.

(20)
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Let the synthetic control regression residuals be û1,t = y1,t − â1 − Y ′t b̂1. The test statistic is defined

by

P = û2
T+1. (21)

For notational simplicity, let β̂1 = (â1, b̂
′
1)′ and xt = (1, Y ′t )′. For β ∈ RN+1, define

Pt(β) = (y1,t − x′tβ)2. (22)

Then, P = (y1,T+1 − x′T+1β̂1)2 = PT+1(β̂1). Let P∞ be a random variable with the same distribution as

PT+1(β1) with β1 = (a1, b
′
1)′.

Let Pt = Pt(β̂
(t)
1 ), where β̂

(t)
1 = β̂1 for each t.2 Define

F̂P,T (x) =
1

T

T∑
j=1

1{Pt ≤ x}, (23)

and let FP (x) be the distribution function of P1(β1). Finally, let q̂P,1−α = inf{x ∈ R : F̂P,T (x) ≥ 1−α},

and qP,1−α be the (1− α)-quantile of P1(β1).

Assumption 2. (a) {ut}t≥1 are stationary, ergodic, and has mean zero.

(b) E[|ut|] <∞.

(c) ∃ a non-random sequence of positive definite matrices {CT }T≥1 such that maxt≤T+1 ‖C−1
T xt‖ = Op(1)

(d) ‖CT (β̂1 − β1)‖ = op(1), and maxt=1,...,T ‖CT (β̂
(t)
1 − β1)‖ = op(1).

(e) The distribution function of P1(β1) is continuous and increasing at its (1− α)-quantile.

Lemma 2. Suppose the distribution function of P1(β1) is continuous and increasing at its (1−α)-quantile.

Then, Condition ID and either Condition ST or Condition CO implies Assumption 2.

Theorem 2. Suppose Assumption 2 holds. Then, as T →∞,

(a) P →d P∞ under H0 and H1,

(b) F̂P,T (x)→p FP (x) for all x in a neighborhood of qP,1−α under H0 and H1,

(c) q̂P,1−α →p qP,1−α under H0 and H1,

(d) Pr(P > q̂P,1−α)→ α under H0.

3.2 Cases with spillover effects

Now we allow for non-zero spillover effects. We propose a testing procedure that is based on Andrews’ P -

test and accounts for the spillover effect. The null and alternative hypothesis we consider are H0 : Cα = d

and H1 : Cα 6= d, with C and d known. For example, we want to test for the hypothesis that there is

no treatment effect at the treated unit (unit 1), then we let C = (1, 0, 0, . . . , 0) ∈ R1×N and d = 0. This

2You can also use leave-one-estimator to construct Pt as in Andrews (2003) and Andrews and Kim (2012). For t = 1, . . . , T ,

the leave-one-out estimator β̂
(t)
1 is defined by the synthetic control weight estimator using only observations indexed by s =

1, . . . , t− 1, t+ 1, . . . , T .
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effectively makes Section 3.1 a special case of our test (although Theorem 2 has slightly stronger results

than Theorem 3 does). Another example is that we want to test for whether there is spillover effect, then

we can let C = [0 IN−1] ∈ R(N−1)×N and d = (0, . . . , 0)′ ∈ R(N−1)×1.

The test statistic we consider here is P = (Cα̂−d)′WT (Cα̂−d) for some weighting matrix WT →p W .

Recall G = A(A′MA)−1A′(I − B) and can be consistently estimated by Ĝ = A(A′M̂A)−1A′(I − B̂) if

B̂ →p B. By Theorem 1, P is asymptotically equivalent to u′T+1G
′C′WCGuT+1. To construct critical

values, define

Pt(θ) = (Yt − θxt)′G′C′WCG(Yt − θxt), (24)

and

P̂t(θ) = (Yt − θxt)′Ĝ′C′WTCĜ(Yt − θxt), (25)

for some θ ∈ RN×(N+1), xt = (1, Y ′t )′, and Ĝ = A(A′M̂A)−1A′(I− B̂)′. Let P̂t = P̂t(θ̂
(t)), where θ̂(t) = θ̂

for each t.3 Let P∞ = P1(θ0) for θ0 = [a B]. Define

F̂P,T (x) =
1

T

T∑
j=1

1{P̂t ≤ x}, (26)

and let FP (x) be the distribution function of P∞. Finally, let q̂P,1−α = inf{x ∈ R : F̂P,T (x) ≥ 1 − α},

and qP,1−α be the (1− α)-quantile of P∞.

Assumption 3. (a) Assumption 1 holds.

(b) {ut}t≥1 is ergodic and E[‖ut‖] <∞.

(c) There exists a non-random sequence of positive definite matrices {DT }T≥1 such that maxt≤T+1 ‖D−1
T xt‖ =

Op(1).

(d) ‖(θ̂ − θ0)DT ‖F = op(1), and maxt=1,...,T ‖(θ̂(t) − θ0)DT ‖F = op(1), where ‖ · ‖F is the Frobenius

norm.

(e) The distribution function of P1(θ0) is continuous and increasing at its (1− α)-quantile.

(f) WT →p W as T →∞.

Lemma 3. Suppose the distribution function of P1(θ0) is continuous and increasing at its (1−α)-quantile.

Also assume Condition ID holds. Then, Assumption 3 is satisfied if either of these holds:

(i) Condition ST with WT = I or WT = (CG(T−1∑T
t=1 ûtû

′
t)G
′C′)−1;

(ii) Condition CO with WT = I.

Theorem 3. Suppose Assumption 3 holds. Then, under H0, as T →∞,

(a) P →d P∞,

(b) F̂P,T (x)→p FP (x) for all x in a neighborhood of qP,1−α,

3Similar to the case without spillover effects, the leave-one-out estimator θ̂(t) = [â(t) B̂(t)] is defined by the synthetic control
weight estimator using only observations indexed by s = 1, . . . , t− 1, t+ 1, . . . , T .
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(a) No spillover effects

95%

(b) Spillover effects

95%

Figure 1: Placebo test

(c) q̂P,1−α →p qP,1−α ,

(d) Pr(P > q̂P,1−α)→ α.

3.3 Other testing procedures

When we allow for existence of non-zero spillover effects, the existing testing procedures will have poor

performance. Here we intuitively explain what happens to placebo test as in Abadie and Gardeazabal

(2003) and CWZ test as in Chernozhukov et al. (2017) in the presence of spillover effects.

Now suppose we want to test for treatment effect being zero and are not aware of the spillover effects.

Placebo test and CWZ test are similar in the sense that placebo test exploits variations of {ûi,T+1}Ni=1

while CWZ test uses variations of {û1,t}T+1
t=1 .

We look at the placebo test first. When there is no spillover effect, the distribution of û1,T+1 and

distribution of {ûi,T+1}Ni=2 overlap asymptotically. As shown in Figure 1, when there is positive spillover

effects, we will underestimate the treatment effect and the density function of û1,T+1 moves to the left;

some of the control units shift to the right because of the positive spillovers, so density of {ûi,T+1}Ni=2

moves to the right but gets wider. In terms of test, the shift of û1,T+1 is offset by the wider density of

{ûi,T+1}Ni=2 (harder to reject H0), which explains why in Table 3 the empirical sizes of placebo test for

T = 50 and 200 cases are not too far away from 0.05. It effectively becomes much more conservative and

has low power as shown in Table 4.

Now we consider CWZ test. When there is no spillover effect, the distribution of û1,T+1 and distri-

bution of {û1,t}Tt=1 overlap asymptotically. As shown in Figure 2, when there is positive spillover effect,

we underestimate the treatment effect and the density function of û1,T+1 shifts to the left; density of

{û1,t}Tt=1 since they are pre-treatment but spillover only happens after the treatment. This results in an

invalid test.

12



(a) No spillover effects

95%

(b) Spillover effects

95%

Figure 2: CWZ test

4 Extensions

4.1 Multiple treated units

Our method readily extends to cases where multiple units are treated. In our setting, spillover effects are

not distinguished from treatment effects, since one can think of spillover as the treatment on the units

that are not directly treated. With a correctly specified structure matrix A, we can perform estimation

and testing just as previous sections. For example, suppose N = 4, unit 1 and unit 2 are treated, unit 3

is affected by spillover effect, and unit 4 is neither treated nor exposed to spillover effect. Then we can

specify

A =



1 0 0

0 1 0

0 0 1

0 0 0


, (27)

and the resulting estimator γ̂ = (γ̂1, γ̂2, γ̂3)′ by (14) is such that γ̂1 and γ̂2 are the treatment effects

estimator for unit 1 and unit 2, respectively, and γ̂3 is the spillover effect estimator for unit 3. Test can

be performed accordingly. If one wants to test for the hypothesis that there is no spillover effects, the

null is then H0 : Cα = d, where C = (0, 0, 1, 0) and d = 0.

4.2 Multiple post-treatment time periods

Suppose now we have observations of {yi,t} for i = 1, . . . , N and t = 1, . . . , T +m. Treatment is received

at t = T + 1. The model becomes (with some abuse of notation)

Yt =


Yt(0), if t ≤ T

Yt(0) + αt, otherwise.

(28)
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Note that we do not allow for spillovers in time. That is, the treatment effect or spillover effects cannot

affect future selves. For each t = T + 1, . . . , T +m, we need to specify the spillover structure matrix At.

Then, an estimator of αt is

α̂t = At(A
′
tM̂At)

−1A′t(I − B̂)′((I − B̂)Yt − â). (29)

That is, we treat T+s period as T+1 and do the same procedure as before. For each t = T+1, . . . , T+m,

we can perform separate tests as introduces in previous sections.

To answer simultaneous questions such as whether there is spillover effect at all, we can extend P -

test discussed above. Consider the null hypothesis H0 : Ctαt = dt for t = T + 1, . . . , T + m. Let P̂t be

constructed as in Section 3.2 for t = 1, . . . , T . For t = T+1, . . . , T+m, let P̂t = (Ctα̂t−dt)′WT (Ctα̂t−dt).

We the now form

P (t) =

m−1∑
s=0

P̂t+s (30)

for t = 1, . . . , T + 1. The test statistic is then P (T+1), and we use {P (t)}Tt=1 to form its null distribution.
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Figure 3: Distribution of treatment effect estimates.
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5 Simulation

We present Monte Carlo simulation results in this section. For each case considered, we use 1000 simu-

lation repetitions.

5.1 Estimation with spillover effects

In this subsection we examine the finite sample performance of our estimation procedure proposed in

Section 2.2. The model consider here is similar to Li (2017), where yi,t(0) follows a factor model structure.

We consider both stationary and I(1) case.

Table 1: Treatment effect estimation with stationary common factors.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

SC -0.062 0.011 -0.003 0.114 -0.005 0.016 0.037 -0.041 -0.033

(2.113) (1.249) (1.586) (1.642) (1.244) (1.273) (1.408) (1.290) (1.182)

CSC -0.077 0.013 0.018 0.091 -0.012 0.010 0.042 -0.031 -0.040

(2.618) (1.417) (1.710) (1.974) (1.362) (1.486) (1.741) (1.516) (1.270)

Concentrated spillover effects

SC -1.326 -0.986 -1.333 -0.756 -0.880 -1.543 -1.492 -1.070 -0.796

(2.714) (1.451) (2.065) (1.958) (1.654) (1.392) (1.912) (1.638) (1.461)

CSC 0.267 0.025 0.140 0.248 0.038 0.025 -0.133 -0.055 0.110

(2.554) (1.425) (1.756) (1.897) (1.435) (1.250) (1.700) (1.581 ) (1.408)

Spreadout spillover effects

SC -2.378 -1.910 -2.114 -2.245 -1.859 -2.398 -2.147 -2.112 -2.154

(2.493) (1.470) (1.696) (2.029) (1.472) (1.369) (1.791) (1.538) (1.313)

CSC -0.048 0.007 0.029 0.090 -0.025 0.018 0.037 -0.048 -0.028

(2.740) (1.438) (2.061) (2.231) (1.296) (1.602) (1.643) (1.450) (1.290)

5.1.1 stationary case

The underlying factor model is

yi,t(0) = δt + λ′tµi + εi,t, (31)
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Table 2: Treatment effect estimation with I(1) common factors.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

SC -0.023 -0.018 -0.043 0.036 -0.088 -0.031 0.041 0.038 -0.038

(1.873) (1.642) (1.772) (1.708) (1.539) (1.900) (1.915) (1.810) (1.866)

CSC -0.021 -0.057 -0.017 0.037 -0.053 -0.044 0.007 0.013 -0.017

(2.460) (2.249) (4.523) (2.116) (2.121) (2.184) (2.308) (1.849) (1.952)

Concentrated spillover effects

SC -1.185 -1.400 -2.234 -1.206 -2.026 -1.954 -1.316 -1.408 -2.325

(2.421) (1.854) (1.856) (2.269) (1.921) (2.079) (2.449) (2.043) (1.976)

CSC -0.021 -0.057 -0.017 0.037 -0.053 -0.044 0.007 0.013 -0.017

(2.460) (2.249) (4.523) (2.116) (2.121) (2.184) (2.308) (1.849) (1.952)

Spreadout spillover effects

SC -2.088 -2.599 -2.885 -2.233 -2.536 -2.465 -2.219 -2.402 -2.889

(2.390) (1.779) (1.795) (2.101) (1.759) (2.037) (2.249) (1.921) (1.900)

CSC -0.029 0.027 -0.022 0.047 -0.008 0.010 0.022 0.006 -0.045

(2.452) (3.447) (7.367) (2.357) (2.412) (2.740) (2.418) (2.279) (2.712)

where λt = (λ1,t, λ2,t, λ3,t)
′,

δt = 1 + 0.5δt−1 + ν0,t, (32)

λ1,t = 0.5λ1,t−1 + ν1,t, (33)

λ2,t = 1 + ν2,t + 0.5ν2,t−1, (34)

λ3,t = 0.5λ3,t−1 + ν3,t + 0.5ν3,t−1, (35)

and εi,t and νj,s is i.i.d. N(0, 1) for each (i, j, s, t). Each entry of µi is drew from independent uniform

distribution on [0, 1] and fixed for each repetition. At t = T + 1, the observed outcome is yi,T+1 =

yi,T+1(0)+αi, where αi is either treatment effect or spillover effect and is specified below. The treatment

effect is set to 5 and the spillover effect is 3.

The empirical bias and variance (in parenthesis) of the treatment effect estimator using two methods

are shown in Table 1. We consider three spillover patterns. No spillover effects is the case where unit

1 receives a treatment effect of 5 at t = T + 1 and other units are not affected. Concentrated spillover

effects is the case where 1/3 of the control units receive a spillover effect of 3. Spreadout spillover effects

is the case where 2/3 of the control units receive a spillover effect of 3. SC is the original synthetic control
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method, and CSC is the corrected synthetic control method proposed in Section 2.2. Throughout we

assume the coverage of spillover effect is known, but not other information, so A is constructed as in

Example 3. For No spillover effects, we are being conservative and pretend 1/3 of the control units are

exposed to spillover effects.

To better compare results, we fit the simulation results using kernel density for the (N,T ) = (10, 50)

case with concentrated spillover effects and plot it in Figure 3.

5.1.2 I(1) case

For the I(1) case, the underlying factor model follows

yi,t(0) = λ′tµi + εi,t, (36)

where λt = (λ1,t, λ2,t, λ3,t)
′,

λ1,t = λ1,t−1 + 0.5ν1,t, (37)

λ2,t = λ2,t−1 + 0.5ν2,t, (38)

λ3,t = 0.5λ3,t−1 + ν3,t, (39)

and εi,t and νj,s follows i.i.d. N(0, 1) for each (i, j, s, t). The factor loadings are constructed such that

Condition CO is satisfied. Namely, we let µ1 = (1, 0, 0)′, µ2 = (0, 1, 0)′, µ3 = (1, 0, 0)′, µ4 = (0, 1, 0)′,

and for µj with j = 5, . . . , N , we draw independent uniform distribution on [0, 1] for each entry and then

normalize each loading vector such that three entries of each µj sum up to one. The constructed factor

loadings are fixed for each repetition. Other settings are same with the stationary case. The results are

shown in Table 2.

5.2 Test for treatment effect

In this section we compare test procedures against the null hypothesis H0 : α1 = 0, i.e. the treatment

effect is zero. The results are shown in Table 3 and Table 4. The DGP is exactly the same as in Section

5.1.1 (the stationary case), except that α1 = 0 (the null) for Table 3 and α1 = 5 (the alternative) for

Table 4. Placebo test is as in Abadie and Gardeazabal (2003) and Hahn and Shi (2016). CWZ test is

proposed by Chernozhukov et al. (2017). In this set-up, where data are serially correlated and we only

look at one period after the treatment, CWZ is exactly our test (or Andrew’s P -test) when assuming

there is no spillover effect. P -test is the spillover-adjust test proposed in Section 3.2.

Among the three testing procedures, P -test has correct sizes and outperforms the other two methods

in power. Placebo test has correct sizes in some cases but has lower power, and CWZ test over-rejects

under null. The reasons are discussed in Section 3.3.
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Table 3: Empirical rejection rate of testing for treatment effect under null.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

Placebo 0.000 0.000 0.000 0.072 0.053 0.062 0.034 0.031 0.040

CWZ 0.076 0.061 0.060 0.108 0.082 0.065 0.141 0.078 0.072

P -test 0.048 0.049 0.058 0.055 0.064 0.052 0.066 0.046 0.059

Concentrated spillover effects

Placebo 0.000 0.000 0.000 0.066 0.046 0.116 0.035 0.029 0.026

CWZ 0.411 0.207 0.224 0.417 0.279 0.346 0.519 0.346 0.184

P -test 0.065 0.050 0.043 0.111 0.069 0.061 0.109 0.092 0.054

Spreadout spillover effects

Placebo 0.000 0.000 0.000 0.129 0.063 0.147 0.060 0.059 0.072

CWZ 0.576 0.478 0.399 0.685 0.563 0.616 0.741 0.621 0.544

P -test 0.036 0.035 0.042 0.034 0.042 0.046 0.030 0.042 0.044

5.3 Test for existence of spillover effects

In this section we examine the power of the proposed test against the null hypothesis that there is no

spillover effects. We also look into its behavior when the range of spillover effect is not exactly correctly

specified. In this set of experiments, the level of spillover effects (the alternatives) vary from 0 to 2. We

set (N,T ) = (20, 50) and α1 = 5. There are 9 units that is affected by spillover effects. Other settings

follows exactly as in Section 5.1.1 (the stationary case). The model for the range of spillover is as in

Example 3.

The empirical rejection rates against various levels of spillover effects using our method proposed in

Section 3.2 are plotted in Figure 4. Here not include enough misses half of the units that are actually

affected by the treatment (assuming that unit 1 and 4 other units are affected), correct specification

assumes we know exactly which units are affected, and include too many assumes 15 units are affected

in estimation (including unit 1, 9 units that are affected by spillover effects, and 5 units that are actually

not affected).

The simulation results show that the proposed test is quite robust to model misspecification. Among

the three cases, include too many is still correct specification but supposed to be more conservative, so it

has less power than correct specification does. The range of spillover effects is misspecified in not include

enough, but the test is still able to have correct size under null4 and reasonable power under alternatives.

4The model is always correctly specified under null.
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Table 4: Empirical rejection rate of testing for treatment effect under alternative.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

Placebo 0.000 0.000 0.000 0.908 0.939 0.966 0.922 0.936 0.931

CWZ 0.797 0.948 0.926 0.785 0.901 0.983 0.797 0.972 0.827

P -test 0.835 0.956 0.923 0.823 0.937 0.965 0.839 0.964 0.993

Concentrated spillover effects

Placebo 0.000 0.000 0.000 0.461 0.502 0.448 0.465 0.434 0.464

CWZ 0.651 0.765 0.329 0.704 0.754 0.542 0.680 0.746 0.737

P -test 0.860 0.932 0.991 0.957 0.918 0.967 0.834 0.816 0.853

Spreadout spillover effects

Placebo 0.000 0.000 0.000 0.348 0.378 0.331 0.305 0.255 0.294

CWZ 0.337 0.403 0.277 0.563 0.414 0.278 0.406 0.309 0.343

P -test 0.866 0.978 0.981 0.969 0.950 0.991 0.909 0.985 0.974

6 Empirical Example

To demonstrate our method, we’ve used it on the classic SCM example from Abadie et al. (2010) (ADH),

which look at the effect of Prop 99 on California cigarette consumption. In this section, we will walk

through the results from our method, with interruptions to point out quirks and key features.

Prop 99 intended to disincentivize smoking, primarily achieved by introducing a 0.25 tax on each

pack of cigarettes. By measuring sales in California, ADH and others have attempted to determine

the effect of the policy on smoking rates. However, traditional SCM is not guaranteed to produce an

unbiased treatment effect estimator in the presence of spillover effects. In this tobacco control program

example, we are concerned about two kinds of spillover effects. The first spillover is based on concerns

about “leakage”. A common problem with cigarette taxes is that measured local consumption might fall

as people move their purchasing behavior across legal boundaries. In order to accommodate this, we

allowed for a spillover affecting states neighboring California or one of its neighbors. The second spillover

type we considered was a cultural change. If tobacco is discouraged in California, it might reduce the

cultural appeal of smoking. Reasoning that the northeast is culturally close to the west coast, we allowed

for the northeastern states to experience this cultural spillover.

One might also think that there could be a policy contamination whereby culturally close states also

enact policies with similar targets. Our method can allow for this kind of spillover in our estimation.

However, the initial paper was worried about that type of problem, and so 12 states which experienced

legislative changes in the ensuing years were removed in that paper (and thus in our data).
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Figure 4: Empirical rejection rate of testing for existence of spillover effects.

The data is per capita cigarrette consumption in 38 of the 50 states running from 1970 to 2000. In

1989 California enacted prop 99 and so all periods from 1989 onwards will be considered our treatment

periods. With 38 coefficients to estimate (37 other states and an intercept) and 19 pre-periods, we only

get point identified weight matrices because of the regularization implicit in assuming simplex weights.

We replicate the program evaluation in ADH using the method introduced in previous sections,

allowing for possible spillover effects. We use the spillover structure as in Example 3. That is, we allow

for arbitrary spillover effects in those geographically close and culturally similar states as described in

the first paragraph, but not the others. We also perform hypothesis testing on both treatment effect and

spillover effects.

The results are shown in Figure 5 and Figure 6. Abadie et al. (2010)’s method is indexed by synthetic

control and our method is corrected synthetic control. Figure 5 shows the “synthetic California” and

Figure 6 elaborates on this by specifically looking at the estimated treatment effects. The error bars are

built using the methods described in this paper, at a significance level of 90%. We do not use a 95%

significance level because there are only 19 pre-treatment periods. With 19 observations, a 1-in-20 event

has unknown magnitude. The dashed vertical line indicates the time of treatment. The shaded region

represents time periods in which our test rejects the null of no spillover at the 90% level.

As Figure 5 shows, our estimated consumption in the “synthetic California” does not differ qualita-

tively from what a standard SCM would predict. Quantitatively, Figure 6 shows that our results are more
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Figure 5: Trends in per-capita cigarette sales: California, synthetic California, and corrected synthetic
California.

consistent with an addiction story, that tobacco consumption is addictive and should not fall immediately

after the policy. From the tests of spillover effects (shaded area of Figure 6), we see that likely there

were substantial spillover effects, which in some periods lead to statistically significant changes in the

treatment effect estimates. This is particularly impressive given that the original paper considered some

spillover effect types and removed those states from the data set to avoid these contamination problems.

7 Conclusion

Synthetic control method is a powerful tool in treatment effect estimation in the panel data settings,

but it relies heavily on SUTVA. In this paper, we relax this assumption and propose an estimation and

testing procedure that is robust to violation of SUTVA. Our method requires specification of the spillover

structure, which can be fairly weak (Example 3). We consider both stationary and co-integrated cases,

and show that our estimators are asymptotically unbiased. We develop a testing procedure based on

Andrews (2003)’s end-of-sample instability tests, and show that it is asymptotically unbiased. Simulation

results indicate our estimator beats current methods in estimation precision in the presence of spillover

effects. In terms of testing, our method outperforms Chernozhukov et al. (2017)’s test in size and placebo

tests in power. Also, in simulation our testing procedure is fairly robust to minor mis-specification of

spillover structure. Finally, we illustrate our method by applying it to Abadie et al. (2010)’s California
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tobacco control program data.
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Appendix

Proof of Lemma 1. First assume Condition ST holds. The proof follows Ferman and Pinto (2016),

except that we do not assume that there is a set of weights that reconstruct the factor loadings and

belong to the simplex.

We first show part (c). It suffices to show |âi − ai| = op(1) and ‖b̂i − bi‖ = op(1) for each i, i.e. ai

and bi are well-defined. We show it for the i = 1 case and other cases follow the same strategy. Let

ȳj = T−1∑T
t=1 yj,t. Write down an (equivalent) optimization problem

v̂ = arg min
v∈V

(
(y1,t − ȳ1)−

N∑
j=2

(yj,t − ȳj)vj

)2

, (40)

where V = {v = (v2, . . . , vN ) ∈ RN−1
+ :

∑N
j=2 vj = 1}. The objective is strictly convex (with probability

approaching one), so the solution is unique. Note that it implies b̂1 is numerically equivalent to (0, v̂′)′,

otherwise the minimization problem in forming â1 and b̂1 may have a lower objective evaluated at

(ȳ1 −
∑N
j=2 ȳj v̂j , 0, v̂

′)′. Now we let Q̂(v) denote the objective function such that

Q̂(v) =
1

T

T∑
t=1

(
(y1,t − ȳ1)−

N∑
j=2

(yj,t − ȳj)vj

)2

, (41)

and its population analog be

Q(v) =

−1

v


′

Ωy

−1

v

 . (42)

Let v0 be a minimizer of Q(v) in V . We verify the conditions for consistency (see Newey and McFadden

(1994), Theorem 2.1): (i) Since Ωy is positive definite, Q(v) is strictly convex. Also, V is convex.

Therefore, Q(v) is uniquely minimized at v0. (ii) V is compact, since it is a (N −1)-dimensional simplex.

(iii) Q(v) is continuous, since it has a quadratic form. (iv) To see uniform convergence, note

sup
v∈V
|Q̂(v)−Q(v)| = sup

v∈V

∣∣∣∣∣∣∣
−1

v


′(

1

T

T∑
t=1

(Yt − Ȳ )(Yt − Ȳ )′ − Ωy

)−1

v


∣∣∣∣∣∣∣

≤ sup
v∈V

∥∥∥∥∥∥∥
−1

v


∥∥∥∥∥∥∥

2 ∥∥∥∥∥ 1

T

T∑
t=1

(Yt − Ȳ )(Yt − Ȳ )′ − Ωy

∥∥∥∥∥
F

≤ N · op(1)

= op(1), (43)

where ‖ · ‖F is the Frobenius norm. The second inequality is by ergodicity for the second moments.
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Therefore, v̂ →p v0. This implies ‖b̂1 − b1‖ = op(1). By ergodicity,

â1 = ȳ1 − [ȳ2 ȳ3 . . . ȳN ]v̂ →p E[y1,t(0)− Yt(0)′b1] = a1. (44)

This shows part (c) and E[u1,t] = 0 by definition of ui,t. We also have that {ut}t≥1 is stationary since

it is a linear combination of stationary and ergodic processes. This shows part (a) in Assumption 1.

Condition ST assumes part (b). Part (d) follows from (c) and the stationarity of {YT+1(0)}T≥1.

Thus, Assumption 1 holds under Condition ST.

Now we instead assume Condition CO holds.

We first show part (d). We will show ‖YT+1(0)′(b̂1 − b1)‖ = op(1) and other i’s follows the same

strategy. We follows Li (2017)’s strategy of treating the synthetic control weight estimator as a projection

of the OLS estimator onto a closed convex set. Namely, for some positive definite matrix D ∈ RN , let

RN be a Hilbert space with the inner product 〈·, ·〉D such that for θ1, θ2 ∈ RN ,

〈θ1, θ2〉D = θ′1Dθ2. (45)

The norm ‖ · ‖D is defined accordingly, i.e. ‖θ‖D =
√
θ′Dθ, for θ ∈ RN . For a closed convex set Λ ⊂ RN ,

define a projection ΠD such that for each θ ∈ RN , ΠDθ = arg minθ′∈Λ ‖θ − θ′‖D. Zarantonello (1971)

shows that for each θ, θ′ ∈ RN ,

‖ΠDθ −ΠDθ
′‖D ≤ ‖θ − θ′‖D. (46)

With some abuse of notation, let xt = Yt − T−1∑T
s=1 Ys. Then, b̂1 is the synthetic control weight

estimators of regressing (y1,t − T−1∑T
s=1 y1,s) on xt, subject to {0} × ∆N−1 with ∆N−1 being an

(N − 1)-dimensional simplex. Let b̃1 be the OLS estimator of regressing (y1,t − T−1∑T
s=1 y1,s) on xt.

Let ΣT = T−1∑T
t=1 xtx

′
t.

Appendix A.2 in Li (2017) establishes that b̂1 = ΠΣT b̃1. Thus, we have

‖b̂1 − b1‖ = ‖Σ−1/2
T Σ

1/2
T (b̂1 − b1)‖

≤ ‖Σ−1/2
T ‖F · ‖Σ1/2

T (b̂1 − b1)‖

= ‖Σ−1/2
T ‖F · ‖b̂1 − b1‖ΣT

= ‖Σ−1/2
T ‖F · ‖ΠΣT b̃1 −ΠΣT b1‖ΣT

≤ ‖Σ−1/2
T ‖F · ‖b̃1 − b1‖ΣT

= ‖Σ−1/2
T ‖F · ‖Σ1/2

T ‖F · ‖b̃1 − b1‖

= Op(1)op(T
−1/2)

= op(T
−1/2), (47)
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where ‖ · ‖F is the Frobenius norm of a matrix. The third equality is because b1 ∈ {0} × ∆N−1. The

second inequality is by (46). To see the fifth equality, note

ΣT = T

(
1

T 2

T∑
t=1

YtY
′
t −

(
1

T 3/2

∑
t=1

Yt

)(
1

T 3/2

∑
t=1

Yt

)′)
, (48)

so

‖Σ−1/2
T ‖F · ‖Σ1/2

T ‖F = tr(Σ−1
T )tr(ΣT ) = Op(1) · 1

T
· T ·Op(1) = Op(1), (49)

where the second equality is standard results for I1 process (see part (g) and (i) of Proposition 18.1 in

Hamilton (1994) for example). Also, ‖b̃1 − b1‖ = op(T
−1/2) is by Proposition 19.2 in Hamilton (1994).

This shows (47). Apply part (a) of Proposition 18.1 in Hamilton (1994), we have

‖YT+1(0)′(b̂1 − b)‖ = ‖(T−1/2YT+1(0))′(T−1/2(b̂1 − b))‖ = Op(1)op(1) = op(1). (50)

Now we show part (c). Again, it suffices to show |âi− ai| = op(1) and ‖b̂i− bi‖ = op(1). We consider

the i = 1 case and other cases follow the same strategy. We have showed ‖b̂i − bi‖ = op(1) in part (d) of

the proof. Section A.6.1 in Ferman and Pinto (2016) establishes that

[µ1
1 µ

1
2 . . . µ1

N ](b1 − e1) = 0, (51)

where ei is the unit vector with one at the i-th entry. Thus,

â1 = [ȳ1 ȳ2 . . . ȳN ](e1 − b̂1)

= [ȳ1 ȳ2 . . . ȳN ](e1 − b1) + [ȳ1 ȳ2 . . . ȳN ](b1 − b̂1)

=

{
1

T

T∑
t=1

(
(λ0
t )
′[µ0

1 . . . µ0
N ] + [ε1,t . . . εN,t]

)}
(e1 − b1) +

(
1√
T

[ȳ1 ȳ2 . . . ȳN ]

)√
T (b1 − b̂1)

= E[λ0
t ]
′[µ0

1 . . . µ0
N ](e1 − b1) + op(1) +Op(1)op(1)

→p E[λ0
t ]
′[µ0

1 . . . µ0
N ](e1 − b1).

= a1 (52)

The third equality is by (51). The fourth equality is by stationarity of {(λ0
t , εt)}t≥1 and results in part

(d) of the proof. This shows part (c) of the proof.

Combining (51) and (52), we have part (a) in Assumption 1. Part (b) is assumed in Condition

CO.
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Proof of Theorem 1. Using formula of γ̂ in Equation (14), we have

γ̂ = (A′M̂A)−1A′(I − B̂)′((I − B̂)YT+1(0) + (I − B̂)α− â)

= (A′M̂A)−1A′(I − B̂)′(uT+1 + (B − B̂)YT+1(0) + (a− â) + (I − B̂)Aγ)

= (A′M̂A)−1A′(I − B̂)′uT+1 + op(1) + op(1) + γ. (53)

The first equality is by YT+1 = YT+1(0) +α. The second equation is because YT+1(0) = a+BYT+1(0) +

uT+1. The third equation is by (c) and (d) in Assumption 1. Therefore,

α̂− (α+GuT+1) = A(A′M̂A)−1A′(I − B̂)′uT+1 +Aγ + op(1)− α−GuT+1

= (A(A′M̂A)−1A′(I − B̂)−G)′uT+1 + op(1)

= op(1)Op(1) + op(1)

= op(1). (54)

The third equality is by (c) in Assumption 1 and stationarity of {ut}t≥1.

Proof of Proposition 1. The proof for the first half of the proposition is similar to the proof for

Theorem 1, and thus is omitted. Too see the second half, note

Cov[GWuT+1] = A(Q′WQ)−1Q′WΩWQ(Q′WQ)−1A′ (55)

and

Cov[GeuT+1] = A(Q′ΩQ)−1A′, (56)

where Q = (I − B)A. It suffices to show ((Q′WQ)−1Q′WΩWQ(Q′WQ)−1 − (Q′ΩQ)−1) is positive

semi-definite. Note that the first term is asymptotic variance of using W as the weighting matrix in

GMM exercise and the second term is the one using the efficient weighting matrix (see Proposition 3.5

in Hayashi (2000)). Thus, (Cov[GWuT+1]− Cov[GeuT+1]) is positive semi-definite.

Proof of Lemma 2. Since Assumption 3 implies Assumption 2, we only need to show Lemma 3.

Proof of Theorem 2. We follow the proof of Theorem 2 in Andrews and Kim (2012). Let

L1,T (ε) =

{
‖CT (β̂1 − β1)‖ ≤ ε, max

t=1,...,T
‖CT (β̂

(t)
1 − β1)‖ ≤ ε

}
,

L2,T (c) =

{
max
t≤T+1

‖C−1
T xt‖ ≤ c

}
.

(57)

By Assumption 2(d), there exists a positive sequence {εT }T≥1 such that εT → 0 and Pr(L1,T (εT ))→ 1.

Let cT = 1/
√
εT . So we have cT →∞ and cT εT → 0. By Assumption 2(c), we must have Pr(L2,T (cT ))→

1. Let LT = L1,T (εT ) ∩ L2,T (cT ), then we have Pr(LT )→ 1 and Pr(LcT )→ 0.
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Suppose LT holds. Then, for β = β̂1 or β = β̂
(t)
1 for some t = 1, . . . , T , we have

|Pt(β)− Pt(β1)| =
∣∣(β − β1)′xtx

′
t(β − β1)− 2x′t(β − β1)u1,t

∣∣
=

∣∣(β − β1)′C′T (C′T )−1xtx
′
tC
−1
T CT (β − β1)− 2x′tC

−1
T CT (β − β1)u1,t

∣∣
≤ ‖CT (β − β1)‖2‖C−1

T xt‖2 + 2‖C−1
T xt‖‖CT (β − β1)‖|u1,t|

≤ ε2T c
2
T + 2εT cT |u1,t|. (58)

Define gt(εT , cT ) = ε2T c
2
T + 2εT cT |u1,t|. Note that gt(εT , cT ) is identically distributed across t for a fixed

T , by Assumption 2(a).

We first prove part (a). Let x be some continuous point of distribution function of PT+1(β1). Then,

Pr(PT+1(β̂1) ≤ x) = Pr({PT+1(β̂1) ≤ x} ∩ LT ) + Pr({PT+1(β̂1) ≤ x} ∩ LcT )

≤ Pr(PT+1(β̂1) ≤ x+ gt(εT , cT )) + Pr(LcT )

≤ Pr(PT+1(β1) ≤ x) + o(1). (59)

To see the last equality, pick ε > 0. By continuity, ∃δ > 0 such that for each y ∈ (x − δ, x + δ),

|Pr(PT+1(β1) ≤ y)− Pr(PT+1(β1) ≤ x)| < ε. Therefore,

Pr(PT+1(β̂1) ≤ x+ gt(εT , cT )) = Pr({PT+1(β̂1) ≤ x+ gt(εT , cT )} ∩ {|gt(εT , cT )| ≥ δ})

+ Pr({PT+1(β̂1) ≤ x+ gt(εT , cT )} ∩ {|gt(εT , cT )| < δ})

≤ Pr(|gt(εT , cT )| ≥ δ) + Pr(PT+1(β̂1) ≤ y)

< Pr(PT+1(β1) ≤ x) + o(1). (60)

Similarly,

Pr(PT+1(β̂1) ≤ x) ≥ Pr(PT+1(β1) ≤ x) + o(1). (61)

This shows part (a).

Too see part (b), let k : R→ R be a monotonically decreasing and everywhere differentiable function

that has bounded derivative and satisfies k(x) = 1 for x ≤ 0, k(x) ∈ [0, 1] for x ∈ (0, 1), and k(x) = 0 for

x ≥ 1. For example, let k(x) = cos(πx)/2 + 1/2 for x ∈ (0, 1). Given some {β(t)}Tt=1, a smoothed df is

defined by

F̂T (x, {βt}, hT ) =
1

T

T∑
t=1

k

(
Pt(β

(t))− x
hT

)
, (62)

for some sequence of positive constants {hT } such that hT → 0 and cT εT /hT → 0. For example, we let

hT = ε
1/4
T when cT = 1/

√
εT .
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We write

|F̂P,T (x)− FP (x)| ≤
4∑
i=1

Di,T , (63)

for

D1,T = |F̂P,T (x)− F̂T (x, {β̂j}, hT )|,

D2,T = |F̂T (x, {β̂j}, hT )− F̂T (x, {β1}, hT )|,

D3,T = |F̂T (x, {β1}, hT )− F̂T (x, {β1})|, and

D4,T = |F̂T (x, {β1}, hT )− FP (x})|. (64)

We want to show that all four terms vanish. First note that

D1,T ≤
1

T

T∑
t=1

1

{
Pt(β̂

(t)
1 )− x
hT

∈ (0, 1)

}
. (65)

Thus, for any δ > 0,

Pr(D1,T > δ) ≤ Pr({D1,T > δ} ∩ LT ) + Pr(LcT )

≤ Pr

(
1

T

T∑
t=1

1

{
Pt(β̂

(t)
1 )− x ∈ (−gt(εT , cT ), hT + gt(εT , cT )

}
> δ

)
+ o(1)

≤
E1
{
Pt(β̂

(t)
1 )− x ∈ (−gt(εT , cT ), hT + gt(εT , cT )

}
δ

+ o(1), (66)

where the last inequality is by Markov’s inequality. Recall Pr(P1(β1) 6= x) = 1 and gt(εT , cT ) → 0 a.s.,

so 1{Pt(β1)− x ∈ {−gt(εT , cT ), hT + gt(εT , cT )} → 0 a.s.. By the dominated convergence theorem, (66)

implies Pr(D1,T > δ) ≤ o(1) and thus D1,T = op(1).

For D2,T , we have

D2,T =

∣∣∣∣∣ 1

T

T∑
t=1

k′
(
P̃t − x
hT

)
Pt(β̂

(t)
1 )− Pt(β1)

hT

∣∣∣∣∣
≤ k̄

T

T∑
t=1

gt(εT , cT )

hT
. (67)

The equality is by the mean value theorem and we have P̃t lies between Pt(β̂
(t)
1 ) and Pt(β1). In the

inequality, k̄ is a bound for the derivative of k. Also, note

E

[
gt(εT , cT )

hT

]
=
ε2T c

2
T

hT
+ 2

εT cT
hT

E|u1,t| = o(1). (68)
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Therefore,

Pr(D2,T > δ) ≤ Pr({D2,T > δ} ∩ LT ) + Pr(LcT )

≤ Pr

(
k̄

T

T∑
t=1

gt(εT , cT )

hT
> δ

)
+ o(1)

≤ k̄ Egt(εT , cT )

δhT

→ 0. (69)

The third inequality is by Markov’s inequality. This shows D2,T = op(1).

D3,T is similar to the D1,T case. Finally, by stationary and ergodicity of u1,t, we have D4,T = op(1).

This shows part (b).

Now we show part (c). Pick any small ε such that F̂P,T (x)→p FP (x) for x ∈ (qP,1−α− ε, qP,1−α + ε).

Note

Pr(q̂P,1−α > qP,1−α + ε) ≤ Pr(F̂P,T (qP,1−α + ε) < 1− α)

= Pr(F̂P,T (qP,1−α + ε)− FP (qP,1−α + ε) < (1− α)− FP (qP,1−α + ε))

→ 0. (70)

The inequality is by definition of q̂P,1−α. The convergence is because of part (e) of Assumption 2 and

part (b) of Theorem 2. Similarly,

Pr(q̂P,1−α < qP,1−α − ε) ≤ Pr(F̂P,T (qP,1−α − ε) ≥ 1− α)

= Pr(F̂P,T (qP,1−α − ε)− FP (qP,1−α − ε) ≥ (1− α)− FP (qP,1−α − ε))

→ 0. (71)

Again, the inequality is by definition of q̂P,1−α, and the convergence is because of part (e) of Assumption

2 and part (b) of Theorem 2.

Finally, we show part (d). Under null, P∞ and P1(β1) have the same distribution, so qP,1−α is

(1− α)-quantile of P∞. Therefore,

Pr(P > q̂P,1−α) = 1− Pr(P ≤ q̂P,1−α)

= 1− Pr(P + (qP,1−α − q̂P,1−α) ≤ qP,1−α)

→ α, (72)

where the convergence is by combining part (a) and (c). This concludes our proof.

Proof of Lemma 3. (i) Assume Condition ST holds.
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By Lemma 1, part (a) of Assumption 3 holds.

Part (b) is because ut is a linear combination of δt, λt, εt.

For part (c), pick some τ such that 1/(2 + δ) < τ < 1/2, where δ is defined in Condition ST. Let

DT =

1 0

0 T τIN

 . (73)

Then, we have

max
t≤T+1

‖D−1
T xt‖ = max

t≤T+1

∥∥∥∥∥∥∥
 1

T−τYt


∥∥∥∥∥∥∥ =

√
1 +

(
max
t≤T+1

‖T−τYt‖
)2

. (74)

Also, for any ε > 0, note

Pr

(
max
t≤T+1

‖T−τYt‖ > ε

)
= Pr

 ⋃
t≤T+1

‖Yt‖ > T τ ε


≤

(
T∑
t=1

Pr(‖Yt‖ > T τ ε)

)
+ Pr(‖YT+1(0) + α‖ > T τ ε)

=
TE[‖Yt‖2+δ]

T τ(2+δ)ε2+δ
+ o(1)

= o(1). (75)

The second equality is due to Markov inequality and stationarity of {YT+1(0)}t+1. The last equality is

because τ > 1/(2 + δ). Combining (74) and (75), we obtain part (c).

For part (d), we use DT defined in (73). Following the same reasoning as in (47), for each i = 1, . . . , N ,

we have

‖b̂i − bi‖ ≤ ‖Σ−1/2
T ‖F · ‖Σ1/2

T ‖F · ‖b̃i − bi‖

= Op(1)Op(T
−1/2)

= Op(T
−1/2). (76)

The first equality is because {Yt(0)}t≥1 is ergodic for the second moment, and b̃i is the OLS estimator
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for bi. Thus,

‖DT (β̂i − βi)‖ =

∥∥∥∥∥∥∥
1 0

0 T τ−1/2IN


1 0

0 T 1/2IN

 (β̂i − βi)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
1 0

0 T τ−1/2IN


∥∥∥∥∥∥∥
F

∥∥∥∥∥∥∥
 âi − ai
√
T (b̂i − bi)


∥∥∥∥∥∥∥

=
√

1 +NT 2τ−1‖Op(1)‖

= op(1). (77)

The second equality is due to (76). The last equality is because τ < 1/2. Therefore,

‖(θ̂ − θ0)DT ‖F =

√√√√ N∑
i=1

‖DT (β̂i − βi)‖2 = op(1). (78)

Also, since θ̂(t) = θ̂ for each t,

max
t=1,...,T

‖(θ̂(t) − θ0)DT ‖F = ‖(θ̂ − θ0)DT ‖F = op(1). (79)

This shows part (d).

Part (e) is assumed.

Part (f) is trivial is WT = I. Assume now WT = (CĜ(T−1∑T
t=1 ûtû

′
t)Ĝ
′C′)−1. Then,

1

T

T∑
t=1

ûtû
′
t = (I − B̂)

(
1

T

T∑
t=1

YtY
′
t

)
(I − B̂)′ − (I − B̂)

(
1

T

T∑
t=1

Yt

)
â′ − â

(
1

T

T∑
t=1

Y ′t

)
(I − B̂)′ + ââ′

→ E[utu
′
t], (80)

by ergodicity and Assumption 1(c). Therefore, ŴT →p W = (CGE[utu
′
t]G
′C′)−1.

This concludes part (i) of Lemma 3.

(ii) Assume Condition CO holds.

By Lemma 1, Assumption 1 holds. This shows Part (a).

By (51), ut is a linear combination of λot and εt, so {ut}t≥1 is ergodic and has finite first moment.

This shows Part (b).

Now we show Part (c). Let

DT =

1 0

0
√
T · IN

 . (81)
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Then, we have

max
t≤T+1

‖D−1
T xt‖ =

√
1 +

(
max
t≤T+1

‖T−1/2Yt‖
)2

≤

√√√√1 +

N∑
i=1

(
max
t≤T+1

|T−1/2yi,t|
)2

≤

√√√√1 +

N∑
i=1

(
T−1|αi|+ max

t≤T+1
|T−1/2yi,t(0)|

)2

=

√√√√1 +

N∑
i=1

(o(1) +Op(1))2

= Op(1) (82)

The second equality is because

max
t≤T+1

|T−1/2yi,t(0)| ⇒ max
r∈[0,1]

νi(r) (83)

by the continuous mapping theorem.

To show Part (d), we combine (47) and (52), and have

‖DT (β̂i − βi)‖ =

∥∥∥∥∥∥∥
 âi − ai
√
T (b̂i − bi)


∥∥∥∥∥∥∥ = op(1). (84)

Therefore,

‖(θ̂ − θ0)DT ‖F =

√√√√ N∑
i=1

‖DT (β̂i − βi)‖2 = op(1). (85)

The second half of Part (d) is also satisfied since θ̂(t) = θ̂ for each t.

Part (e) is assumed and Part (f) is trivial for WT = I.

Proof of Theorem 3. We use similar strategy as we do in the proof of Theorem 2. Let

L1,T (ε) =

{
‖(θ̂ − θ0)‖F ≤ ε, max

t=1,...,T
‖(θ̂(t) − θ0)‖F ≤ ε

}
,

L2,T (c) =

{
max
t≤T+1

‖D−1
T xt‖ ≤ c

}
,

L3,T (η) =
{
‖Ĝ′C′WTCĜ−G′C′WCG‖F < η

}
.

(86)

By Assumption 3(d), there exists a positive sequence {εT }T≥1 such that εT → 0 and Pr(L1,T (εT ))→

1. Let cT = 1/
√
εT . So we have cT → ∞ and cT εT → 0. By Assumption 2(c), we must have

Pr(L2,T (cT )) → 1. By Assumption 1(c) and Assumption 2(f), there exists a positive sequence {ηT }T≥1

such that ηT → 0 and Pr(L3,T (ηT )) → 1. Let LT = L1,T (εT ) ∩ L2,T (cT ) ∩ L3,T (ηT ), then we have

Pr(LT )→ 1 and Pr(LcT )→ 0.
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Suppose LT holds. Then, for some θ = θ̂ or θ = θ̂(t) and for some t = 1, . . . , T , we have

|P̂t(θ)− Pt(θ0)| ≤ |P̂t(θ)− Pt(θ)|+ |Pt(θ)− Pt(θ0)|. (87)

Note that

|P̂t(θ)− Pt(θ)| =
∣∣∣(Yt − θxt)′(Ĝ′C′WTCĜ)−G′C′WCG)(Yt − θxt)

∣∣∣
≤ ‖Yt − θxt‖2‖(Ĝ′C′WTCĜ−G′C′WCG‖F

≤ ‖ut + (θ0 − θ)xt‖2 · ηT

≤ (‖ut‖+ ‖(θ0 − θ)DTD−1
T xt‖)2ηT

≤ (‖ut‖+ ‖(θ0 − θ)DT ‖F ‖D−1
T xt‖)2ηT

≤ (‖ut‖+ εT cT )2ηT (88)

and

|Pt(θ)− Pt(θ0)| = |(Yt − θxt)′G′C′WCG(Yt − θxt)− (Yt − θ0xt)
′G′C′WCG(Yt − θ0xt)|

≤ |(Yt − θxt)′G′C′WCG(Yt − θxt)− (Yt − θxt)′G′C′WCG(Yt − θ0xt)|

+ |(Yt − θxt)′G′C′WCG(Yt − θ0xt)− (Yt − θ0xt)
′G′C′WCG(Yt − θ0xt)|

= |(ut + (θ0 − θ)xt)′G′C′WCG(θ0 − θ)xt|+ |((θ0 − θ)xt)′G′C′WCGut|

≤ ‖ut + (θ0 − θ)DTD−1
T xt‖‖G′C′WCG‖F ‖(θ0 − θ)DTD−1

T xt‖

+ ‖(θ0 − θ)DTD−1
T xt‖‖G′C′WCG‖F ‖ut‖

≤ (‖ut‖+ εT cT )‖G′C′WCG‖F εT ct + εT cT ‖G′C′WCG‖F ‖ut‖

= (2‖ut‖+ εT cT )‖G′C′WCG‖F εT ct. (89)

Combining (87), (88), and (89), we have

|P̂t(θ)− Pt(θ0)| ≤ g(εT , cT , ηT ), (90)

where

gt(εT , cT , ηT ) = (‖ut‖+ εT cT )2ηT + (2‖ut‖+ εT cT )‖G′C′WCG‖F εT ct. (91)

By Assumption 1(a), gt(εT , cT , ηT ) is identically distributed across t for a fixed T .
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To show part (a), note that under null,

P = (Cα̂− d)′WT (Cα̂− d)

= (C(α+GuT+1 + op(1))− d)′(W + op(1))(C(α+GuT+1 + op(1))− d)

= (CGuT+1 + op(1))′(W + op(1))(CGuT+1 + op(1))

= u′T+1G
′C′WCGuT+1 + op(1). (92)

The second equality is by Theorem 1. Since P∞ = u′1G
′C′WCGu1, we have P →d P∞ by stationary of

{ut}t≥1.

Part (b)-(d) can be shown using the same strategy as in the proof of Theorem 2, with gt(εT , cT , ηT )

in place of gt(εT , cT ), and θ in place of β, so is omitted here.
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