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Abstract

Current estimation and inference procedures for synthetic control methods do not

allow for the existence of spillover effects, which are plausible in many applications.

In this paper, we consider estimation and inference for synthetic control methods,

allowing for spillover effects. We propose estimators for both direct treatment effects

and spillover effects and show that they are asymptotically unbiased. In addition, we

propose an inferential procedure and show that it is asymptotically unbiased. Our

estimation and inference procedure applies to cases with multiple treated units and/or

multiple post-treatment periods, and to ones where the underlying factor model is

either stationary or cointegrated. In simulations, we confirm that the presence of

spillovers renders current methods biased with distorted sizes, whereas our method

yields properly-sized tests and retains reasonable power. We apply our method to a

classic empirical example that investigates the effect of California’s tobacco control

program as in Abadie et al. (2010) and find evidence of spillovers.

1 Introduction

The synthetic control method is often used in treatment effect estimation with panel

data where only a few units are treated and a small number of post-treatment peri-

ods are available. Current estimation and inference procedures for synthetic control
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methods do not allow for the existence of spillover effects, which are plausible in many

applications. Spillover effects are a particular concern in the realm of synthetic controls

because observations which are highly predictive, and thus recieve substantial synthetic

control weight, may be particularly prone to experiencing spillovers from treated ob-

servations. Those spillovers can bias treatment effect estimates and inference routines.

This paper alleviates these concerns by showing that given some knowledge about the

spillover effects, it is possible to provide asymptotically unbiased estimators and infer-

ence in the presence of spillovers. Our results extend to scenarios with multiple treated

units and periods and cases with stationary or cointegrated factor models.

The synthetic control method (SCM) has gained popularity in empirical studies

since its introduction in Abadie and Gardeazabal (2003). The SCM can estimate

treatment effects when we observe panel data with only a few treated units and post-

treatment periods. This setting is common in program evaluation, where we often

consider state-level policies and have state-level aggregate data. The SCM models the

relationship between the treated and untreated units using pre-treatment data. Then

it uses the post-treatment data of the untreated units to predict the counterfactual

values of the treated unit, i.e., to form the “synthetic control”. The treatment effect

estimate is given by the difference between the outcome and the predicted counter-

factual outcome. The SCM exploits the pre-treatment data to form better counter-

factual values, and so in comparative case studies, it is often favored over other program

evaluation methods such as difference-in-differences. See Abadie and Cattaneo (2018)

for a review and comparison of econometric methods used in program evaluation.

However, the SCM and its variants assume that untreated units are not affected

by the treatment. That is, they rely on the Stable Unit Treatment Value Assumption

(SUTVA). This dependence is natural and often implicit since the SCM uses post-

treatment control units to predict the counterfactual values of the treated units. SCM

is not alone in this, this assumption is shared with many other similar procedures like

difference-in-differences. The structure of SCM leaves it more vulnerable to problems

arising from this, often flawed, assumption. For example, SUTVA implies (among

other things) that when California imposes a tax increase on cigarettes, nobody shifts

their cigarette purchases to adjacent states like Nevada. We illustrate in Section 5

that SUTVA is violated in this well-known synthetic controls application. In other

similar applications with aggregated geographic data and treatment at the level of some

geographic unit, similar concerns about neighboring geographies may be substantial.

In the presence of a spillover effect, SCM can be severely biased. Intuitively, the

reason is that post-treatment controls are contaminated by the spillover effect, re-

sulting in a biased estimator of the counter-factual value of the treated unit, which

in turn implies a biased treatment effect estimate. Contamination inducing bias is a
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standard problem in program evaluation, even observed within difference-in-differences

and RCTs. For a fixed, small contamination, the potential scale of this bias is worse

for the SCM. If by chance or design the spillover is concentrated in control units that

the synthetic control method puts significant weight on, the bias will be substantially

worse than in difference-in-differences. Because synthetic controls deliberately weights

some observations very heavily, the worst case version of this problem can be much

larger than in difference-in-differences or RCTs. Moreover, it is possible the spillovers

propagate along the same channels as the underlying factor model, which would mean

that the SCM may actively select for units that will induce bias to give weight to. In

this situation, even generous assumptions, like the spillover having a fixed number of

affected units, can create a large asymptotic bias. We will illustrate the possible effects

of this bias at length in our simulation section.

The problem of spillover effects can be partly solved by eliminating contaminated

units in estimation or applying methods developed for multiple treated units (see Cav-

allo et al., 2013; Firpo et al., 2018; Kreif et al., 2016; Robbins et al., 2017; Xu, 2017).

However, those methods may be concerning for two reasons. First, the contaminated

units are often the most important control units that can be useful in forming the

synthetic control. Simply eliminating them in estimation can potentially cause effi-

ciency loss. Second, there are cases where most or even all control units are affected by

the spillover, which cannot be solved by throwing away affected control units. This is

also true for methods for multiple treated units since they use only the units that are

not affected by the treatment in order to form the synthetic control. Third, often the

measured objective is only a relative of the planner’s true objective function. If, for

example, California wanted to reduce the prevalance of cigarette smoke in California,

cigarette purchases that shift across the border to Nevada are not merely a statisti-

cal problem, but a fundamental concern about the efficacy of the policy – which the

planner would want to know about. Dropping the observations undermines that goal,

while our procedure enables planners to learn about these possible side effects.

The goal of this paper is to relax the SUTVA condition and to perform estimation

and testing. Particularly, we look at the cases where there are spillover effects, which

are defined by a Rubin model as the difference between the actual outcomes and the

counterfactual ones. To facilitate estimation, we assume some knowledge about the

spillover effects is known. Specifically, the treatment effect and the spillover effects

are linear in some unknown parameters.1 We give examples where this assumption is

plausible. Thanks to the known spillover structure, we can propose an asymptotically

unbiased estimator for the treatment and spillover effects. We also characterize the

1When multiple post-treatment periods are available and the researcher is willing to restrict the variability
of spillover structures, the structures are estimable in principle. See Manresa (2013) for example. We do not
explore this direction in the paper and will leave it for future research.
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asymptotic distribution of the estimator. Compared with existing methods, our method

uses information from all known units in estimation. Our method can also often deal

with cases where all units are contaminated by spillovers, at the cost of assuming more

structure on the spillovers.

We follow the setup in Ferman and Pinto (2021), where we focus on cases with an

impect pre-treatment fit and make use of the demeaned version of SCM. Ferman and

Pinto (2021) show that the demeaned SCM ensures asymptotically unbiased estima-

tion of treatment effects, which cannot be consistently estimated by the standard SCM

estimator. We also rely on the imperfect pre-treatment fit to identify the null distribu-

tion of the proposed statistic. In terms of the asymptotic framework, we consider cases

with many pre-treatment periods and a fixed number of control units. As suggested by

Ferman and Pinto (2021), even in cases where large-T asymptotics is not justifed, our

results can be interpreted as the SCM weights not converging to weights that recon-

struct the factor loadings of the treated unit even when the number of pre-treatment

periods is large. Besides, Monte-Carlo simulation shows that our methods produce

reasonable estimation and testing results as long as there is a moderate number of

pre-treatment periods.

Additionally, we propose an inferential procedure based on Andrews (2003)’s end-

of-sample instability test, or P -test. We generalize the P -test to the synthetic control

method with and without spillover effects. The theoretical result is of interest in its own

right. Similar to the P -test, our testing procedures use the idea of approximating the

null distribution of the statistic using pre-treatment data. We show the validity of the

proposed method and compare it with the standard placebo test through a simulation

study. Tangent to the main idea of this paper, our method alleviates the problem of

selection into treatment, which is a major threat to the placebo test.

We give high-level conditions under which our methods are valid. Specifically,

our conditions adapt to factor models with either stationary or cointegrated common

factors, which are often used to justify the usage of synthetic control methods. Fur-

thermore, we consider extensions where treatment applies to multiple units or periods,

and where there are extra covariates.

We examine an empirical example from Abadie et al. (2010). In 1989 California

implemented a cigarette tax. Abadie et al. (2010) gather data from 50 states starting in

1970 for comparison. They dismiss 12 states for potentially being affected by spillovers

or later treatment, leaving 38 states to be used in estimation. Despite this precaution,

we find evidence of spillover effects (i.e., SUTVA violations) in most years after the tax

increase within that subset of 38 states. We also find evidence of spillover effects in

the 12 excluded states. Moreover, our estimates are smaller in magnitude than those

in Abadie et al. (2010) in the first four post-treatment years.
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This paper mainly contributes to three developing literatures. First, it complements

the fast-developing literature on statistical inference in SCM by providing formal sta-

tistical results without assuming SUTVA. Due to SCM’s popularity among empirical

researchers, many formal results have been developed for statistical inference in similar

settings. For example, Conley and Taber (2011) consider hypothesis testing in a similar

data structure where only a few units are treated and both pre- and post-treatment

periods are short. They consider difference-in-differences, and use control units to form

the null distribution of the statistic. In this particular setting with only a few treated

units, difference-in-difference estimator can be treated as a special case of the SCM

with equal weights. In Ferman and Pinto (2017) and Hahn and Shi (2017), similar

ideas are used to conduct placebo tests which permute across units. Among all, Cher-

nozhukov et al. (2021) is the most related to our work, since they also use outcomes

across periods rather than units like the above citations. Li (2020) proposes a testing

procedure that is based on the idea of projection onto convex sets and results in Fang

and Santos (2019). Despite the popularity, very few works consider the existence of

spillovers. As far as we are aware, the only inferential methods that allow for spillover

effects are the ones proposed by Stefano and Mellace (2020) and Grossi et al. (2020).

Stefano and Mellace (2020) propose the “inclusive synthetic control estimator” that

requires a perfect pre-treatment fit (Assumption 2 of their paper), and an inferential

procedure that is a modification to the placebo test. Compared with their method, our

method allows for imperfect pre-treatment fit. Grossi et al. (2020) consider a penalized

version of SCM that is similar to Abadie and LHour (2021) and assume that the units

can be clustered into exchangeable groups. Our method does not require such an ex-

changeability assumption. Furthermore, our estimation and testing procedure applies

to factor models with cointegrated common factors, which is of special interest even in

cases without spillover effects.

We also contribute to the literature on spillover effects. This fast-growing literature

looks into both estimation of treatment effects in the presence of spillover effects, as

well as estimation of spillover effects themselves. For example, Vazquez-Bare (2022)

considers a framework where observations are grouped into clusters, and spillover ef-

fects are allowed within a cluster, but not across clusters. It discusses estimation of

heterogeneous treatment effects as a function of the number of treated units within

the same cluster, and spillover effects as a function of whether the unit is treated, and

number of treated units within the same cluster. Basse et al. (2019) and Rosenbaum

(2007) use a randomization test for inference in the presence of spillover effects. Also,

see Basse et al. (2019) and Vazquez-Bare (2022) for a literature review on spillover

effects. However, this literature rarely looks at the panel data setting with only a few

treated units and short post-treatment periods. This limitation is in part because we
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usually do not have enough information about the spillover effects in this particular

setting. We avoid this problem by requiring the assumption that the spillover struc-

tures be pre-specified and follow a pattern that is linear in some underlying parameters.

With that specification, we can estimate the spillover effects and perform statistical

tests on the spillovers.

Third, our results extend the literature on Andrews (2003)’s end-of-sample insta-

bility tests. Andrews (2003) uses data across time periods to approximate the null

distribution of the test statistic and applies this idea to OLS, IV, and GMM. Cher-

nozhukov et al. (2021) propose a permutation test that is more general, but similar in

cases where serial correlation matters. We extend this idea to the SCM case, and further

to more complicated cases with spillover effects. As Andrews and Kim (2006) extend

Andrews (2003)’s results to the cointegrated cases, we also show that our method is

still valid for a cointegrated factor model.

The remainder of this paper is organized as follows. Section 2 introduces a potential

outcome framework with spillover effects. Section 3 proposes an estimator and derives

its asymptotic distribution. Section 4 considers the P -test introduced by Andrews

(2003) and Andrews and Kim (2006), and explains how it can be applied in our settings.

We present an empirical example of our method in Section 5 and in Section 6 we present

Monte Carlo simulation results. Section 7 discusses some extensions of our methods,

including cases with multiple treated units and/or multiple post-treatment periods,

and cases with extra covariates. Section 8 concludes. All proofs are in the appendix.

2 Model Specification

2.1 A Rubin model with spillover effects

We start our discussion with a Rubin potential outcome framework. We consider a

standard synthetic control setting where only one unit is treated and only one period

is available after the treatment is implemented. We consider cases with multiple treated

units and multiple post-treatment periods in Section 7.

In Rubin’s model with violation of SUTVA, the potential outcomes are functions

of treatment assignments on all units. Assume the outcome of unit i at time t is

yi,t = yi,t(dt),

where dt = (d1,t, . . . , dN,t)
′ and di,t = 1 if unit i has been treated at time t. Assume

unit 1 is treated between time T and T + 1, and there are another N −1 units that are

not directly treated by the policy. Thus, we observe an N × (T + 1) panel as shown in

Figure 1.
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y1,1(0, . . . , 0) . . . y1,T (0, . . . , 0) y1,T+1(1, 0, . . . , 0)

y2,1(0, . . . , 0) . . . y2,T (0, . . . , 0) y2,T+1(1, 0, . . . , 0)
...

. . .
...

...

yN,1(0, . . . , 0) . . . yN,T (0, . . . , 0) yN,T+1(1, 0, . . . , 0)

} treated unit control units

↑ treatment

Figure 1

Note that we only observe outcomes with dT+1 = (0, . . . , 0)′ or dT+1 = (1, 0, . . . , 0)′.

This is the fundamental limitation of the dataset we are currently studying. Unless

other homogeneity conditions are assumed, we cannot say anything about yi,T+1(dT+1)

for dT+1 6∈ {(0, . . . , 0)′, (1, 0, . . . , 0)} because only a few units are treated and only a

few post-treatment periods are available. For notation simplicity, letyi,t(0) = yi,t(0, . . . , 0)

yi,t(1) = yi,t(1, 0, . . . , 0)

for each (i, t). Let αi = yi,T+1(1) − yi,T+1(0) be the potential deviation from unit i’s

counterfactual outcome yi,T+1(0) where no unit is treated at time T + 1. That is, α1

is the direct treatment effect on unit 1, while αi with i 6= 1 is the indirect effect or

spillover effect. The whole effect vector α = (α1, . . . , αN )′ can be of interest in our

setting. Throughout, we consider the case where N is fixed and T goes to infinity.

2.2 Known spillover structures

Throughout the paper, we assume that some knowledge about the spillover effects is

known. Namely, assume that the full effect vector α is a linear transformation of some

unknown parameter γ ∈ Rk, i.e., α = Aγ. Typically, γ has fewer dimensions than α

does. Note that the linearity is not particularly restrictive of actual spillover structures

– but rather mostly imposes knowledge requirements on the estimator. Consider the

extreme example where we impose no restrictions on the possible spillovers. This is a

special case of α = Aγ with A being the identity matrix and γ = α.

Here are some examples that fit this framework.

Example 1. Assume that a subset of control units, but not all of them, are equally
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affected by the spillover effects, i.e.

A =

 1 0

0k×1 1k×1

0l×1 0l×1

 , γ =

[
α1

b

]
, Aγ =



α1

b
...

b

0l×1


,

where α1 is the treatment effect and b is the homogeneous spillover effect.

Example 2. Assume that the spillover effect shrinks as the geometric distance goes

up. For i = 2, . . . , N , αi = b exp(−di) where di is the distance between unit 1 and unit

i and b is some unknown parameter of interest. Then, we have

A =


1 0

0 exp(−d2)
...

...

0 exp(−dN )

 , γ =

[
α1

b

]
, Aγ =


α1

b exp(−d2)
...

b exp(−dN )

 .

Example 3. Assume that the spillover effect is likely to take place at some known

locations, but not at other locations, while the sizes of spillover effects are allowed to

vary across those units. For example, assume there are potential spillovers at locations

whose distance to unit 1 is less than d̄. Then, the treatment and spillover effect vector

can also be represented by Aγ. WLOG order the units by increasing distance from unit

1, and let p be the number of units experiencing spillovers. Then

A =

 1 01×p

0p×1 Ip

0(N−p−1)×1 0(N−p−1)×p

 , γ =


α1

αk1
...

αkp

 , Aγ =



α1

αk1
...

αkp

0(N−p−1)×1


.

Thus, the units indexed 2, ..., (p+ 1) each experience their own size spillover effect.

The assumptions in Example 3 are often plausible. We give an empirical example in

Section 5. If misspecification of the spillover structure is a concern, one can choose an

A matrix that incorporates more potential spillovers, i.e., a bigger p. The consequences

of misspecification are discussed in Section 3.4.2.

8



3 An Asymptotically Unbiased Estimator

3.1 SCM without spillover effects

We apply a version of SCM proposed in Ferman and Pinto (2021), which starts with

obtaining the synthetic control weights by solving the optimization problem[
â1

b̂1

]
= arg min

ã∈R,b̃∈W (1)

T∑
t=1

(y1,t − ã− Y ′t b̃)2, (1)

where Yt = (y1,t, . . . , yN,t)
′ and W (1) = {(w1, . . . , wN )′ ∈ RN+ : w1 = 0,

∑N
j=2wj = 1}.

This restricts the estimation weights such that they sum to 1, are all non-negative, and

the same-unit weight is 0, as well as including an intercept term. An estimator of the

treatment effect α1 is given by

α̂1 = y1,T+1 − (â+ Y ′T+1b̂),

i.e., the counter-factual value y1,T+1(0) is approximated by â+Y ′T+1b̂. Here, we do not

restrict the intercept but require the other coefficients to be positive and sum up to

one.2 The intercept term a is important in our setting because it takes out the bias by

recentering the estimator. Ferman and Pinto (2021) show that when the pre-treatment

is imperfect, this estimator is asymptotically unbiased, while the original SCM as in

Abadie et al. (2010) has bias.

3.2 The proposed estimator under spillovers

In order to back out the spillover effects, we proceed as follows. We first define the indi-

vidual synthetic control weights and their limits. Namely, for each i, let the individual-

specific synthetic control weights (and the intercept) be[
âi

b̂i

]
= arg min

ã∈R,b̃∈W (i)

T∑
t=1

(yi,t − ã− Ytb̃′)2, (2)

where W (i) = {(w1, . . . , wN )′ ∈ RN+ : wi = 0,
∑N

j=1wj = 1}. These are the same

restrictions as above (sum-to-one, non-negativity, same-weight is 0). Then, let the

2Other choices of constraint set for (â1, b̂
′
1)′ include {0}×{0}×∆N−1 as in the original synthetic control

method of Abadie and Gardeazabal (2003) and Abadie et al. (2010), and R×{0}×RN−1
+ as in the modified

synthetic control of Li (2020), where ∆N−1 = {w ∈ RN−1 : wi ≥ 0 for each i,
∑N−1

i=1 wi = 1} is a (N − 1)-
dimensional simplex. See Doudchenko and Imbens (2017) for a discussion of choosing restriction sets.

9



probability limit of the intercept and weights be

ai = plimT→∞ âi, bi = plimT→∞ b̂i,

and we only consider cases where they are well-defined. We show later by Lemma

1 in Section 3.3 that ai and bi exist for each i in factor models with stationary or

cointegrated common factors. In general, ai and bi do not coincide with the weights

that reconstruct the factor loadings (Ferman and Pinto, 2021).

For each (i, t), define the specification error by

ui,t = yi,t(0)− (ai + Yt(0)′bi). (3)

Define a = (a1, . . . , aN )′ and B = (b1, . . . , bN )′. Stacking Equation (3) for all i’s gives

ut = Yt(0) − (a + BYt(0)), where ut = (u1,t, . . . , uN,t)
′. Since α = YT+1(1) − YT+1(0),

we have at period T + 1

uT+1 = (I −B)(YT+1 − α)− a, (4)

where YT+1 = (y1,T+1, . . . , yN,T+1)′. We will use this equation to estimate the whole

effect vector α.

We form estimators for (a,B) using synthetic control methods as in (2). We do that

for each i = 1, . . . , N , as if each i is the treated unit and other units are controls. Then,

the estimators for a and B are â = (â1, . . . , âN )′ and B̂ = (̂b1, . . . , b̂N )′ respectively.

Define M = (I −B)′(I −B) and let M̂ = (I − B̂)′(I − B̂) be an estimator for M .

Recall that the effect vector is α = Aγ. Let an estimator of γ be such that

γ̂ = arg min
g∈Rk

‖(I − B̂)(YT+1 −Ag)− â‖

= (A′M̂A)−1A′(I − B̂)′((I − B̂)YT+1 − â). (5)

Note that the FOC implies A′(I − B̂)′ûT+1 = 0, where ûT+1 = (I − B̂)(YT+1− α̂)− â,

i.e., it requires that some weighted sum of the residuals be zero. Under that condition,

the treatment and spillover effect vector α can be estimated by α̂ = Aγ̂.

Assumption 1. (a) {ut}t≥1 is stationary, and has mean zero.

(b) ‖â− a‖ = op(1), ‖B̂ −B‖ = op(1).

(c) ‖(B̂ −B)YT+1(0)‖ = op(1).

(d) A′MA is non-singular.

Part (a) generally requires that there is no regime shift or structural break. Part (b)

and (c) requires that there are at least a moderate number of pre-treatment periods so
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that the synthetic control weights are well-estimated. We show later that Assumption

1(a)-(c) are satisfied in factor models with either stationary or cointegrated common

factors. We will discuss Part (d) later in Section 3.4.1.

Theorem 1. Suppose Assumption 1 holds. Then, α̂− (α+GuT+1)→p 0 as T →∞,

where G = A(A′MA)−1A′(I −B)′. Moreover, E[GuT+1] = 0.

The structure of the limiting distribution is similar to the case in Ferman and

Pinto (2021), as it is inconsistent but asymptotically unbiased. Note that consistent

estimators are impossible because only one post-treatment period with one treated unit

is available, so the error term for that one unit and period does not shrink in any limit

we consider.

3.3 The factor model as an example

Factor models are often used to justify the usage of synthetic control methods. Here

we show that our assumptions are satisfied by factor models with stationary and coin-

tegrated common factors. We follow Ferman and Pinto (2021) and consider a factor

model such that for i = 1, . . . , N and t = 1, . . . , T + 1,

yi,t(0) = ηt + λ′tµi + εi,t, (6)

where λt is F -dimensional common factors with a fixed F , and εi,t is the noise that is

uncorrelated with λt. For notation simplicity, we write Yt(0) = (y1,t(0), . . . , yN,t(0))′,

Yt = (y1,t, . . . , yN,t)
′, and εt = (ε1,t, . . . , εn,t)

′.

We focus on two sets of conditions in our discussion.

Condition ST (model with stationary common factors). Assume {(ηt, λt, εt)}t≥1 is

stationary, ergodic for the first and second moments, and has finite (2+δ)-moment for

some δ > 0. Assume cov[Yt(0)] = Ωy is positive definite.

Remarks: 1. We show in the proof of Lemma 1 that in this case

ai = E[yi,1(0)− Y1(0)′bi], bi = arg min
w∈W (i)

(w − ei)′Ωy(w − ei),

where ei is a unit vector with one at the i-th entry and zeros everywhere else, and

W (i) = {(w1, . . . , wN ) ∈ RN+ : wi = 0,
∑

j 6=iwj = 1}. Note that in general bi does not

recover the factor structure, because µi 6= (µ1, . . . , µN )bi in general.

2. We do not impose any restriction on the factor loadings {µi}Ni=1 except for Ωy

being positive definite. In the stationary case, the key for the treatment estimator to

be asymptotically unbiased and the test proposed below to be valid is to include an

intercept in the optimization problem (2).
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Condition CO (model with cointegrated I(1) common factors). Rewrite Equation

(6) as

yi,t(0) = (λ1
t )
′µ1
i + (λ0

t )
′µ0
i + εi,t,

and ηt can be either in λ1
t or λ0

t . Assume {(λ0
t , εt)}t≥1 is stationary, ergodic for the

first and second moments, and has a finite 4-th moment. Without loss of generality,

E[εi,t] = 0. Assume {λ1
t }t≥1 is I(1). Further assume for each i, yi,t(0) is such that

weak convergence holds for T−1/2yi,[rT ](0) ⇒ νi(r), where ⇒ is weak convergence and

process νi(r) is defined on [0, 1] and has bounded continuous sample path almost surely.

For each i, let W (i) = {(w1, . . . , wN ) ∈ RN+ : wi = 0,
∑

j 6=iwj = 1}. Assume for

each i, there exists w(i) ∈ W (i) such that µ1
i =

∑N
j=1w

(i)
j µ

1
j . That is, (w(i) − ei) is a

cointegrating vector for Yt(0), where ei is a unit vector with i-th entry being one and

zeros everywhere else.

Note that Condition CO puts restrictions on the factor loadings. The restrictions

are similar to those in Ferman and Pinto (2021).

The relevance of the factor model is given by the following lemma:

Lemma 1. Suppose A′MA is non-singular. Then, either Condition ST or Condition

CO implies Assumption 1.

Thus, results derived in Theorem 1 apply to factors models with Condition ST or

Condition CO.

3.4 Discussion

3.4.1 Invertibility of A′MA

In Assumption 1(d), we require that A′MA is invertible. First, note the invertibility

of A′MA is testable in principle. Recall that M = (I − B)′(I − B), so that A′MA =

A′(I − B)′(I − B)A. A is identified by the econometrician ahead of time. We can

consistently estimate B so the data informs us of the validity of this assumption.

To understand this assumption better, we replace α by Aγ in Equation (4) and

have

(I −B)Aγ = (I −B)YT+1 − a− uT+1. (7)

Equation (7) is the key to learning α. Under mild regularity conditions, a and B are

identified from the model and learned by the synthetic control method. We do not

observe uT+1, but the distribution of uT+1 can be learned using pre-treatment data

under stationarity of {ut}t≥1. Therefore, if A′MA is non-singular, or equivalently,

(I − B)A has full rank, we can form an estimator of γ whose limiting distribution is

identified by multiplying both sides of Equation (7) by (A′MA)−1A′(I − B)′. Note
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that we do not point-identify γ or α. This is because we have only one observation of

the outcome in post-treatment periods.

We illustrate the invertibility of A′MA in the following toy example.

Example 4. Assume there are 3 units in total, where unit 1 is treated. WLOG, let

the synthetic control weight matrix B be

B =

 0 w1 1− w1

w2 0 1− w2

w3 1− w3 0

 .
Suppose the researcher first assumes unit 2 and 3 are equally exposed to the spillover

effects. That is, they assume

A1 =

1 0

0 1

0 1

 , γ =

[
γ1

γ2

]
, and α =

γ1

γ2

γ2

 .
Then, A′MA is non-invertible, because

(I −B)A1 =

 1 −1

−w2 w2

−w3 w3

 .
Intuitively, the problem here is there are two control observations we want to take a

difference from, to determine the treatment effect.

If they instead assume only one of the controls is exposed to the spillover effects,

A′MA is non-singular in general. In this case,

A2 =

1 0

0 1

0 0

 , γ =

[
γ1

γ2

]
, and α =

γ1

γ2

0

 ,
and

(I −B)A2 =

 1 −w1

−w2 1

−w3 w3 − 1

 .
It can be shown that (I −B)A2 always has full rank for (w1, w2, w3) ∈ [0, 1]3.

This applies to more general settings. That is, if all controls are equally hit by the

spillover effects, then (I − B)A does not have full rank and A′MA is non-invertible.

Allowing a few units to be exempt from the spillover effects makes (I −B)A have full
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rank in general.

A more interesting case is Example 3, where we only restrict the range of spillover

effects and allow the levels to vary. In this case, (I−B)A can be obtained by eliminating

columns that correspond to units that are neither treated nor exposed to spillover

effects. Again, as long as at least one control is not exposed to the spillover effects,

(I − B)A has full rank in general. This assumption is more convincing if a moderate

number of columns are eliminated from (I − B), i.e., only a few units are exposed to

the spillover effects.

3.4.2 Structure misspecification

Misspecification of the spillover structure can lead to asymptotic bias in treatment

effect estimation. Therefore, we suggest that the researcher be conservative about

choosing the structure. That is, if a certain unit is suspected to be affected by spillover

effects, it should be included in the spillover structure.

On other hand, we can show that the misspecification bias of the proposed method

is only a function of the “missed” spillover effects, while that of the usual SCM is a

function of all spillovers. For concreteness, we follow Example 3 and start with the

case where unit 2 and 3 are affected by spillover effects. The usual synthetic control

estimator is

α̂1,SCM = Y1,T+1 −

(
â+

N∑
i=2

b̂1,iYi,T+1(0)

)
− b̂1,2α2 − b̂1,3α3,

so the (asymptotic) bias is

δ1,SCM = −b1,2α2 − b1,3α3.

Suppose we only include unit 2 as the spillover unit, then the bias of our treatment

effect estimator can be shown to be

δ1,SP = −
det
(

[b̃1, b̃2]′[b̃2, b̃3]
)

det(A′MA)
α3,

where b̃i = ei − (b1,i, b2,i, . . . , bN,i)
′ and ei is the unit vector with one on the i-th entry

and zeros everywhere else. Generally, there is no guarantee that either δ1,SCM or δ1,SP

is smaller.

For the general case, suppose α = (α1, . . . , αk1 , . . . , αk2 , 0, . . . , 0)′. The bias of the

usual synthetical control is

δ1,SCM = −
k2∑
i=2

b1,iαi.
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Suppose we only include Unit 2, 3, . . . , k1 in the spillover structure, then the asymptotic

bias of our estimator for the whole vector α is

δSP = (A(A′MA)−1A′(I −B)′(I −B)− I)(0, . . . , 0, αk1+1, . . . , αk2 , 0, . . . , 0)′. (8)

Therefore, the bias for the treatment effect estimator is a linear combination of omitted

spillovers in the form of

δ1,SP =

k2∑
i=k1+1

ciαi,

where ci is determined in the first entry of Equation 8. Again, the asymptotic bias

δ1,SP is only a linear combination of the “missed” spillovers, but it is generally difficult

to compare the misspecification bias of our estimator and the usual estimator that does

not account for spillover effects at all.

4 Statistical Inference

In this section, we discuss formal results on inference. At a high level, our test uses pre-

treatment data to form the null distribution of a pre-specified post-treatment quantity.

We only consider cases with imperfect pre-treatment fit to facilitate the identification

of the null distribution. In Section 4.1, we consider the case without spillover effects,

and state the assumptions under which Andrews’ P test (Andrews, 2003) is valid. This

result might be interesting by its own interest. In Section 4.2, we generalize P test

to cases where spillover effects cannot be ignored, and allow for a more general set of

hypotheses.

4.1 Cases without spillover effects

Suppose for now that there are no spillover effects (α2 = · · · = αN = 0). We want to

test for the existence of treatment effect on unit 1. The null and alternative hypotheses

of interest are H0 : α1 = 0,

H1 : α1 6= 0.

The test procedure we consider here is the end-of-sample instability test (P -test) in

Andrews (2003). The usage of Andrews’ test in the context of synthetic control meth-

ods is mentioned in Ferman and Pinto (2019), where they focus on the difference-

in-differences estimator. We formalize this idea and derive conditions under which

Andrews’ test delivers valid inference results.

We assume that α1 is not a function of T under H1. That is, we consider fixed, not
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local, alternatives, as in Andrews (2003) and Andrews and Kim (2006). Specifically,

α1 does not change as T grows, which facilitates our analysis of the test statistic under

H1.

Now we translate our hypothesis into the linear formulation considered in Andrews

(2003). Namely, we have

yt =

a1 + Y ′t b1 + u1,t, for t = 1, . . . , T ,

a∗1 + Y ′t b1 + u1,t, for t = T + 1.

A non-zero treatment effect is equivalent to a shift in the intercept a1 (or equivalently,

change of the distribution of u1,t, at t = T + 1). The null and alternative hypotheses

becomeH0 : a∗1 = a1 andH1 : a∗1 6= a1, respectively. Let the synthetic control regression

residuals be û1,t = y1,t − â1 − Y ′t b̂1. If there is no treatment effect, the distribution of

û1,T+1 should be asymptotically equivalent to that of û1,t for t ≤ T . Using this idea,

define the test statistic by

P = û2
1,T+1.

For notational simplicity, let β̂1 = (â1, b̂
′
1)′ and xt = (1, Y ′t )′. For any β ∈ RN+1, define

Pt(β) = (y1,t − x′tβ)2.

Then, P = (y1,T+1−x′T+1β̂1)2 = PT+1(β̂1). The pre-treatment counterparts are defined

by Pt = Pt(β̂
(t)
1 ), where β̂

(t)
1 = β̂1 for each t.3 For a significance level of τ , we reject H0

if P is larger than the (1− τ)-quantile of {Pt}Tt=1.

To establish the validity of the proposed test, let P∞ be a random variable with

the same distribution as PT+1(β1) with β1 = (a1, b
′
1)′. Define the empirical CDF of

{Pt}Tt=1 by

F̂P,T (x) =
1

T

T∑
t=1

1{Pt ≤ x},

and let FP (x) be the distribution function of P1(β1). We reject H0 if P > q̂P,1−τ , where

q̂P,1−τ = inf{x ∈ R : F̂P,T (x) ≥ 1 − τ}. Finally, let qP,1−τ be the (1 − τ)-quantile of

P1(β1).

Assumption 2. (a) {ut}t≥1 are stationary, ergodic, and have mean zero.

(b) E[|ut|] <∞.

(c) ∃ a non-random sequence of positive definite matrices {CT }T≥1 such that maxt≤T+1 ‖C−1
T xt‖ =

Op(1)

3Readers can also use leave-one-estimator to construct Pt as in Andrews (2003) and Andrews and Kim

(2006). For t = 1, . . . , T , the leave-one-out estimator β̂
(t)
1 is defined by the synthetic control weight estimator

using only observations indexed by s = 1, . . . , t− 1, t+ 1, . . . , T .
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(d) ‖CT (β̂1 − β1)‖ = op(1), and maxt=1,...,T ‖CT (β̂
(t)
1 − β1)‖ = op(1).

(e) The distribution function of P1(β1) is continuous and increasing at its (1 − τ)-

quantile.

Assumption 2 is similar to those in Andrews (2003). Part (a) does not allow for a

structural break. Part (b) and (c) are moment conditions. Part (d) requires at least

a moderate number of pre-treatment periods so that the synthetic control weights are

well-estimated. Part (e) generally requires that ut follows a continuous distribution.

Theorem 2. Suppose Assumption 2 holds. Then, as T →∞,

(a) P →d P∞ under H0 and H1,

(b) F̂P,T (x)→p FP (x) for all x in a neighborhood of qP,1−τ under H0 and H1,

(c) q̂P,1−τ →p qP,1−τ under H0 and H1,

(d) Pr(P > q̂P,1−τ )→ τ under H0.

Theorem 2 states that the distribution of our test statistic P can be approximated

by the empirical distribution of {Pt}Tt=1. Specifically, Part (d) shows that the proposed

test is asymptotically valid in the sense that the rejection probability under the null is

convergent to the nominal level.

We also show the relevance of the factor model in this context by the following

lemma:

Lemma 2. Suppose the distribution function of P1(β1) is continuous and increasing at

its (1− τ)-quantile. Then, either Condition ST or Condition CO implies Assumption

2.

4.2 Cases with spillover effects

In this section, we generalize Section 4.1 to cases allowing for non-zero spillover effects.

We propose a testing procedure that is based on Andrews’ P -test and accounts for

the spillover effect. The null and alternative hypotheses we consider are H0 : Cα = d

and H1 : Cα 6= d, with known C and d. For example, we want to test for the

hypothesis that there is no treatment effect at the treated unit (unit 1), then we let

C = (1, 0, 0, . . . , 0) ∈ R1×N and d = 0. This effectively makes Section 4.1 a special case

of our test, although Theorem 2 has slightly stronger results than Theorem 3 does. If we

want to test that there is a spillover, then we can let C = [0(N−1)×1 IN−1] ∈ R(N−1)×N

and d = (0, . . . , 0)′ ∈ R(N−1)×1.

The test statistic we consider here is P = (Cα̂−d)′WT (Cα̂−d) for some weighting

matrix WT →p W . Recall G = A(A′MA)−1A′(I−B) and can be consistently estimated

by Ĝ = A(A′M̂A)−1A′(I−B̂) if B̂ →p B. By Theorem 1, P is asymptotically equivalent
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to u′T+1G
′C ′WCGuT+1. To construct critical values, define

Pt(θ) = (Yt − θxt)′G′C ′WCG(Yt − θxt),

and

P̂t(θ) = (Yt − θxt)′Ĝ′C ′WTCĜ(Yt − θxt),

for some θ ∈ RN×(N+1), xt = (1, Y ′t )′, and Ĝ = A(A′M̂A)−1A′(I − B̂)′. Let P̂t =

P̂t(θ̂
(t)), where θ̂(t) = θ̂ for each t.4 For a significance level of τ , we reject H0 if P is

larger than the (1− τ)-quantile of {P̂t}Tt=1.

To establish the validity of the proposed test, let P∞ = P1(θ0) for θ0 = [a B].

Define

F̂P,T (x) =
1

T

T∑
t=1

1{P̂t ≤ x},

and let FP (x) be the distribution function of P∞. Finally, let q̂P,1−τ = inf{x ∈ R :

F̂P,T (x) ≥ 1 − τ}, and qP,1−τ be the (1 − τ)-quantile of P∞. The assumptions and

validity of the proposed testing procedure are given as follows.

Assumption 3. (a) Assumption 1 holds.

(b) {ut}t≥1 is ergodic and E[‖ut‖] <∞.

(c) There exists a non-random sequence of positive definite matrices {DT }T≥1 such

that maxt≤T+1 ‖D−1
T xt‖ = Op(1).

(d) ‖(θ̂ − θ0)DT ‖F = op(1), and maxt=1,...,T ‖(θ̂(t) − θ0)DT ‖F = op(1), where ‖ · ‖F
is the Frobenius norm.

(e) The distribution function of P1(θ0) is continuous and increasing at its (1− τ)-

quantile.

(f) WT →p W as T →∞.

Assumption 3(b)-(f) are similar to Assumption 2 as well as those in Andrews (2003).

Theorem 3. Suppose Assumption 3 holds. Then, under H0, as T →∞,

(a) P →d P∞,

(b) F̂P,T (x)→p FP (x) for all x in a neighborhood of qP,1−τ ,

(c) q̂P,1−τ →p qP,1−τ ,

(d) Pr(P > q̂P,1−τ )→ τ .

Just like Theorem 2, Theorem 3 shows that we can approximate the null distribution

of P using its pre-treatment counterparts. Part (d) shows the asymptotic validity of

the test proposed in this section.

4Similar to the case without spillover effects, the leave-one-out estimator θ̂(t) = [â(t) B̂(t)] is defined by
the synthetic control weight estimator using only observations indexed by s = 1, . . . , t− 1, t+ 1, . . . , T .
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(a) No spillover effects

95%

(b) Spillover effects

95%

Figure 2: Placebo test. Area with lines is 95% probability region of the error of the treated unit.
Filled area is 95% probability region of null distribution formed in placebo test. A test is rejected
when the error of the treated units falls outside of the filled area.

Again, we show the relevance of the factor model in this context by the following

lemma:

Lemma 3. Suppose that A′MA is non-singular and the distribution function of P1(θ0)

is continuous and increasing at its (1− τ)-quantile. Then, Assumption 3 is satisfied if

either of these holds:

(i) Condition ST with WT = I or WT = (CĜ(T−1
∑T

t=1 ûtû
′
t)Ĝ
′C ′)−1;

(ii) Condition CO with WT = I.

4.3 Other testing procedures

When we allow for the existence of non-zero spillover effects, the existing testing pro-

cedures will have poor performance. Here we intuitively explain what happens to the

placebo test as in Abadie et al. (2010) and Andrews’ test as in Andrews (2003) in the

presence of spillover effects.

Suppose we want to test for the treatment effect being zero and are not aware of the

spillover effects. Placebo test and Andrews’ test are similar in the sense that they use

data to form the null distribution of u1,T+1 in order to perform hypothesis testing. The

difference is that the placebo test exploits variations of {ûi,T+1}Ni=1, while Andrews’

test uses variations of {û1,t}T+1
t=1 .

We look at the placebo test first. When there is no spillover effect, the distribution

of û1,T+1 and that of any element in {ûi,T+1}Ni=2 coincide asymptotically. As shown

in Figure 2(b), when there are positive spillover effects, we will underestimate the

treatment effect and the density function of û1,T+1 moves to the left. At the same

time, some of the control units shift to the right because of the positive spillovers, so
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(a) No spillover effects

95%

(b) Spillover effects

95%

Figure 3: Andrews’ test. Area with lines is 95% probability region of the error of the treated unit.
Filled area is 95% probability region of null distribution formed in Andrews’ test. A test is rejected
when the error of the treated units falls outside of the filled area.

density of {ûi,T+1}Ni=2 moves to the right and gets wider. In terms of test performance,

the shift of û1,T+1 is offset by the wider density of {ûi,T+1}Ni=2 (harder to reject H0),

which explains why the empirical sizes of placebo test often do not deviate too much

from the nominal size, even in the presence of spillovers (see, for example, Table 3 for

T = 50 and 200 cases in Section 6). In essence, the placebo test becomes much more

conservative and has low power as shown in Table 4.

Now we consider Andrews’ test. When there is no spillover effect, the distribution of

û1,T+1 and that of any element in {û1,t}Tt=1 coincide asymptotically. As shown in Figure

3(b), when there is a positive spillover effect, we underestimate the treatment effect and

the density function of û1,T+1 shifts to the left, while the density of {û1,t}Tt=1 doesn’t,

since they are pre-treatment and the spillover only happens after the treatment. This

results in an invalid test.

Although not the main focus of this paper, selection into treatment can be a threat

to the placebo test in practice. For example, if a unit is more likely to be treated when

its own outcome y is higher than those of other units, then the placebo test tends to

over-reject the zero treatment effect hypothesis, even without spillover effects. This

form of selection is not a problem for Andrews’ test and the test proposed in this paper,

since they use the variation across time periods instead of different units.
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(b) treatment effect estimates
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Figure 4: Panel (a): Per-capita cigarette sales in California, synthetic California (SCM), and
spillover-adjusted synthetic California (SP). SCM is obtained by using standard synthetic
control method. SP is using our estimation procedure, which accounts for spillover effects.
The vertical line indicates the start of treatment. Panel (b): Per-capita cigarette sales
gap between California and (spillover-adjusted) synthetic California (with 95% confidence
intervals for SP). The lines to the right of passage of Proposition 99 are treatment effect
estimates. Shaded area denotes our test rejects that there is no spillover effect in those
years. Panel (c): Spillover effect estimates for Arizona, Nevada, and Oregon (95% confidence
intervals are shown only for Nevada for clarity of exposition).
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5 Estimating the Effects of California’s Propo-

sition 99

To demonstrate our method, we use it on the classic SCM example from Abadie et al.

(2010) (thereafter ADH), which looks at the effect of Proposition 99 on California

cigarette consumption. In this section, we will walk through the results from our

method, with interruptions to point out key features and issues.

Proposition 99 intended to disincentivize smoking, which was primarily achieved

by introducing a $0.25 tax on each pack of cigarettes. By measuring sales in Califor-

nia, ADH and others have attempted to determine the effect of the policy on cigarette

consumption. However, traditional SCM is not guaranteed to produce an unbiased

treatment effect estimator in the presence of spillover effects. In this tobacco control

program example, we are concerned about two kinds of spillover effects. The first

spillover is based on concerns about “leakage”. A common problem with cigarette

taxes (and other vice taxes like gambling and alcohol) is that measured local con-

sumption might fall as people move their purchasing behavior across legal boundaries,

particularly in early years. In order to accommodate this, we allow for a spillover

affecting states neighboring California, i.e., Arizona, Nevada, and Oregon. One might

also think that there could be policy contamination whereby culturally close states also

enact policies with similar targets. Our method can allow for this kind of spillover in

our estimation. ADH took that type of problem into account, and 12 states which

experienced legislative changes in the ensuing years were removed in that paper.

The data used is per capita cigarette consumption in the 50 states plus the District

of Columbia running from 1970 to 2000. In 1989 California enacted Proposition 99,

so all periods from 1989 onwards are considered post-treatment periods. We replicate

this program evaluation using the method introduced in previous sections, allowing

for possible spillover effects. We use the spillover structure as in Example 3. That is,

we allow for spillover effects in states that are geographically close or have experience

policy contamination, but not the others.5 Those spillover effects are allowed to be

different for different states and different time periods. We also perform hypothesis

testing on both treatment effects and spillover effects. Since we have multiple post-

treatment periods, we treat each post-treatment period as if it is the year right after

the policy implementation. The details are outlined in Section 7.3.

The results are shown in Figure 4. The standard synthetic control method that is

similar to Abadie et al. (2010) is indexed by SCM and our method is SP. Figure 4a

shows the “synthetic California” and 4b elaborates on this by specifically looking at

5The states that are considered exposed to spillovers include AK, AZ, DC, FL, HI, MA, MD, MI, NJ,
NV, NY, OR, and WA.
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the estimated treatment effects. Figure 4c plots the estimated spillover effects for the

three neighboring states of California. The error bars denote 95% confidence intervals

that are built by inverting the test proposed in Section 4.2. As you can see, the scale of

the error bars is visually larger than the amount of variation in the pre-period – this is

a consequence of estimating and then adjusting for spillovers – which adds uncertainty

to our main effect estimates.

As Figure 4a shows, our estimated consumption in the “synthetic California” does

not differ substantially from what a standard SCM would predict, especially for later

periods. However, our estimates of the first two post-treatment periods (1989 and 1990)

are not significantly different from zero at a 95% level, in contrast with SCM. This

difference may result from the over-estimation of the scale of the treatment effects by

SCM in the presence of spillover effects. From the tests of spillover effects (shaded area

of Figure 4b), we see that likely there were substantial spillover effects. One potential

cause of spillovers may be that consumers in California shifted their purchasing to the

nearby states, Arizona, Nevada, and Oregon. Since similar laws with a tax increase

on cigarettes were passed in Arizona and Oregon in 1994 and 1996, separately, it is

difficult to distinguish the spillover effects of Proposition 99 from anticipation effects

as well as direct effects of their own laws. Nevada however did not pass any such

laws in this period, so the treatment effect estimates for Nevada are more reliable.

From Figure 4c, we observe that Nevada has experienced significant spillover effects in

the first two periods of the passage of Proposition 99 and mostly insignificant effects

afterward, with the exception of 1997. This is consistent with our conjecture and may

provide more evidence on how the effects of the policy have propagated.

The non-significant effects of policy right after the implementation could be ex-

plained by the addictive behavior of cigarette consumption. The persistence of cigarette

consumption has been extensively studied and well-understood by both the rational ad-

diction and the medical literature (Baltagi and Griffin, 2001; Baumeister, 2017; Becker

et al., 1994; Benowitz, 1992; Christelis and de Galdeano, 2011; Labeaga, 1999; Miura,

2019; Vleeming et al., 2002). Compared with SCM, our results are more consistent

with an addiction story, that tobacco consumption is addictive and unlikely to drop

immediately after the policy, but rather slowly transition to a lower equilibrium.

6 Monte Carlo Simulations

We present the Monte Carlo simulation results in this section. For each case considered,

we use 1000 simulation repetitions.
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6.1 Estimation with spillover effects

In this subsection, we examine the finite sample performance of our estimation proce-

dure proposed in Section 2.2. The model considered here is similar to Li (2020), where

yi,t(0) follows a factor model structure. We show both stationary and I(1) case.

Table 1: Treatment effect estimation with stationary common factors.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

SCM -0.062 0.011 -0.003 0.114 -0.005 0.016 0.037 -0.041 -0.033

(2.113) (1.249) (1.586) (1.642) (1.244) (1.273) (1.408) (1.290) (1.182)

SP -0.077 0.013 0.018 0.091 -0.012 0.010 0.042 -0.031 -0.040

(2.618) (1.417) (1.710) (1.974) (1.362) (1.486) (1.741) (1.516) (1.270)

Concentrated spillover effects

SCM -1.326 -0.986 -1.333 -0.756 -0.880 -1.543 -1.492 -1.070 -0.796

(2.714) (1.451) (2.065) (1.958) (1.654) (1.392) (1.912) (1.638) (1.461)

SP 0.267 0.025 0.140 0.248 0.038 0.025 -0.133 -0.055 0.110

(2.554) (1.425) (1.756) (1.897) (1.435) (1.250) (1.700) (1.581 ) (1.408)

Spreadout spillover effects

SCM -2.378 -1.910 -2.114 -2.245 -1.859 -2.398 -2.147 -2.112 -2.154

(2.493) (1.470) (1.696) (2.029) (1.472) (1.369) (1.791) (1.538) (1.313)

SP -0.048 0.007 0.029 0.090 -0.025 0.018 0.037 -0.048 -0.028

(2.740) (1.438) (2.061) (2.231) (1.296) (1.602) (1.643) (1.450) (1.290)

Notes: The numbers without parentheses are empirical bias in simulation. The ones with
parentheses are empirical variance. SCM is the standard synthetic control method assuming
no spillover effects. SP is the estimation procedure proposed in this paper that takes spillover
effects into account. No spillover effects stands for the cases where the true DGP has no
spillover effects. Concentrated spillover effects is the case where 1/3 of the control units
receive a spillover effect (of the same level). Spreadout spillover effects is the case where 2/3
of the control units receive a spillover effect.

6.1.1 Stationary case

The underlying factor model is

yi,t(0) = ηt + λ′tµi + εi,t,
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Figure 5: Distribution of treatment effect estimates. The true treatment effect is 5. SCM is using
the standard synthetic control method assuming no spillover effects. SP is the estimation procedure
proposed in this paper that takes spillover effects into account. Estimates are fitted using kernel
density.

where λt = (λ1,t, λ2,t, λ3,t)
′,

ηt = 1 + 0.5ηt−1 + ν0,t,

λ1,t = 0.5λ1,t−1 + ν1,t,

λ2,t = 1 + ν2,t + 0.5ν2,t−1,

λ3,t = 0.5λ3,t−1 + ν3,t + 0.5ν3,t−1,

and εi,t and νj,s is i.i.d. N(0, 1) for each (i, j, s, t). Each entry of µi is drawn from an

independent uniform distribution on [0, 1] and fixed for all repetitions. At t = T + 1,

the observed outcome is yi,T+1 = yi,T+1(0) + αi, where αi is either treatment effect or

spillover effect and is specified below. The treatment effect is set to 5 and the spillover

effect is 3.

We consider three spillover patterns. No spillover effects is the case where unit 1

receives a treatment effect of 5 at t = T + 1 and other units are not affected. Con-

centrated spillover effects is the case where 1/3 of the control units receive a spillover

effect of 3. Spreadout spillover effects is the case where 2/3 of the control units receive

a spillover effect of 3. SCM is the original synthetic control method, and SP is the
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Table 2: Treatment effect estimation with I(1) common factors.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

SCM -0.023 -0.018 -0.043 0.036 -0.088 -0.031 0.041 0.038 -0.038

(1.873) (1.642) (1.772) (1.708) (1.539) (1.900) (1.915) (1.810) (1.866)

SP -0.021 -0.057 -0.017 0.037 -0.053 -0.044 0.007 0.013 -0.017

(2.460) (2.249) (4.523) (2.116) (2.121) (2.184) (2.308) (1.849) (1.952)

Concentrated spillover effects

SCM -1.185 -1.400 -2.234 -1.206 -2.026 -1.954 -1.316 -1.408 -2.325

(2.421) (1.854) (1.856) (2.269) (1.921) (2.079) (2.449) (2.043) (1.976)

SP -0.021 -0.057 -0.017 0.037 -0.053 -0.044 0.007 0.013 -0.017

(2.460) (2.249) (4.523) (2.116) (2.121) (2.184) (2.308) (1.849) (1.952)

Spreadout spillover effects

SCM -2.088 -2.599 -2.885 -2.233 -2.536 -2.465 -2.219 -2.402 -2.889

(2.390) (1.779) (1.795) (2.101) (1.759) (2.037) (2.249) (1.921) (1.900)

SP -0.029 0.027 -0.022 0.047 -0.008 0.010 0.022 0.006 -0.045

(2.452) (3.447) (7.367) (2.357) (2.412) (2.740) (2.418) (2.279) (2.712)

Notes: The numbers without parentheses are empirical bias in simulation. The ones with
parentheses are empirical variance. SCM is the standard synthetic control method assuming
no spillover effects. SP is the estimation procedure proposed in this paper that takes spillover
effects into account. No spillover effects stands for the cases where the true DGP has no
spillover effects. Concentrated spillover effects is the case where 1/3 of the control units
receive a spillover effect (of the same level). Spreadout spillover effects is the case where 2/3
of the control units receive a spillover effect.

corrected synthetic control method proposed in Section 3. Throughout the simulations,

assume that we know the coverage of spillover effects but no other information, so A

is constructed as in Example 3. For No spillover effects, we are being conservative

in our use of the SP estimator and run it as if 1/3 of the control units are exposed

to spillover effects. To better compare results, we also fit the simulation results using

kernel density for the (N,T ) = (10, 50) case with concentrated spillover effects and

plot it in Figure 5.

The empirical bias and variance (in parentheses) of the treatment effect estimator

using two methods are shown in Table 1. Throughout, SP produces virtually unbiased

estimates, while the usual SCM has a bias that increases as spillovers propagate. For all

cases in Concentrated spillover effects and five out of nine cases in Spreadout spillover

effects, SP has a smaller empirical variance than SCM does.

26



6.1.2 I(1) case

For the I(1) case, the underlying factor model follows

yi,t(0) = λ′tµi + εi,t,

where λt = (λ1,t, λ2,t, λ3,t)
′,

λ1,t = λ1,t−1 + 0.5ν1,t,

λ2,t = λ2,t−1 + 0.5ν2,t,

λ3,t = 0.5λ3,t−1 + ν3,t,

and εi,t and νj,s follows i.i.d. N(0, 1) for each (i, j, s, t). The factor loadings are

constructed such that Condition CO is satisfied. Namely, we let µ1 = (1, 0, 0)′,

µ2 = (0, 1, 0)′, µ3 = (1, 0, 0)′, µ4 = (0, 1, 0)′, and for µj with j = 5, . . . , N , we draw

independent uniform distribution on [0, 1] for each entry and then normalize each load-

ing vector such that three entries of each µj sum up to one. The constructed factor

loadings are fixed for each repetition while other settings are the same as the stationary

case.

The results are shown in Table 2. Similarly as in the stationary case, SP pro-

duces virtually unbiased results, while SCM is biased. One thing different here is that

SP often has a larger variance than SCM does, except for four out of nine cases in

Concentrated spillover effects. SP has an especially large variance when N = 10 and

T = 200.

6.2 Test for treatment effects

In this section we compare test procedures against the null hypothesis H0 : α1 = 0,

i.e., the treatment effect is zero. The results are shown in Table 3 and Table 4. The

DGP is exactly the same as in Section 6.1.1 (the stationary case), except that α1 = 0

(the null) for Table 3 and α1 = 5 (the alternative) for Table 4. Placebo test is as in

Abadie et al. (2010) and Hahn and Shi (2017). Andrews’ test is as in Andrews (2003).

SP is the spillover-adjust test proposed in Section 4.2.

Among the three testing procedures, SP test has mostly correct sizes and outper-

forms the other two methods in power. The placebo test has correct sizes in some cases

but has lower power, and Andrews’ test over-rejects under the null. The reasons are

discussed in Section 4.3.

It is worth mentioning that Andrews’ test and SP test may experience over-rejection

in cases with small T . For example, in the case with (N,T ) = (50, 15) in Table 3,

Andrews’ test rejects the null 14.1% of the time in No spillover effects, and SP test
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Table 3: Empirical rejection rate of testing for treatment effects under H0 : α1 = 0.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

Placebo 0.000 0.000 0.000 0.072 0.053 0.062 0.034 0.031 0.040

Andrews 0.076 0.061 0.060 0.108 0.082 0.065 0.141 0.078 0.072

SP 0.048 0.049 0.058 0.055 0.064 0.052 0.066 0.046 0.059

Concentrated spillover effects

Placebo 0.000 0.000 0.000 0.066 0.046 0.116 0.035 0.029 0.026

Andrews 0.411 0.207 0.224 0.417 0.279 0.346 0.519 0.346 0.184

SP 0.065 0.050 0.043 0.111 0.069 0.061 0.109 0.092 0.054

Spreadout spillover effects

Placebo 0.000 0.000 0.000 0.129 0.063 0.147 0.060 0.059 0.072

Andrews 0.576 0.478 0.399 0.685 0.563 0.616 0.741 0.621 0.544

SP 0.036 0.035 0.042 0.034 0.042 0.046 0.030 0.042 0.044

Notes: SP is the estimation procedure proposed in this paper that takes spillover
effects into account. No spillover effects stands for the cases where the true DGP
has no spillover effects. Concentrated spillover effects is the case where 1/3 of the
control units receive a spillover effect. Spreadout spillover effects is the case where
2/3 of the control units receive a spillover effect of the same level.

rejects the null 10.9% of the time in Concentrated spillover effects. This is because

Andrews-type tests rely on variation across time periods to deliver valid inference, and

may experience over-rejection when it observes insufficient variation.

6.3 Test for existence of spillover effects

In this section, we examine the power of the proposed test against the null hypothesis

that there are no spillover effects. We also look into its behavior when the range of the

spillover effect is not correctly specified. In this set of experiments, the level of spillover

effects varies from 0 to 2, corresponding to the strength of alternative hypotheses. We

set (N,T ) = (20, 50) and α1 = 5. There are 9 units that are affected by spillover

effects. Other settings follow exactly as in Section 6.1.1 (the stationary case). The

model for the range of spillover is as in Example 3.

The empirical rejection rates against various levels of spillover effects using our

method proposed in Section 4.2 are plotted in Figure 6. Here Include too few misses

half of the units that are actually affected by the treatment (assuming that unit 1 as well

as four other units are affected), Correct specification assumes we know exactly which

units are affected, and Include too many assumes 15 units are affected in estimation,

five of which are actually not affected by spillover effects.

Among the three cases, Include too many is still a correct specification but is
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Table 4: Empirical rejection rate of testing for treatment effects under H1 : α1 6= 0.

N = 10 N = 30 N = 50

T = 15 50 200 15 50 200 15 50 200

No spillover effects

Placebo 0.000 0.000 0.000 0.908 0.939 0.966 0.922 0.936 0.931

Andrews 0.797 0.948 0.926 0.785 0.901 0.983 0.797 0.972 0.827

SP 0.835 0.956 0.923 0.823 0.937 0.965 0.839 0.964 0.993

Concentrated spillover effects

Placebo 0.000 0.000 0.000 0.461 0.502 0.448 0.465 0.434 0.464

Andrews 0.651 0.765 0.329 0.704 0.754 0.542 0.680 0.746 0.737

SP 0.860 0.932 0.991 0.957 0.918 0.967 0.834 0.816 0.853

Spread-out spillover effects

Placebo 0.000 0.000 0.000 0.348 0.378 0.331 0.305 0.255 0.294

Andrews 0.337 0.403 0.277 0.563 0.414 0.278 0.406 0.309 0.343

SP 0.866 0.978 0.981 0.969 0.950 0.991 0.909 0.985 0.974

Notes: SP is the estimation procedure proposed in this paper that takes spillover
effects into account. No spillover effects stands for the cases where the true DGP
has no spillover effects. Concentrated spillover effects is the case where 1/3 of the
control units receive a spillover effect. Spread-out spillover effects is the case where
2/3 of the control units receive a spillover effect of the same level.

supposed to be more conservative, so it has less power than Correct specification. Note

that the range of spillover effects for Include too few is correctly specified only when

the level of spillover effects is zero. Its power curve is similar to that of Include too

many.

7 Extensions

7.1 An estimator with a smaller variance

In this section, we show that it is possible to form an estimator of α with possibly lower

variance other than α̂ proposed in Section 3.2. The idea is to minimize ‖W 1/2ûT+1‖
instead of ‖ûT+1‖, where W ∈ RN is some positive definite matrix and ûT+1 = (YT+1−
α̂)− â− B̂(YT+1 − α̂). The resulting estimator, as a function of W , is

γ̂W = arg min
g∈Rk

‖W 1/2((I − B̂)(YT+1 −Ag)− â)‖

= (A′M̂WA)−1A′(I − B̂)′W ((I − B̂)YT+1 − â),

where M̂W = (I − B̂)′W (I − B̂). The corresponding estimator for α is α̂W = Aγ̂W .

In the spirit of GMM with an efficient weighting matrix, let Ω = Cov[u1] and W e
T
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Figure 6: Empirical rejection rate of testing for the existence of spillover effects. There are 20
units in total, half of which are affected by the treatment. Include too few is assuming only 5 of
them are affected by the treatment. Correct specification assumes the researcher knows exactly
which set of units are affected. Include too many assumes 15 units are affected, 5 of which are, in
fact, not affected.

be a consistent estimator of Ω−1. Then an estimator of α with lower variance can be

achieved by α̂e = α̂W e
T
.

Let MW = (I−B)′W (I−B), GW = A(A′MWA)−1A′(I−B)′W for some weighting

matrix W , W e = Ω−1, M e = MW e , and Ge = GW e . Then, we have the following

results.

Proposition 1. Suppose Assumption 1 holds, WT is a consistent estimator for W , and

W e
T is a consistent estimator for W e. Then, α̂WT

− (α+GWuT+1)→p 0, and specifi-

cally, α̂e− (α+GeuT+1)→p 0, as T →∞. Moreover, (Cov[GWuT+1]−Cov[GeuT+1])

is positive semi-definite.

Proposition 1 states that α̂e always has a smaller asymptotic variance than α̂. In

practice, we need to estimate Ω, and for that we would need a relatively large sample

size (large T ) to have a good approximation.
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7.2 Multiple treated units

Our method readily extends to cases where multiple units are treated. In our setting,

the treatment and spillover effects can be estimated in the same way, since the spillover

effects can be interpreted as the indirect treatment effect. With a corrected specified

structure matrix A, we can perform estimation and inference just as previous sections.

For example, suppose N = 4, unit 1 and unit 2 are treated, unit 3 is affected by

spillover effect, and unit 4 is neither treated nor exposed to spillover effect. Then we

can specify

A =

[
I3

01×3

]
,

and the resulting estimator γ̂ = (γ̂1, γ̂2, γ̂3)′ by (5) is such that γ̂1 and γ̂2 are the

treatment effect estimator for unit 1 and unit 2, respectively, and γ̂3 is the spillover

effect estimator for unit 3. Tests can be performed accordingly. If the researcher

wants to test for the hypothesis that there are no spillover effects, the null is then

H0 : Cα = d, where C = (0, 0, 1, 0) and d = 0.

7.3 Multiple post-treatment time periods

Suppose now we have observations of {yi,t} for i = 1, . . . , N and t = 1, . . . , T + m.

Treatment is received at t = T + 1. The model becomes

Yt =

Yt(0), if t ≤ T

Yt(0) + αt, otherwise.

Note that we do not allow for spillovers in time. That is, the treatment effect or

spillover effects cannot affect future selves. For each t = T + 1, . . . , T +m, we need to

specify the spillover structure matrix At. Then, an estimator of αt is

α̂t = At(A
′
tM̂At)

−1A′t(I − B̂)′((I − B̂)Yt − â).

That is, we treat T + s period as T + 1 and do the same procedure as before. For each

t = T + 1, . . . , T +m, we can perform separate tests as introduced in previous sections.

To answer questions such as whether there is spillover effect at all, we can extend

Andrews’ instability test discussed above. Consider the null hypothesis H0 : Ctαt = dt

for t = T + 1, . . . , T +m. Let P̂t be constructed as in Section 4.2 for t = 1, . . . , T . For

t = T + 1, . . . , T +m, let P̂t = (Ctα̂t − dt)′WT (Ctα̂t − dt). For t = 1, . . . , T + 1, let

P (t) =

m−1∑
s=0

P̂t+s,
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each of which contains information from period t through t+m− 1. The test statistic

is then P (T+1), and we use its pre-treatment counterparts {P (t)}Tt=1 to form the null

distribution.

7.4 Including covariates

Many empirical researchers are interested in including extra covariates when using

synthetic control methods. Our framework can be combined with existing methods

such as Abadie et al. (2010) and Li (2020), and be readily adapted to settings with

covariates. For example, suppose we have a vector of observable variables zi,t and want

to estimate the treatment effects, while being worried about spillover effects. Following

Li (2020), we estimate the least square coefficients for the model

yi,t(0) = ai +
∑
j 6=i

bi,jyj,t(0) + z′i,tπ + ui,t,

with the simplex constraints on bi,j and obtain coefficient estimates (âi, b̂i, π̂i). This is

done for each i. Let ĝt = (z′1,tπ̂i, . . . , z
′
N,tπ̂N )′. Under appropriate regularity conditions,

the results of the paper apply when the intercept estimator â is replaced by â + ĝt at

time t. The treatment effects estimator now becomes

γ̂ = (A′M̂A)−1A′(I − B̂)′((I − B̂)YT+1 − â− ĝT+1).

8 Conclusion

The synthetic control method is a powerful tool in treatment effect estimation in the

panel data settings, but it may have a large bias in the presence of spillover effects.

In this paper, we relax the SUTVA assumption and propose an estimation and testing

procedure that is robust to the presence of spillover effects. Our method requires a

specification of the spillover structure. We derive a set of conditions under which

our estimators are asymptotically unbiased. We develop a testing procedure based on

Andrews (2003)’s end-of-sample instability tests and show that it is asymptotically

unbiased under a set of conditions. We show that our conditions are satisfied by the

commonly used factor models, with either stationary or cointegrated common factors.

Our methods can be extended to cases with multiple treated units and multiple post-

treatment periods and with extra covariates. Simulation results certify the validity of

our estimation and testing procedure in the presence of spillover effects. The proposed

procedure is illustrated through an application to Abadie et al. (2010)’s California
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tobacco control program data, where we find evidence of spillover effects as well as the

main treatment effect.

Appendix

Proof of Lemma 1. (i) First assume that A′MA is non-singular and Condition ST

holds. The proof follows Ferman and Pinto (2021), except that we do not assume that

there is a set of weights that reconstruct the factor loadings and belong to the simplex.

We first show part (b). It suffices to show |âi − ai| = op(1) and ‖b̂i − bi‖ = op(1)

for each i, i.e., ai and bi are well-defined. We show it for the i = 1 case, and other

cases follow the same strategy. Let ȳj = T−1
∑T

t=1 yj,t. Write down an (equivalent)

optimization problem

v̂ = arg min
v∈V

(y1,t − ȳ1)−
N∑
j=2

(yj,t − ȳj)vj

2

,

where V = {v = (v2, . . . , vN ) ∈ RN−1
+ :

∑N
j=2 vj = 1}. The objective is strictly convex

(with probability approaching one), so the solution is unique. Note that it implies b̂1

is numerically equivalent to (0, v̂′)′, otherwise the minimization problem in forming â1

and b̂1 may have a lower objective evaluated at (ȳ1 −
∑N

j=2 ȳj v̂j , 0, v̂
′)′. Now we let

Q̂(v) denote the objective function such that

Q̂(v) =
1

T

T∑
t=1

(y1,t − ȳ1)−
N∑
j=2

(yj,t − ȳj)vj

2

,

and its population analog be Q(v) = (−1, v′)Ωy(−1, v′)′. Let v0 be a minimizer of

Q(v) in V . We verify the conditions for consistency (see Newey and McFadden, 1994,

Theorem 2.1) : (i) Since Ωy is positive definite, Q(v) is strictly convex. Also, V is

convex. Therefore, Q(v) is uniquely minimized at v0. (ii) V is compact since it is an

(N − 1)-dimensional simplex. (iii) Q(v) is continuous since it has a quadratic form.
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(iv) To see uniform convergence, note

sup
v∈V
|Q̂(v)−Q(v)| = sup

v∈V

∣∣∣∣∣
[
−1

v

]′(
1

T

T∑
t=1

(Yt − Ȳ )(Yt − Ȳ )′ − Ωy

)[
−1

v

]∣∣∣∣∣
≤ sup

v∈V

∥∥∥∥∥
[
−1

v

]∥∥∥∥∥
2 ∥∥∥∥∥ 1

T

T∑
t=1

(Yt − Ȳ )(Yt − Ȳ )′ − Ωy

∥∥∥∥∥
F

≤ N · op(1)

= op(1),

where ‖ · ‖F is the Frobenius norm. The second inequality is by ergodicity for the

second moments. Therefore, v̂ →p v0. This implies ‖b̂1 − b1‖ = op(1). By ergodicity,

â1 = ȳ1 − [ȳ2 ȳ3 . . . ȳN ]v̂ →p E[y1,t(0)− Yt(0)′b1] = a1.

This shows part (b) and E[u1,t] = 0 by definition of ui,t. We also have that {ut}t≥1

is stationary since it is a linear combination of stationary and ergodic processes. This

shows part (a) in Assumption 1.

Part (c) follows from part (b) and the stationarity of {YT+1(0)}T≥1. Part (d) is

assumed. Thus, Assumption 1 holds under the invertibility of A′MA and Condition

ST.

(ii) Now, we assume that A′MA is non-singular and Condition CO holds.

We first show part (c). We will show ‖YT+1(0)′(̂b1 − b1)‖ = op(1) and other i’s

follows the same strategy. Since the synthetic control estimator can be written as

a projection of the OLS estimator onto a closed convex set, we will first derive the

asymptotic properties of the OLS estimator, and then use the properties of projections

to obtain the desired results. For examples of this strategy, see Li (2020) and Yu et al.

(2019). For some positive definite matrix D ∈ RN , let RN be a Hilbert space with the

inner product 〈·, ·〉D such that for θ1, θ2 ∈ RN , 〈θ1, θ2〉D = θ′1Dθ2. The norm ‖ · ‖D is

defined accordingly, i.e. ‖θ‖D =
√
θ′Dθ, for θ ∈ RN . For a closed convex set Λ ⊂ RN ,

define a projection ΠD such that for each θ ∈ RN , ΠDθ = arg minθ′∈Λ ‖θ − θ′‖D.

Zarantonello (1971) shows that for each θ, θ′ ∈ RN ,

‖ΠDθ −ΠDθ
′‖D ≤ ‖θ − θ′‖D. (9)

With some abuse of notation, let xt = Yt − T−1
∑T

s=1 Ys. Then, b̂1 is the synthetic

control weight estimators of regressing (y1,t − T−1
∑T

s=1 y1,s) on xt, subject to {0} ×
∆N−1 with ∆N−1 being an (N − 1)-dimensional simplex. Let b̃1 be the OLS estimator

of regressing (y1,t − T−1
∑T

s=1 y1,s) on xt. Let ΣT = T−1
∑T

t=1 xtx
′
t.
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Appendix A.2 in Li (2020) establishes that b̂1 = ΠΣT
b̃1. Thus, we have

‖b̂1 − b1‖ = ‖Σ−1/2
T Σ

1/2
T (̂b1 − b1)‖

≤ ‖Σ−1/2
T ‖F · ‖Σ1/2

T (̂b1 − b1)‖

= ‖Σ−1/2
T ‖F · ‖b̂1 − b1‖ΣT

= ‖Σ−1/2
T ‖F · ‖ΠΣT

b̃1 −ΠΣT
b1‖ΣT

≤ ‖Σ−1/2
T ‖F · ‖b̃1 − b1‖ΣT

= ‖Σ−1/2
T ‖F · ‖Σ1/2

T ‖F · ‖b̃1 − b1‖

= Op(1)op(T
−1/2)

= op(T
−1/2), (10)

where ‖ · ‖F is the Frobenius norm of a matrix. The third equality is because b1 ∈
{0} ×∆N−1. The second inequality is by (9). To see the fifth equality, note

ΣT = T

(
1

T 2

T∑
t=1

YtY
′
t −

(
1

T 3/2

∑
t=1

Yt

)(
1

T 3/2

∑
t=1

Yt

)′)
,

so

‖Σ−1/2
T ‖F · ‖Σ1/2

T ‖F = tr(Σ−1
T )tr(ΣT ) = Op(1) · 1

T
· T ·Op(1) = Op(1),

where the second equality is standard results for I1 process (see Hamilton, 1994, part

(g) and (i) of Proposition 18.1). Also, ‖b̃1 − b1‖ = op(T
−1/2) is by Proposition 19.2

in Hamilton (1994). This shows (10). Apply part (a) of Proposition 18.1 in Hamilton

(1994), we have

‖YT+1(0)′(̂b1 − b)‖ = ‖(T−1/2YT+1(0))′(T−1/2(̂b1 − b))‖ = Op(1)op(1) = op(1).

Now we show part (b). Again, it suffices to show |âi − ai| = op(1) and ‖b̂i − bi‖ =

op(1). We consider the i = 1 case and other cases follow the same strategy. We have

showed ‖b̂i − bi‖ = op(1) in part (c) of the proof. Section A.6.1 in Ferman and Pinto

(2021) establishes that

[µ1
1 µ

1
2 . . . µ1

N ](b1 − e1) = 0, (11)
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where ei is the unit vector with one at the i-th entry. Thus,

â1 = [ȳ1 ȳ2 . . . ȳN ](e1 − b̂1)

= [ȳ1 ȳ2 . . . ȳN ](e1 − b1) + [ȳ1 ȳ2 . . . ȳN ](b1 − b̂1)

=

{
1

T

T∑
t=1

(
(λ0
t )
′[µ0

1 . . . µ0
N ] + [ε1,t . . . εN,t]

)}
(e1 − b1) +(

1√
T

[ȳ1 ȳ2 . . . ȳN ]

)√
T (b1 − b̂1)

= E[λ0
t ]
′[µ0

1 . . . µ0
N ](e1 − b1) + op(1) +Op(1)op(1)

→p E[λ0
t ]
′[µ0

1 . . . µ0
N ](e1 − b1).

= a1. (12)

The third equality is by (11). The fourth equality is by stationarity of {(λ0
t , εt)}t≥1

and results in part (d) of the proof. This shows part (b) of the Assumption 1 .

Combining (11) and (12), we have part (a) in Assumption 1. Part (d) is assumed.

Proof of Theorem 1. Using formula of γ̂ in Equation (5), we have

γ̂ = (A′M̂A)−1A′(I − B̂)′((I − B̂)YT+1(0) + (I − B̂)α− â)

= (A′M̂A)−1A′(I − B̂)′(uT+1 + (B − B̂)YT+1(0) + (a− â) + (I − B̂)Aγ)

= (A′M̂A)−1A′(I − B̂)′uT+1 + op(1) + op(1) + γ.

The first equality is by YT+1 = YT+1(0)+α. The second equation is because YT+1(0) =

a+BYT+1(0)+uT+1. The third equation is by (b) and (c) in Assumption 1. Therefore,

α̂− (α+GuT+1) = A(A′M̂A)−1A′(I − B̂)′uT+1 +Aγ + op(1)− α−GuT+1

= (A(A′M̂A)−1A′(I − B̂)−G)′uT+1 + op(1)

= op(1)Op(1) + op(1)

= op(1).

The third equality is by (b) in Assumption 1 and stationarity of {ut}t≥1.

Proof of Proposition 1. The proof for the first half of the proposition is similar to

the proof for Theorem 1, and thus is omitted. Too see the second half, note

Cov[GWuT+1] = A(Q′WQ)−1Q′WΩWQ(Q′WQ)−1A′
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and

Cov[GeuT+1] = A(Q′ΩQ)−1A′,

where Q = (I−B)A. It suffices to show ((Q′WQ)−1Q′WΩWQ(Q′WQ)−1−(Q′ΩQ)−1)

is positive semi-definite. Note that the first term is asymptotic variance of using W

as the weighting matrix in GMM exercise and the second term is the one using the

efficient weighting matrix (see Hayashi, 2000, Proposition 3.5). Thus, (Cov[GWuT+1]−
Cov[GeuT+1]) is positive semi-definite.

Proof of Lemma 2. Since Assumption 3 implies Assumption 2, we only need to show

Lemma 3.

Proof of Theorem 2. We follow the proof of Theorem 2 in Andrews and Kim (2006).

Let

L1,T (ε) =

{
‖CT (β̂1 − β1)‖ ≤ ε, max

t=1,...,T
‖CT (β̂

(t)
1 − β1)‖ ≤ ε

}
,

L2,T (c) =

{
max
t≤T+1

‖C−1
T xt‖ ≤ c

}
.

By Assumption 2(d), there exists a positive sequence {εT }T≥1 such that εT → 0 and

Pr(L1,T (εT )) → 1. Let cT = 1/
√
εT . So we have cT → ∞ and cT εT → 0. By

Assumption 2(c), we must have Pr(L2,T (cT ))→ 1. Let LT = L1,T (εT )∩L2,T (cT ), then

we have Pr(LT )→ 1 and Pr(LcT )→ 0.

Suppose LT holds. Then, for β = β̂1 or β = β̂
(t)
1 for some t = 1, . . . , T , we have

|Pt(β)− Pt(β1)| =
∣∣(β − β1)′xtx

′
t(β − β1)− 2x′t(β − β1)u1,t

∣∣
=

∣∣(β − β1)′C ′T (C ′T )−1xtx
′
tC
−1
T CT (β − β1)− 2x′tC

−1
T CT (β − β1)u1,t

∣∣
≤ ‖CT (β − β1)‖2‖C−1

T xt‖2 + 2‖C−1
T xt‖‖CT (β − β1)‖|u1,t|

≤ ε2T c
2
T + 2εT cT |u1,t|.

Define gt(εT , cT ) = ε2T c
2
T + 2εT cT |u1,t|. Note that gt(εT , cT ) is identically distributed

across t for a fixed T , by Assumption 2(a).

We first prove part (a). Let x be some continuous point of distribution function of

PT+1(β1). Then,

Pr(PT+1(β̂1) ≤ x) = Pr({PT+1(β̂1) ≤ x} ∩ LT ) + Pr({PT+1(β̂1) ≤ x} ∩ LcT )

≤ Pr(PT+1(β̂1) ≤ x+ gt(εT , cT )) + Pr(LcT )

≤ Pr(PT+1(β1) ≤ x) + o(1).

To see the last equality, pick ε > 0. By continuity, ∃δ > 0 such that for each y ∈
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(x− δ, x+ δ), |Pr(PT+1(β1) ≤ y)− Pr(PT+1(β1) ≤ x)| < ε. Therefore,

Pr(PT+1(β̂1) ≤ x+ gt(εT , cT ))

= Pr({PT+1(β̂1) ≤ x+ gt(εT , cT )} ∩ {|gt(εT , cT )| ≥ δ})

+ Pr({PT+1(β̂1) ≤ x+ gt(εT , cT )} ∩ {|gt(εT , cT )| < δ})

≤ Pr(|gt(εT , cT )| ≥ δ) + Pr(PT+1(β̂1) ≤ y)

< Pr(PT+1(β1) ≤ x) + o(1).

Similarly, Pr(PT+1(β̂1) ≤ x) ≥ Pr(PT+1(β1) ≤ x) + o(1). This shows part (a).

To see part (b), let k : R → R be a monotonically decreasing and everywhere

differentiable function that has bounded derivative and satisfies k(x) = 1 for x ≤ 0,

k(x) ∈ [0, 1] for x ∈ (0, 1), and k(x) = 0 for x ≥ 1. For example, let k(x) = cos(πx)/2+

1/2 for x ∈ (0, 1). Given some {β(t)}Tt=1, a smoothed df is defined by

F̂T (x, {βt}, hT ) =
1

T

T∑
t=1

k

(
Pt(β

(t))− x
hT

)
,

for some sequence of positive constants {hT } such that hT → 0 and cT εT /hT → 0. For

example, we let hT = ε
1/4
T when cT = 1/

√
εT . Also, define,

F̂T (x, {β1}) =
1

T

T∑
t=1

1{Pt(β1) ≤ x},

i.e., F̂T (x, {β1}) is the empirical cdf of Pt as if the true parameter β1 is known.

We write

|F̂P,T (x)− FP (x)| ≤
4∑
i=1

Di,T ,

for

D1,T = |F̂P,T (x)− F̂T (x, {β̂j}, hT )|,

D2,T = |F̂T (x, {β̂j}, hT )− F̂T (x, {β1}, hT )|,

D3,T = |F̂T (x, {β1}, hT )− F̂T (x, {β1})|, and

D4,T = |F̂T (x, {β1})− FP (x)|.

We want to show that all four terms vanish. First note that

D1,T ≤
1

T

T∑
t=1

1

{
Pt(β̂

(t)
1 )− x
hT

∈ (0, 1)

}
.

38



Thus, for any δ > 0,

Pr(D1,T > δ) ≤ Pr({D1,T > δ} ∩ LT ) + Pr(LcT )

≤ Pr

(
1

T

T∑
t=1

1

{
Pt(β̂

(t)
1 )− x ∈ (−gt(εT , cT ), hT + gt(εT , cT )

}
> δ

)
+ o(1)

≤
E1
{
Pt(β̂

(t)
1 )− x ∈ (−gt(εT , cT ), hT + gt(εT , cT )

}
δ

+ o(1), (13)

where the last inequality is by Markov’s inequality. Recall Pr(P1(β1) 6= x) = 1 and

gt(εT , cT ) → 0 a.s., so 1{Pt(β1) − x ∈ {−gt(εT , cT ), hT + gt(εT , cT )} → 0 a.s.. By the

dominated convergence theorem, (13) implies Pr(D1,T > δ) ≤ o(1) and thus D1,T =

op(1).

For D2,T , we have

D2,T =

∣∣∣∣∣ 1

T

T∑
t=1

k′

(
P̃t − x
hT

)
Pt(β̂

(t)
1 )− Pt(β1)

hT

∣∣∣∣∣ ≤ k̄

T

T∑
t=1

gt(εT , cT )

hT
.

The equality is by the mean value theorem and we have P̃t lies between Pt(β̂
(t)
1 ) and

Pt(β1). In the inequality, k̄ is a bound for the derivative of k. Also, note

E

[
gt(εT , cT )

hT

]
=
ε2T c

2
T

hT
+ 2

εT cT
hT

E|u1,t| = o(1).

Therefore,

Pr(D2,T > δ) ≤ Pr({D2,T > δ} ∩ LT ) + Pr(LcT )

≤ Pr

(
k̄

T

T∑
t=1

gt(εT , cT )

hT
> δ

)
+ o(1)

≤ k̄Egt(εT , cT )

δhT

→ 0.

The third inequality is by Markov’s inequality. This shows D2,T = op(1).

D3,T is similar to the D1,T case. Finally, by stationary and ergodicity of u1,t, we

have D4,T = op(1). This shows part (b).

Now we show part (c). Pick any small ε such that F̂P,T (x) →p FP (x) for x ∈
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(qP,1−τ − ε, qP,1−τ + ε). Note

Pr(q̂P,1−τ > qP,1−τ + ε)

≤ Pr(F̂P,T (qP,1−τ + ε) < 1− τ)

= Pr(F̂P,T (qP,1−τ + ε)− FP (qP,1−τ + ε) < (1− τ)− FP (qP,1−τ + ε))

→ 0.

The inequality is by definition of q̂P,1−τ . The convergence is because of part (e) of

Assumption 2 and part (b) of Theorem 2. Similarly,

Pr(q̂P,1−τ < qP,1−τ − ε)

≤ Pr(F̂P,T (qP,1−τ − ε) ≥ 1− τ)

= Pr(F̂P,T (qP,1−τ − ε)− FP (qP,1−τ − ε) ≥ (1− τ)− FP (qP,1−τ − ε))

→ 0.

Again, the inequality is by definition of q̂P,1−τ , and the convergence is because of part

(e) of Assumption 2 and part (b) of Theorem 2.

Finally, we show part (d). Under null, P∞ and P1(β1) have the same distribution,

so qP,1−τ is (1− τ)-quantile of P∞. Therefore,

Pr(P > q̂P,1−τ ) = 1− Pr(P ≤ q̂P,1−τ ) = 1− Pr(P + (qP,1−τ − q̂P,1−τ ) ≤ qP,1−τ )→ τ,

where the convergence is by combining part (a) and (c). This concludes our proof.

Proof of Lemma 3. (i) Assume Condition ST holds.

By Lemma 1, part (a) of Assumption 3 holds.

Part (b) is because ut is a linear combination of ηt, λt, εt.

For part (c), pick some τ such that 1/(2 + δ) < τ < 1/2, where δ is defined in

Condition ST. Let

DT =

[
1 0

0 T τIN

]
. (14)

Then, we have

max
t≤T+1

‖D−1
T xt‖ = max

t≤T+1

∥∥∥∥∥
[

1

T−τYt

]∥∥∥∥∥ =

√
1 +

(
max
t≤T+1

‖T−τYt‖
)2

. (15)
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Also, for any ε > 0, note

Pr

(
max
t≤T+1

‖T−τYt‖ > ε

)
= Pr

 ⋃
t≤T+1

‖Yt‖ > T τ ε


≤

(
T∑
t=1

Pr(‖Yt‖ > T τ ε)

)
+ Pr(‖YT+1(0) + α‖ > T τ ε)

=
TE[‖Yt‖2+δ]

T τ(2+δ)ε2+δ
+ o(1)

= o(1). (16)

The second equality is due to Markov inequality and stationarity of {YT+1(0)}t+1. The

last equality is because τ > 1/(2 + δ). Combining (15) and (16), we obtain part (c).

For part (d), we use DT defined in (14). Following the same reasoning as in (10),

for each i = 1, . . . , N , we have

‖b̂i − bi‖ ≤ ‖Σ−1/2
T ‖F · ‖Σ1/2

T ‖F · ‖b̃i − bi‖

= Op(1)Op(T
−1/2)

= Op(T
−1/2). (17)

The first equality is because {Yt(0)}t≥1 is ergodic for the second moment, and b̃i is the

OLS estimator for bi. Thus,

‖DT (β̂i − βi)‖ =

∥∥∥∥∥
[

1 0

0 T τ−1/2IN

][
1 0

0 T 1/2IN

]
(β̂i − βi)

∥∥∥∥∥
≤

∥∥∥∥∥
[

1 0

0 T τ−1/2IN

]∥∥∥∥∥
F

∥∥∥∥∥
[

âi − ai√
T (̂bi − bi)

]∥∥∥∥∥
=
√

1 +NT 2τ−1‖Op(1)‖

= op(1).

The second equality is due to (17). The last equality is because τ < 1/2. Therefore,

‖(θ̂ − θ0)DT ‖F =

√∑N
i=1 ‖DT (β̂i − βi)‖2 = op(1). Also, since θ̂(t) = θ̂ for each t,

maxt=1,...,T ‖(θ̂(t) − θ0)DT ‖F = ‖(θ̂ − θ0)DT ‖F = op(1). This shows part (d).

Part (e) is assumed.

Part (f) is trivial if WT = I. Assume now WT = (CĜ(T−1
∑T

t=1 ûtû
′
t)Ĝ
′C ′)−1.
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Then,

1

T

T∑
t=1

ûtû
′
t

= (I − B̂)

(
1

T

T∑
t=1

YtY
′
t

)
(I − B̂)′ − (I − B̂)

(
1

T

T∑
t=1

Yt

)
â′

−â

(
1

T

T∑
t=1

Y ′t

)
(I − B̂)′ + ââ′

→ E[utu
′
t],

by ergodicity and Assumption 1(b). Therefore, ŴT →p W = (CGE[utu
′
t]G
′C ′)−1.

This concludes part (i) of Lemma 3.

(ii) Assume Condition CO holds.

By Lemma 1, Assumption 1 holds. This shows Part (a).

By (11), ut is a linear combination of λot and εt, so {ut}t≥1 is ergodic and has finite

first moment. This shows Part (b).

Now we show Part (c). Let

DT =

[
1 0

0
√
T · IN

]
.

Then, we have

max
t≤T+1

‖D−1
T xt‖ =

√
1 +

(
max
t≤T+1

‖T−1/2Yt‖
)2

≤

√√√√1 +
N∑
i=1

(
max
t≤T+1

|T−1/2yi,t|
)2

≤

√√√√1 +
N∑
i=1

(
T−1/2|αi|+ max

t≤T+1
|T−1/2yi,t(0)|

)2

=

√√√√1 +
N∑
i=1

(o(1) +Op(1))2

= Op(1)

The second equality is because

max
t≤T+1

|T−1/2yi,t(0)| = max
r∈[0,1]

|(T + 1)−1/2yi,[r(T+1)](0)| ⇒ max
r∈[0,1]

νi(r)
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by the continuous mapping theorem.

To show Part (d), we combine (10) and (12), and have

‖DT (β̂i − βi)‖ =

∥∥∥∥∥
[

âi − ai√
T (̂bi − bi)

]∥∥∥∥∥ = op(1).

Therefore, ‖(θ̂ − θ0)DT ‖F =

√∑N
i=1 ‖DT (β̂i − βi)‖2 = op(1). The second half of Part

(d) is also satisfied since θ̂(t) = θ̂ for each t.

Part (e) is assumed and Part (f) is trivial for WT = I.

Proof of Theorem 3. We use similar strategy as we do in the proof of Theorem 2.

Let

L1,T (ε) =

{
‖(θ̂ − θ0)DT ‖F ≤ ε, max

t=1,...,T
‖(θ̂(t) − θ0)DT ‖F ≤ ε

}
,

L2,T (c) =

{
max
t≤T+1

‖D−1
T xt‖ ≤ c

}
,

L3,T (η) =
{
‖Ĝ′C ′WTCĜ−G′C ′WCG‖F < η

}
.

By Assumption 3(d), there exists a positive sequence {εT }T≥1 such that εT → 0

and Pr(L1,T (εT )) → 1. Let cT = 1/
√
εT . So we have cT → ∞ and cT εT → 0. By As-

sumption 2(c), we must have Pr(L2,T (cT ))→ 1. By Assumption 1(c) and Assumption

2(f), there exists a positive sequence {ηT }T≥1 such that ηT → 0 and Pr(L3,T (ηT ))→ 1.

Let LT = L1,T (εT ) ∩ L2,T (cT ) ∩ L3,T (ηT ), then we have Pr(LT )→ 1 and Pr(LcT )→ 0.

Suppose LT holds. Then, for some θ = θ̂ or θ = θ̂(t) and for some t = 1, . . . , T , we

have

|P̂t(θ)− Pt(θ0)| ≤ |P̂t(θ)− Pt(θ)|+ |Pt(θ)− Pt(θ0)|. (18)

Note that

|P̂t(θ)− Pt(θ)| =
∣∣∣(Yt − θxt)′(Ĝ′C ′WTCĜ)−G′C ′WCG)(Yt − θxt)

∣∣∣
≤ ‖Yt − θxt‖2‖(Ĝ′C ′WTCĜ−G′C ′WCG‖F
≤ ‖ut + (θ0 − θ)xt‖2 · ηT
≤ (‖ut‖+ ‖(θ0 − θ)DTD

−1
T xt‖)2ηT

≤ (‖ut‖+ ‖(θ0 − θ)DT ‖F ‖D−1
T xt‖)2ηT

≤ (‖ut‖+ εT cT )2ηT (19)
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and

|Pt(θ)− Pt(θ0)| = |(Yt − θxt)′G′C ′WCG(Yt − θxt)− (Yt − θ0xt)
′G′C ′WCG(Yt − θ0xt)|

≤ |(Yt − θxt)′G′C ′WCG(Yt − θxt)− (Yt − θxt)′G′C ′WCG(Yt − θ0xt)|

+ |(Yt − θxt)′G′C ′WCG(Yt − θ0xt)− (Yt − θ0xt)
′G′C ′WCG(Yt − θ0xt)|

= |(ut + (θ0 − θ)xt)′G′C ′WCG(θ0 − θ)xt|+ |((θ0 − θ)xt)′G′C ′WCGut|

≤ ‖ut + (θ0 − θ)DTD
−1
T xt‖‖G′C ′WCG‖F ‖(θ0 − θ)DTD

−1
T xt‖

+ ‖(θ0 − θ)DTD
−1
T xt‖‖G′C ′WCG‖F ‖ut‖

≤ (‖ut‖+ εT cT )‖G′C ′WCG‖F εT ct + εT cT ‖G′C ′WCG‖F ‖ut‖

= (2‖ut‖+ εT cT )‖G′C ′WCG‖F εT ct. (20)

Combining (18), (19), and (20), we have |P̂t(θ)−Pt(θ0)| ≤ g(εT , cT , ηT ), where gt(εT , cT , ηT ) =

(‖ut‖+εT cT )2ηT+(2‖ut‖+εT cT )‖G′C ′WCG‖F εT ct. By Assumption 1(a), gt(εT , cT , ηT )

is identically distributed across t for a fixed T .

To show part (a), note that under null,

P = (Cα̂− d)′WT (Cα̂− d)

= (C(α+GuT+1 + op(1))− d)′(W + op(1))(C(α+GuT+1 + op(1))− d)

= (CGuT+1 + op(1))′(W + op(1))(CGuT+1 + op(1))

= u′T+1G
′C ′WCGuT+1 + op(1).

The second equality is by Theorem 1. Since P∞ = u′1G
′C ′WCGu1, we have P →d P∞

by stationary of {ut}t≥1.

Part (b)-(d) can be shown using the same strategy as in the proof of Theorem 2,

with gt(εT , cT , ηT ) in place of gt(εT , cT ), and θ in place of β, so is omitted here.
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