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Motivating Question

When we use a donut, how do we learn about the treatment effect?
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Main result

Under:

1 natural extensions of standard assumptions,

2 known or data-determined derivative bounds,

3 and straightforward assumptions about selection

we get partial identification for causal effects – and validity while
conducting inference for the partially identified set.
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How Do Donuts Work?

There is no extant theory despite widespread empirical use.

Most papers make implicit functional form assumptions.

Even under those assumptions, more is needed than for standard RD.

Can we use weaker restrictions on DGP?
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This paper...

I use smoothness assumptions, which are natural to the RD setting, to
perform inference with a donut.

I focus on the Sharp RD case (full treatment), with an additive treatment
effect.
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Smoothness Example
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Smoothness Example
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Notation

1 We observe (Y,X,T)

2 X ∈ χ ⊂ R
3 Y (T ) = µt(X ) + εt
4 Var(εt |X ,T ) = σ2t (X )

Most of our conditions will focus on the mean functions µt .

Denote the threshold c , and donut D = (d−, d+).
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Outline of Procedure

1 Set a confidence level α, and κ < α.

2 Estimate the k − 1 derivatives of µt at the edge of the donut.

3 Predict µt at c , using its first k − 1 derivatives and a Taylor
projection.

4 Estimate τ(x0) = µ1(x0)− µ0(x0) and build a 1− α + κ CI.

5 Find a set Ct that contains the µ
(k)
t with probability 1− κ/2

6 Use the extreme values of Ct to find the maximal errors in the Taylor
projection above.

7 Add those maximal errors for each side to the 1− α + κ CI for τ .
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Derivative Bounds

Condition 1: Derivative Bounds Exist

There is a known k > 0 such that

(i) µ
(k)
t (x) ∈ [lt , ut ] ∀x ∈ χ

For data-driven bounds, we also need to attain the bounds somewhere:

1 µ
(k)
t (x) = lt for some x ∈ χ/D

2 µ
(k)
t (x) = ut for some x ∈ χ/D

We don’t need to know lt or ut , but we need to be able to estimate them
’well’.
Notice that this condition does not allow other treatment policies with a
discontinuity in χ which affects Y .
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Regularity Conditions

Condition 2: Regularity

1 (Y,X,T) are i.i.d. from a DGP as described above.

2 µ
(k+2)
t is continuous

3 The density of X, fx is absolutely continuous and bounded away from
zero over the region of interest χ.

4 σ2t () is positive, bounded away from 0, and has two continuous
derivatives.

5 sup
x∈χ

E
[
|εi |3exp(|εi |)|xi = x

]
<∞

which implies E
[
|εi |3exp(|εi |)

]
<∞.

Dowd Donut RD 2021 18/62



Regularity Conditions

Condition 2: Regularity

1 (Y,X,T) are i.i.d. from a DGP as described above.

2 µ
(k+2)
t is continuous

3 The density of X, fx is absolutely continuous and bounded away from
zero over the region of interest χ.

4 σ2t () is positive, bounded away from 0, and has two continuous
derivatives.

5 sup
x∈χ

E
[
|εi |3exp(|εi |)|xi = x

]
<∞

which implies E
[
|εi |3exp(|εi |)

]
<∞.

Dowd Donut RD 2021 18/62



Regularity Conditions

Condition 2: Regularity

1 (Y,X,T) are i.i.d. from a DGP as described above.

2 µ
(k+2)
t is continuous

3 The density of X, fx is absolutely continuous and bounded away from
zero over the region of interest χ.

4 σ2t () is positive, bounded away from 0, and has two continuous
derivatives.

5 sup
x∈χ

E
[
|εi |3exp(|εi |)|xi = x

]
<∞

which implies E
[
|εi |3exp(|εi |)

]
<∞.

Dowd Donut RD 2021 18/62



Partial Identification

Lemma 1

Under conditions 1-2, there is some set φ = [τl , τu] such that

(a) τ ∈ φ
(b) τu − τl <∞

Concretely:

µ0,l(0) =

k−1∑
j=0

d j
−
j!
µ
(j)
0 (d−)

+
dk
−
k!

l0

τu = µ1,u(0)− µ0,l(0)
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Derivative Bound Example: k = 1
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Derivative Bound Example k = 2
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Local Polynomial Conditions

Condition 3: Kernel and Bandwidth for Local Polynomial
(i) The kernel function K (·) has support (−1, 1), outside of which it

takes value 0.

(ii) K (·) is symmetric, positive, bounded, and integrates to 1 over its
support.

(iii) The bandwidth h = hn is set such that as n→∞, hn → 0 and
nh3n →∞.

(iv) ∃ η ≥ hn ∀n.

We use the kernel Kh(x) = K (x/h)/h.

These are standard conditions for local polynomial regressions.
See Fan, Heckman, and Wand [1995].
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Donut Exclusion

Condition D: Donut Exclusion
(i) There is a known interval D = (d−, d+) such that all individuals who

manipulate are contained to the interval, and would be contained in
the counterfactual where they do not manipulate.

(ii) There is only one policy with a threshold relevant to the outcome
variable inside the region [d− − ε, d+ + ε] for some ε > 0.

I define manipulation as the difference between the observed running
variable, and the value in the counterfactual where all individuals
treatment statuses were fixed in advance.
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Comments

(i) generalizes the standard RD assumption that there is no
manipulation (i.e. D = (0, 0)).

(ii) generalizes the standard RD assumption that there are no
co-located policies.

We only care about manipulation which is caused by the treatment
threshold.

The Donut size is not shrinking asymptotically – it is a feature of
people´s ability to manipulate, and so I take it as fixed.

(i) insists we cannot just exclude the region where there is observable
bunching.
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Donut Example
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Normality

Lemma 2

Under conditions 1-3, local polynomial estimates of the stacked sequence
of derivatives at d−, d+

θ̂ =
(
µ̂
(0)
0 (d−), ..., µ̂

(k−1)
0 (d−), µ̂

(0)
1 (d+), ..., µ̂

(k−1)
1 (d+)

)T
converge to a normal distribution with a block diagonal covariance and
bias of the order nh2k+3
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Outline of Procedure

1 Set a confidence level α, and κ < α.

2 Estimate the k − 1 derivatives of µt at the edge of the donut.

3 Predict µt at c , using its first k − 1 derivatives and a Taylor
projection.

4 Estimate τ(x0) = µ1(x0)− µ0(x0) and build a 1− α + κ CI.

5 Find a set Ct that contains the µ
(k)
t with probability 1− κ/2

6 Use the extreme values of Ct to find the maximal errors in the Taylor
projection above.

7 Add those maximal errors for each side to the 1− α + κ CI for τ .
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Comments

Moving forwards, I focus on inference for the region φ.

In examples and discussion, I will use bounds of the form

|µ(k)0 (x)| ≤ |µ(k)0 (d−)|

|µ(k)1 (x)| ≤ |µ(k)1 (d+)|

∀x ∈ D
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Derivative Bound Example
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Coverage for φ

Define C such that Φ(C )−Φ(−C ) = 1− α

S1−α =
[
τ̂l − C σ̂l/

√
n, τ̂u + C σ̂u/

√
n
]

Theorem 1

Under conditions 1-4, and the condition that nh2k+3 → 0,
for all α ∈ (0, 1/2),

lim
n→∞

P[φ ⊆ S1−α] = 1− α
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Comments on Theorem 1

Theorem 1 gives us asymptotic size control for the set φ.

Theorem 1 is dependent on the two bandwidth conditions:
nh3 →∞ and nh2k+3 → 0.

Theorem 1 is very conservative for each values of τ in φ. In order to cover
the entire interval, each point must be covered with much higher
probability.
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S1−α Example
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S1−α Example
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S1−α Example
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Q1−α Example
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Global Smoothness

What if we want data driven smoothness conditions?
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How can we make statements about derivative extrema?
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How can we make statements about derivative extrema?
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Global Derivative Conditions

Condition 4: Bandwidth Conditions for Series Estimator

1
log(n)3/2√

nhb
= oP(1/log(n))

2
log(n)4

nhb
= o(1/log(n))

3 nh1+2k
b = o(1/log(n))

These rate conditions apply to the different bandwidth controlling our
inferential routine for the global smoothness.

Dowd Donut RD 2021 47/62



Global Results

Theorem 3

Under conditions 1-4, using local polynomials to learn the 0,...,k-1
derivatives at 0 and using b-splines to learn the sup and inf of the kth
derivative, we can build a 1− α confidence region CRg such that:

limΦt(x0) ⊂ CRg ≥ 1− α
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Academic Probation

A Canadian university system imposes academic probation for students
who have a GPA less than 1.5 after their first year.

Lindo, Sanders, and Oreopoulos [2010] examine the data, test for
discontinuity, and look at covariate smoothness. They perform inference
for treatment effects on future GPA (among other things). Cattaneo,
Idrobo, and Titiunik [2019] replicate and provide the data and code.

GPAs are very much under students’ control. It is very possible (and
extremely low cost) to ask professors to raise your grade.
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Academic Probation – Data
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Academic Probation - Methods

If 1/3 of grades are high enough that professors raise them one partial
letter (e.g. C+ to B-) on being asked, that is a maximum GPA change of
0.2.

I bound the 2nd derivative, and follow the original authors in using a
bandwidth of 0.6.
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Academic Probation - All Data
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Academic Probation - Drop Donut
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Academic Probation - Inside Bandwidth
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Academic Probation - Fit Local Polynomials
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Academic Probation - Fit Local Polynomials
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Academic Probation - Identified Region
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Academic Probation - CR for Set
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Academic Probation - CR for elements of set
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Tau Set
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Conclusion

We have discussed:

Derivative based conditions under which a set is identified.

Asymptotically Conservative inference for both parameters and the
identified set.

Application to Academic probation.

Future Work:

Can we give more guidance on donut sizes?

Efficiency in estimating φ?

Guidance on polynomial order.
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Thank you
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