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Abstract

Regression Discontinuity (RD) uses policy thresholds to identify causal treatment effects at the
threshold. In most settings, the Local Average Treatment Effect (LATE) at the threshold is not
the parameter of interest. I provide high level smoothness conditions under which extrapolation
across the threshold is possible. Under these restrictions, both estimation and inference for the
LATE in other locations is possible. In some situations, extrapolation may be necessary to
merely estimate the LATE at the threshold. RD donuts are one such situation, and I provide

results allowing estimation and inference in that setting as well.
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1 Intro

Regression discontinuity (RD) is a valuable causal method for learning the treatment effect at the
threshold of a policy. However, it is unusual for policymakers to care about the local average
treatment effect (LATE) at the threshold rather than at some other point. This paper provides a
straightforward approach to extrapolation in RD settings. I do this by leaning on natural derivative

conditions which already are used extensively in optimal bandwidth selection.

When we have bounds on some derivative order k£ of the mean functions, we can use the Taylor
expansion to identify a set which contains the mean functions, even in areas where we do not
observe them. Once we have identified such a set, finding the treatment effect merely requires
subtracting the other mean function. In cases where we are extrapolating across the treatment
threshold, the other mean function will usually be identified by observations at the point of in-
terest. In other settings, like regression discontinuity donuts, both treatment and control groups
will require extrapolation, and the treatment effect will be identified by the difference between two
other identified sets. Thus, in a wide variety of situations, derivative bounds will allow us to build

confidence intervals for the treatment effect.

The confidence intervals we build will be dependent on the derivative bounds we use. A straightfor-
ward approach would be to use domain information to set fixed bounds which we know will hold.
Convexity and concavity assumptions can be rewritten as bounds on the second derivative, which
depend on the sign of the first. Similarly, in many economic contexts, the derivatives are linked to
elasticities — for which we often have a lot of information. However, there are also situations where
we believe that there are bounds on the derivatives, but we do not know what they are. In that

case, we may wish to use the observed values of the kth derivative to set our bounds. Performing



inference on the max and min of derivatives will require some additional assumptions, but this pa-
per will cover that situation. Allowing for data-driven derivative bounds to identify the treatment

effect gives us a powerful tool for learning about the effects of all manner of policies.

Literature

Regression Discontinuity expanded the realm of causal techniques to the thresholds of many real
world policies. This has provided invaluable information to policymakers — information which was
not causally identified by other techniques. However, frequently RD estimates are treated as aver-
age treatment effects, and policies are evaluated as though they are.

Two decades of research building on the RD design has moved us from using fully parametric RD
models,[Lee and Lemieux, |2010| to the current standard of using fully nonparametric models only in
the vicinity of the threshold.[Doudchenko and Imbens| |2016] Excellent work has been done extend-
ing these results into various situations,|Cattaneo et al.,|2014] finding optimal bandwidths,|Calonico
et al.,[2018] and addressing both statistical issues around boundaries and economic concerns about
detecting selection [McCraryl, [2008] which might invalidate the design.

Nevertheless, the LATE provided by RD is only valid at the threshold. In many settings, policy
makers care about the LATE at other locations. For practical purposes in the absence of extrap-
olation techniques policymakers fall back on the assumption that the LATE is constant, despite
repeated warnings about the validity of doing so. This misuse of RD estimates leads directly to

overinvestment in some policies and underinvestment in others.

Moreover, in the presence of selection, we can’t even claim to identify the LATE at the threshold.
Individuals with some control over their value of the running variable may be able to choose their

treatment status. One approach to solving this is known as the donut.|Barreca et al., [2011] Donut



designs assume that there is some region around the threshold which contains all the manipulation,
and drop all observations in that region. Unfortunately, that also removes the observations which
identified the LATE without further assumptions. Thus, in donut settings, interpolation is required
to obtain a point estimate. Despite the growing use of donuts in much practical work, there is a
dearth of methodological discussion as to their validity. As a result, many papers interpolate with
constants or linear projections. These interpolations occur even as authors use local techniques to
estimate parameters at the donut’s edges, and spec test higher order polynomials in those outlying

regions.

While it is true that these techniques will work under relevant conditions about the polynomial
order of mean functions, authors rarely mention these assumptions, and less frequently bother to
defend them. In the vast majority of papers, finding the identifying assumption needed for in-
terpolation requires digging through appendices and any posted code. Suffice to say that this is
unique among identifying assumptions. Economics papers typically dedicate sections to defending

identifying assumptions. For donuts, there is no similar norm.

This paper offers a solution. Under relatively weak assumptions about the existence and observa-
tion of bounds on some derivative, we can identify a set which will contain the treatment effect,

even in donut settings. This is unusual in the small world of RD extrapolation.

Several other papers have approached the question of extrapolation in RD settings.

Angrist and Rokkanen| [2012] builds an effective method which leans on relationships to other vari-
ables to build treatment effect estimates away from the RD threshold. As long as those other
variables are observed near the points of interest, we can make substantial progress. This is an

excellent approach when it is possible — however in many situations it may be difficult. In donut



designs, the area to be projected towards has no observations whatsoever — because we don’t trust
the observations which are there. In other situations, researchers may only observe outcomes for
observations near the threshold — as those far away may never appear in the data.

Cattaneo et al|[2019b] consider the situation where there are multiple cutoffs. By parameterizing
the relationship between treatment and cutoff status, they are able to model the different estimated
LATEs. This allows LATESs to be identified across the entire domain.This too is a great approach
— when feasible.

Dong and Lewbel| [2015] take an approach which is more closely related to this paper. They note
that under weak assumptions, the derivative of the LATE can be identified at the threshold, allow-
ing us to project the late to nearby regions. My paper builds on their work by using the identified
derivatives of the mean functions — which allows for use in situations like donuts where the thresh-
old is unobserved. Further, by allowing bounds on any kth derivative, we are able to extend their

results away from the threshold.

I leverage smoothness conditions — in the form of bounds on a higher order derivative of the mean
function. These conditions are frequent in the literature on optimal bandwidths|Calonico et al.,
2018| for local polynomial regression. With such bounds, we can use Taylor projections to set-
identify counterfactual outcomes, and thus treatment effects.

I will rely on recent work which allows uniform nonparametric inference on derivatives of functions
Cattaneo et al.| [2018]. The results of that paper show that we can construct confidence bands
that contain the kth derivative for an entire region with given probability. This in turn means
that we can make conservative probability statements about the extrema of that derivative. I will
use those confidence bands to construct valid one-sided Cls for the supremum and infimum of the
kth derivative. Combined with standard local polynomial results at the treatment threshold, we

can build Manski type confidence regions for the identified set. [Imbens and Manski, [2004] Those



results will allow us to make conservative probability statements about the location of the mean
functions. For standard RD settings, finding valid intervals for the LATEs will then only require

subtraction.

In section 5, I build on those earlier results to show how this approach could be useful for donuts. RD
donuts are a new design in RD settings which drop observations local to the threshold — provoking
questions about how to learn the LATE. With two set-identified mean functions, we can identify

and conduct inference for a set containing the LATE at the threshold.

1.1 Outline of paper

This paper is organized as follows: provides notation and necessary conditions.
details the main results. [Section 4]looks at an example in the world of recidivism and SNAP benefits

to examine the difference between different orders k. Section 5l discusses a natural extension to the

world of RD donuts. concludes.

2 Framework

For each individual, the econometrician observes a variable X, known as the running variable or
forcing variable, which has a compact domain x C R. There is also a known threshold, ¢ € ¥,
such that treatment status T = 1[x > ¢]. Without loss of generality, we assume that ¢ = 0.
We also observe another variable, Y, referred to as the outcome. We will focus on the standard

heteroscedastic non-parametric framework.

Y=ppr(X)+e Ele]=0 Var(e) = 02(X) (1)



Where p; and o, are defined as:
pe(z) =E[Y|X =2,T =t o2(x) =Var(Y|X =z, T =1t)

The parameter of interest is the local average treatment effect (LATE) on the outcome variable at

some known point xg. Thus, our parameter of interest is:
T = T(xo) = /Ll(xo) — /Lo(xo) =E [Y|X = x(hT = 1] —E [Y|X = x(hT = 0] (2)

So far, this is the standard setup for modern regression discontinuity designs. However, most RD
papers require that the point at which we evaluate the LATE, z, coincide with the treatment
threshold, ¢. The restriction that zqg = c¢ simplifies the problem faced by the econometrician
substantially, as in principle, p;(c) and ug(c) are both nonparametrically identified by the data in
the limit. Notably, it is rare that the point of interest for policymakers is actually c.

For notational simplicity, I will assume throughout that the point of interest, zo < ¢. This will allow
me to denote the mean function being projected as u;. This condition is by no means necessary,
and will be relaxed in the section on donuts.

In order to learn about the LATE at points less than the threshold, we need to predict Y in the
counterfactual where those individuals were treated. Specifically, we need the ability to conduct
inference for ;:(_x\o) Under standard RD assumptions, this is not possible.

A simple fix to this would be to assume that the function p; is an order k polynomial or some other
known parametric function. Under that assumption, the projection becomes quite simple. We can
use standard regression confidence intervals, projected over to the point zy. However, this is not
typically a reasonable assumption. Over the past 15 years a large literature developed examining
the behavior of nonparametric estimators for the LATE in RD settings. This literature is the direct
result of overly strong parametric RD estimates which frequently relied on polynomial regressions.
Non-parametric RD may not typically make strong enough assumptions to identify ;:(E), but
that literature frequently makes strong assumptions in order to select the optimal bandwidth. In

nonparametric estimators like local polynomial regressions, bandwidths balance a trade-off between



the curvature of the underlying mean functions and the variance of the errors. As the curvature
increases and the mean function becomes less smooth, relatively distant observations become less
informative, and so dropping them by shrinking the bandwidth is sensible. At the same time, as the
error variance increases, nearby observations become noisier and less informative, and so increasing
our effective sample size by expanding the bandwidth becomes attractive.

Managing this trade-off requires making some assumption about the maximal extent of the curvature
and the maximum variance, thus bounding the worst case outcome. Those conditions have a
tendency to look like placing an upper bound on the kth derivative of the mean function. This
paper will strengthen and extend those conditions. Broadly, I will require an assumption of the

form:

Condition 1 (Bounded kth Derivative). For each t = {0,1}, for some k > 1,

o) < (@) < oY) VX ex (3)

where ,ugk) indicates the kth derivative of the function p¢, x continues to represent the domain of the

running variable, and 8&2 & 8(Ukt) represent upper and lower bounds. In some settings, researchers
may be able to use domain knowledge to state reasonable bounds Jr, ;. Results in this paper will
show the validity of that approach. Perhaps more frequently, researchers can make the additional
assumption that ,ugk) (x) attains its extreme values in the region where we observe T' = ¢. Under
that condition, this paper will show results for data driven methods to estimate the treatment
effect.

Bounds of the form in equation [3| are strictly weaker claims than requiring that p; be a polynomial

of degree k, as that would imply that for some constant C, ugk)(x) =C Vzxe€y.

In order to make use of the bounds above, we need to recall the Taylor projection for a function.

=y (x— )
TOO(Mtax):Z 8(2’?(]')
j=0 ’

Notably, once we have finite bounds on the kth derivative and we know ¢ = 0 we can simplify this



somewhat to the partial Maclaurin series.

k—1 i (k)
k k 8J,ut x? 8U,t xk Mt(Io)U
P(pes0 000000 =D i | | a = = (4)
=0 ’ o) (o)L

The vector created by that projection defines an interval, which will contain the true u:(zo). That
interval is the identified set, which I will refer to as ®. In order to make the projection feasible
however, we will have to estimate or know the first £k — 1 derivatives, as well as the two bounds on
the kth derivative. The rest of this section will examine the conditions under which this is known

to work.

Condition 2 (Regularity Conditions). Technical conditions on the DGP in order for the results

below.

(i) (X,Y,T) are i.i.d. observations from a d.g.p. satisfying Eq
(ii) we(+) is analytic and has k + 2 continuous derivatives

(iii) The density of the running variable, f, is absolutely continuous and bounded away from 0

over x.
(iv) The kernel function K(x) = 0.51 [|z] < 1].
(v) o+(+) is positive, bounded above, bounded away from 0, and has two continuous derivatives.
(vi) sup E [|e;]*exp(le;|)|zi] = x < oo which implies E [|e;[Peap(|e;])] < oo.

reX

(vii) There is no other treatment policy with a discontinuity in x which affects Y.

Condition 1 and Condition 2(i,ii) are sufficient for us to establish that the taylor projection de-

scribed in equation [4]is valid and will contain the true value of p1 ().



Condition 2 parts (iii), (iv), and (v) are closely related to standard conditions for asymptotic nor-
mality of local polynomial estimates.[Fan et al., [1995] This makes them sufficient (with some mild
rate conditions) for us to be able to take a known set of bounds on the kth derivative from equation
and make the projections feasible. At this point we could build a confidence region for 1 (zo)
which is asymptotically valid for the true region. At the same time these conditions allow us to
perform inference for po(xp). As the these two procedures use independent pieces of data, it is

simple to construct a valid confidence region for 7.

Condition 3 (Rate Conditions). For local polynomial estimates of derivatives to be asymptotically

normal I will require h,(n) — 0 such that as n — oo:
(i) nhd — oo
(ii) nh2F3 =0

Further, if we would like to estimate a global bound on the derivatives using b-splines I need the

following conditions on a potentially different bandwidth, hs:

3/2
(ifi) 22— = op(1/log(n))

. 1 4

(iv) 2 = o(1/log(n))

(v) nhy " = o(1/log(n))
The top conditions are sufficient for asymptotic normality of local polynomial regressions|Fan et al.
[1995] The bottom half of these rate conditions will be necessary for us to get a valid uniform

confidence band on the kth derivative. For that to be useful, we need the following condition to

hold.
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Condition 4 (Derivative bounds are observed). Recall that ¢ = 0 and T = 1 [z > 0]. Define

C4,...,C4 as follows

" (z) 0" ()
sup ——2 — ¢ inf LHE) o
z>OZ€)x ozk ! m>OJ€cx Oz 2
OF o () ‘ 0" o ()
sup ———= = C! inf —2 =
w<0269)( oz ° x<0£x Oxk !

Then, for known, continuous, weakly monotonic functions fi, ..., f4

821? = f1(C1,C2) 31(}? = f2(C1,Cs)
6(Lk3) = f3(C3,C4) a[(]k()) = f4(03,C4)

Broadly, condition [4] says that we observe values which are known functions of the bounds in
condition (1). In practice we will usually take these functions to be the identities. The generality
allows for the inf and sup to be absolute values of the biggest observed derivative, as well as allowing
for other situations — e.g. we know some maximal bound, but may wish to use the data-driven

results below to tighten the bounds if possible.

3 Main Results

3.1 Results for @

In order to actually estimate the values C1,...,C4, much less perform inference on functions of
them, we will need to rely on the results in |Cattaneo et al.| [2018]. If we use b-splines with equally
sized partitions to estimate the kth derivative, that paper tells us that we can construct uniform

confidence intervals for that derivative. Specifically we can find a ¢(«) such that we can build

11



asymptotically valid uniform (1 — «) CIs which are:

[ut<’“><x>iq<a>\/ﬂt<x>/n: xex} (5)

This implies that I can make statements like:

lim PP [Sup (@) > c} <a/2 (6)

TEX

Where C = maz {ﬂj(z) +¢j(a) Q](x)/n], i.e. C is the upper bound.

The reverse is also true, and so we can make statements about the sup and in f of the kth derivative
over compact domains.

These statements are extremely conservative. This is a function of the confidence band construction
which relies on fixed critical values to obtain uniformity. For the purposes of inference on extrema,
this means that the bounds obtained will not achieve nominal size, even in the limit. Nevertheless,
obtaining any valid probability statement for the sup of an unobserved function is a difficult prob-
lem. |Chernozhukov et al.| [2013] provide a direct approach to this problem, however, their bounds

are conservative in the opposite direction, and so cannot be used in this paper.

With the ability to conduct inference for the extrema of derivatives, we can turn to conducting
inference for the identified set. Recall that the set ®;(xg) is the set identified by the taylor projection
which contains the mean function at xy. Asymptotically, without stronger assumptions on the DGP,
it is impossible to identify as smaller set. Therefore, we will attempt to contain that region with

given size.

Theorem 1 (Containing ®;(xg)). Under conditions 1-4, using local polynomials to learn the 0,...,k-
1 derivatives at 0 and using b-splines to learn the sup and inf of the kth derivative, we can build

a 1 — a confidence region CRy such that:
limP [®4(x0) CCRy) >1—«

12



The result in theorem [1| builds somewhat naturally on well known results about local polynomials,
proofs are in the supplemental appendix. The projection P is linear in the estimated derivatives
and extrema, which makes for easy projections once we can make statements like the one in [0}
Combining the results of the extrema estimation routine and the local polynomial is more difficult.

For now, this paper relies on a union bound.

Namely, given two statements of the form IP [X; > ¢;] < a/2, we can also state that

]P[X1+X2>q1+q2]§a

As each estimation routine can return a straightforward confidence region, we can combine those

regions upper and lower bounds as above.

3.2 Inference for 7 in standard RD

The focus of this section so far has been inference of the region ®;. The results above give a region
which asymptotically contains ® with at least given size. In the same way that union bounds let
us move from just the CR for extrema to a region for ®, we can extend to a region around 7. But

first we should discuss the identified set.

Once again, the assumptions above are not adequate to identify a point estimate. Rather, the

nature of the derivative bounds in [3| is that they allow us to identify a set which will contain the

13



value of interest. In this case, we can identify the following set:

i (zo)u — po(zo)
T (wo) = P1(zo) — po(xo) = (7)
pa (o)L — po(Zo)
Recall that for simplicity, we are relying on xg < 0 € x. As a result, we know that we can identify

the parameter po(zg) using standard results for local polynomials. Theorem [1| gives us a region

containing ®, and so we can combine the two for 7.

Applying the union bound again leads to the following lemma regarding the estimand of interest,

T.

Lemma 1 (CR for 7). Under all the conditions of theorem we can build a 1 —a confidence region
CR; such that:

limlP [T(xz9) CCR;] > 1—«

This result follows naturally from theorem [T} but in many ways this is the real meat of the paper.
Given a point, we can take an RD design and some higher order derivative bounds, and with them
we can partially identify treatment effects at that point — even when it doesn’t overlap with the
threshold. In section 5 the paper I will discuss applications of this idea to the closely related setup

that is an RD donut design.

4 Example: Snap benefits and Recidivism

This example is from the paper by |Tuttle [2019]. That paper looks at recidivism as affected by a
food assistance program. The treatment effect is identified by leveraging a discontinuity in policy
which imposed a lifetime ban on SNAP benefits for individuals who engage in drug trafficking after

August 23rd, 1996. The high level finding of that paper is that individuals who received a lifetime

14



ban were about 10% more likely to commit more crimes in the future, with the effects predictably
concentrated among crimes with financial benefits.

This is an excellent paper. I merely use the setting to demonstrate the extrapolations discussed
here, and certainly not because of concerns about the results. A common question around these ex-
trapolations is what derivative order makes the most sense. The notion that higher order derivative
bounds are weaker conditions seems quite intuitive to many people. One critical takeaway from this
example is those comparisons are not as straightforward as they may seem. Broadly speaking, as
we change the derivative order being bounded, the other assumptions we make are also changing,
which may make the overall procedure more conservative or not. Moreover, the location of the
LATE to be estimated also can affect the relative strength of these assumptions.

To see this, recall that a second derivative bound will grow at O(z?), while a third derivative bound
will grow at O(z?). For x near the threshold, the third derivative may well be a stronger assump-
tion, while far away, the second derivative can be more restrictive. I will compare the use of several
different derivative bounds for extrapolating the treatment effect.

In context, the assumption of bounds on a derivative corresponds to a bound on the changes in
probability of recidivism for treatment and control groups. For a second derivative bound, this
suggests that the acceleration of the control group’s recidivism is restricted. Perhaps more impor-
tantly, the assumption that we observe the extrema of the derivative implies that there are not
other structural changes on August 23rd which would cause the control group function to change

drastically.

Figure [I] shows the CI for a set containing the LATE across a number of different derivative re-
strictions. As we can see, the first and second derivative bounds each are fairly comparable for
the LATE at the threshold. Nevertheless, the second derivative bound starts substantially wider

than the first derivative bound. As time goes on, the second derivative bound also grows faster,
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Figure 1: LATE of SNAP bans on recidivism, for drug offenses on a given
day. Each pair of lines represents the confidence region for a set containing the

treatment effect, under a given derivative bound restriction.
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eventually containing the entire first derivative set.

The difference in starting positions and variances comes down to the additional information and
variance associated with estimating more parameters in the local polynomial regression at the
threshold. This effect is magnified wildly for the 7th derivative bound, which is substantially wider
than both the first and second. The more rapid growth is the natural result of allowing the first
derivative to grow without limit. Similarly, the seventh derivative will eventually contain the entire
interval held by the second derivative.

The important point here is that these are different assumptions. One is not necessarily weaker or

stronger, but rather different.

5 Special Case: Donut designs

A special case of extrapolation in RD settings is that of a Donut. Donut designs are used when we
have fairly standard RD settings — that is some sort of policy threshold — but we are worried that
individuals have control over where they fall relative to the threshold. If individuals can shift their x
position by a bounded amount, then there may be selection across the threshold. Some individuals
may choose to cross it, while others do not. In order to retrieve the LATE for individuals who were
exogenously at the threshold, we need to eliminate the selection effect. Donut designs do this by
dropping all individuals within some distance d of the threshold. In essence, this corresponds to
saying that we do not trust those observations.

However, having thrown out the observations near the threshold, we have gotten rid of the very
observations that identify the LATE at the threshold under standard assumptions. Currently donut
designs deal with this by implicitly projecting polynomials across the region of the donutE| This
paper presents an alternative — estimate the extrema of some derivative k, and use that to project

an identified set across the region of the donut.

IThis is what dropping those observations and re-running your local polynomial RD estimator does.
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In order for this to be useful, we need to make an additional assumption.

Condition 5 (Donuts).

(i) Donut Exclusion. There is a known region, D = (d_, d. ), with d_ < d, hereafter referred to
as the donut, such that all manipulation (M = 0 in the absence of manipulation) is contained
to the donut.

Vi st. M; #0, z,, 1z, €D

(ii) Unique Threshold. There is one, and only one, policy relevant to the outcome of interest,

which has a threshold inside the region defined as the donut and its boundaries, [d_, d].

Condition ensures that all manipulation is contained to the interior of the donut. Nobody
from outside that region was induced to change their behavior by the presence of the policy. This is
critical — without this assumption, we retain the selection problems which we had before we decided
to use a donut.

Condition replaces condition 2(iii) in the donut setting. This assumption looks much more
like a natural extension of the standard RD assumption that there is no other co-located policy

threshold.
Lemma 2 (Donut). Under Conditions 1-5, we can find a 1 — « confidence region C Ry such that

limP [T(0) C CRq] > 1 — «

This is the result that we need in order to perform inference for the LATE at the threshold under
a donut design. In the absence of this, or some other extrapolation result, the LATE is not
asymptotically identified in donut designs. The problem is that in most situations, the ability to
manipulate the running variable is unrelated to sample size. Thus asymptotics based on observing

data arbitrarily close to the threshold don’t work without these extrapolation results.
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5.1 An Example Donut

In their paper, Lindo, Sanders, and Oreopoulos| [2010] assess the effect of academic probation using
a treatment threshold at a GPA of 1.5. They look at a variety of outcomes split on multiple
dimensions, but the focus is about whether students’ GPAs rise in subsequent semesters. They
acknowledge the risk of manipulation — specifically that students may be “convincing teachers to
give them a higher grade”. After testing for a discontinuity and finding nothing, as well as checking

that a number of covariates are smooth across the threshold, the authors move on [

Assuming that students are able to convince 1/3 professors to raise their grade one partial letter (a
max of 0.6 on the GPA scale), that implies that students have the ability to move up to 0.2 units

of GPA in a semester (and year). This creates the circumstances in which a donut is reasonable.

In order to make progress, we will rely on the assumptions in section 2E| We set the donut D =
(—0.25,0.25). We will use k=2 — thus it is the second derivative which is bounded. A full plot of the
outcome variable against the RV shows that ;o and g1 may be exactly linear, so assumptions about
the second derivative are reasonable. We use the bandwidth the authors selected of 0.6. Together,

these assumptions give us the results seen in table

In the original paper, the authors find a treatment effect of 0.233 GPA (95% CI: [0.18,0.285])
points gained by a person on the threshold. Breakdowns across subgroups give results of a similar
magnitude. Those results are consistent with the outcomes from a donut. See table 7?7 for a
comparison of the original papers results as replicated using rdrobust, and the outcomes of a donut

estimator.

Overall, this example lets us conclude that the treatment effect of academic probation is inside the

2Thanks to |Cattaneo et al|[2019a] the data and code needed to replicate these results are widely available.

3Continuity of the density of the RV is somewhat questionable, the RV takes 160 unique values in the region

containing the donut and bandwidths, while there are 16,000 observations in that region.
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Estimate CI Lower  CI Upper

Bias-Corrected 0.213 0.136 0.291
Robust 0.213 0.122 0.304
Derivative Bounds: 7 [0.275,0.407] 0.034 0.727

Table 1: Comparison of Estimates from rdrobust and Donut routines

region [0.07,0.68] with confidence. This is consistent with the results in both the original paper
and the replication by [Cattaneo et al.|[2019a]. The treatment effect on future GPA is not the only
outcome of probation which should be considered for policymakes, but if there was no effect, the

justification for such a policy would be thin.

6 Conclusion

This paper provides a simple approach to extending the LATE regime of regression discontinuity
away from the threshold. I provide asymptotic size control for the partially identified set. An
application of this work to the world of RD donuts was discussed. I hope to demonstrate the utility
of this work in the future by looking at other example settings, as well as looking into the possibility

of estimating the ATE using this design.
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A Proofs

A.1 Theorem 1

Condition 2(ii) implies that a taylor projection is a valid technique for approximating the functions
p¢. Condition 1 is somewhat unusual in combination with taylor projections — which usually are
infinite sums — but in this case, but putting bounds on the extreme values of the derivative, we can
say with certainty that p;(zg) € ®¢(x¢). The issues here arise from the feasibility of estimating ®;,
and worse, conducting inference.

Conditions 1-4 are substantially stronger than the needed conditions for asymptotic normality
of point estimates and derivatives using local polynomial estimators. They are sufficient for the
conditions in Section 5.4 of [Fan et al. [1995]. This will allow us to conduct inference on the vector
0:(-) = (MEO)(J, ...,,ugk)())T at x=0 for each of t=0,1. This will also allow inference on the point
pi(zo) for whichever treatment status is observed at xq. This is critical for Lemma 1.

Conditions 1-4 also imply the necessary conditions for Lemma SA-5.1 and Theorems SA-5.1, SA-
5.3, and SA-5.7 in Cattaneo et al.| [2018]. Many of the rate restrictions and technical conditions
come directly from that paper. That paper provides us with the ability to construct a confidence
band that contains the entire function uﬁk)(-) with given probability. By finding the extreme values
of that band, and using the mappings defined in Condition 4} we can learn about the distribution
of 88? 2 and B(Lkz

As the projection P is linear in the derivatives, we are simply taking the parameters we have now

built confidence regions for, scaling them as the projection requires, and adding them. The scaling
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does not affect our size control.

We have several options to add the parameters together and retain a valid confidence region. If we
had a full distribution for the extrema, we could think about the joint distribution and the optimal
adding of the two. However, in pushing a supremum through the results in|Cattaneo et al.|[2018], the
outcome statement is substantially conservative, and does not correspond to a proper distribution
for the true value. Thus we will use union bounds. This means we can take any a; and as such

that ag + a2 = «, and where we know that P [0y, > C] < ay (with C as defined in equation@ and

k-1 o7 J k k—1 o7 J k
P [ijo %ﬁf ?—? > 05} < g, and conclude that P [8U7t% + Zj:‘) aamu-it %) > Cy + C’%‘,’} < a. As

the first part of that probability defines the upper bound of our identified set ®;, and the statement
is true for the lower bound as well, we can contain the set ®;, with whatever probability given. See

Imbens and Manski [2004] for details about construction of such a set.

A.2 Lemmal

With a set containing ®;(z¢) with some probability, and an asymptotically normal estimate of
to(zo) from [Fan et al|[1995], we can again apply the union bounds to build a set 7 which contains
the value 7 with given probability. Because there is no other policy which affects Y with a threshold
in x, the difference here is the LATE.

This is not the most efficient construction of the LATE however. There are substantial power gains
to be had from constructing the LATE equation, which can be decomposed into the projection of
the extrema, the projection of a normal, and a normal. By combining the normal distributions then

using the needed union bound, we manage to limit the power loss associated with union bounds.
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A.3 Lemma 2

Donuts are an interesting application of Theorem 1. In order to use them properly, we need to
recenter our projection on the boundaries of the donuts. Condition 5 tells us that the donut
has successfully gotten rid of all selection issues. Theorem 1 tells us that projections from those
boundaries to the threshold will give us something meaningful. Taking the difference between the
two set-identified parameters projected from the edges of the donut uses the same union bound

procedure as above.
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