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Primary Question

Question

When we use a donut, how can we learn about the treatment effect?

Main result Under natural extensions of standard assumptions and
data-driven derivative bounds, we get partial identification – and can
conduct inference for the partially identified set.
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RD Example
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RD Donut Example
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How Do Donuts Work?

There is no extant theory despite widespread empirical use.

Most papers make implicit functional form assumptions.

Even under those assumptions, more is needed than for standard RD.

Can we use weaker restrictions on DGP?
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This paper...

I use smoothness assumptions, which are natural to the RD setting, to
perform inference with a donut.

I focus on the Sharp RD case (full treatment), with an additive treatment
effect.
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Donut Exclusion

Condition 1: Donut Exclusion

(i) There is a known interval D = (d−, d+) such that all individuals who
manipulate are contained to the interval, and would be contained in
the counterfactual where they do not manipulate.

(ii) There is only one policy with a threshold relevant to the outcome
variable inside the region [d− − ε, d+ + ε] for some ε > 0.

I define manipulation as the difference between the observed running
variable, and the value in the counterfactual where all individuals
treatment statuses were fixed in advance.
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Comments

(i) generalizes the standard RD assumption that there is no
manipulation (i.e. D = (0, 0)).

(ii) generalizes the standard RD assumption that there are no
co-located policies.

We only care about manipulation which is caused by the treatment
threshold.

The Donut size is not shrinking asymptotically – it is a feature of
people´s ability to manipulate, and so I take it as fixed.

(i) insists we cannot just exclude the region where there is observable
bunching.

Dowd Donut RD Metrics Lunch – 2019 13



Donut Example
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Technical Conditions

Condition 2: DGP conditions

∃ a known value η > 0 defining a set C = [d− − η, d−]∪ [d+, d+ + η] such
that:

(i) The density of X , fx(·) is positive over C

(ii) f
(1)
x (·) is continuous over C

(iii) µ
(2)
t (·) are continuous over C

(iv) υ
(2)
t (·) are continuous over C

(v) υt(·) are positive and bounded over C.

When C = [−η, η], these are standard conditions for RD.
See Porter [2003].
µt() is the CEF, and υ2t () is the conditional variance.
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Local Polynomial Conditions

Condition 3: Kernel and Bandwidth

(i) The kernel function K (·) has support (−1, 1), outside of which it
takes value 0.

(ii) K (·) is symmetric, positive, bounded, and integrates to 1 over its
support.

(iii) The bandwidth h = hn is set such that as n→∞, hn → 0 and
nh3n →∞.

(iv) h ≤ η ∀n.

We use the kernel Kh(x) = K (x/h)/h.

These are standard conditions for local polynomial regressions.
See Fan, Heckman, and Wand [1995].
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Derivative Bounds

Condition 4: Derivative Bounds

There is a known k > 0 such that

(i) µ
(k)
0 (x) ∈ [l0, u0] ∀x ∈ [d−, 0]

(ii) µ
(k)
1 (x) ∈ [l1, u1] ∀x ∈ [0, d+].

(iii) µ
(k+2)
t (·) are continuous over C ∪D for η,C from Condition 2.

We don’t need to know l1, l0, u1, or u0, but we need to be able to estimate
them ’well’.
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Partial Identification

Lemma 1

Under conditions 1-4, there is some set φ = [τl , τu] such that

(a) τ ∈ φ
(b) τu − τl <∞

Concretely:

µ0,l(0) =

k−1∑
j=0

d j
−
j!
µ
(j)
0 (d−)

+
dk
−
k!

l0

τu = µ1,u(0)− µ0,l(0)
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Derivative Bound Example: k = 1
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Derivative Bound Example k = 2
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Normality

Lemma 2

Under conditions 1-4, local polynomial estimates of the stacked sequence
of derivatives at d−, d+

θ̂ =
(
µ̂
(0)
0 (d−), ..., µ̂

(k−1)
0 (d−), µ̂

(0)
1 (d+), ..., µ̂

(k−1)
1 (d+)

)T
converge to a normal distribution with a block diagonal covariance and
bias of the order nh2k+3
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Well Behaved bounds

Condition 5: Joint Distribution is Estimable

We have estimates of l0, l1, u0, u1 which are consistent and have a known
(or easily estimated) joint sampling distribution when stacked with θ̂.

Examples:

Bounds are known points.

Bounds are given by differentiable functions of µ
(k)
t () at d− or d+.

(Estimable covariance, joint normality)

Bounds come from global structure estimated outside of bandwidth.
(Independent from θ̂)

Bounds come from pre-period with no treatment, post-period with
full treatment.
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Comments

Moving forwards, I focus on inference for the region φ.

In examples and discussion, I will use bounds of the form

|µ(k)0 (x)| ≤ |µ(k)0 (d−)|

|µ(k)1 (x)| ≤ |µ(k)1 (d+)|

∀x ∈ D

This will give us joint normality of our Stacked vector. I’ll highlight results
leaning on joint normality today.
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Derivative Bound Example
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Coverage for φ

Define C such that Φ(C )−Φ(−C ) = 1− α

S1−α =
[
τ̂l − C σ̂l/

√
n, τ̂u + C σ̂u/

√
n
]

Theorem 1

Under conditions 1-4, and the condition that nh2k+3 → 0,
for all α ∈ (0, 1/2),

lim
n→∞

P[φ ⊆ S1−α] = 1− α
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Comments on Theorem 1

Theorem 1 gives us asymptotic size control for the set φ.

Theorem 1 is dependent on the two bandwidth conditions:
nh3 →∞ and nh2k+3 → 0.

Theorem 1 is very conservative for each values of τ in φ. In order to cover
the entire interval, each point must be covered with much higher
probability.
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S1−α Example

Figure 1: Confidence region across sizes of identified set.
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Coverage for τ

Define ∆̂ = τ̂u − τ̂l , and σ̂m = max(σ̂l , σ̂u).

Define Cn such that Φ(Cn + ∆̂
√
n/σ̂m)−Φ(−Cn) = 1− α.

Define Q1−α =
[
τ̂l − Cnσ̂l/

√
n, τ̂u + Cnσ̂u/

√
n
]

Theorem 2

Under conditions 1-4, and the further conditions that nh2k+3 → 0 and
d+ − d− > 0, for all α ∈ (0, 1/2)

lim
n→∞

inf
θ∈φ

P[θ ∈ Q1−α] = 1− α
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Q1−α Example

Figure 2: Confidence regions across size of identified set.
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Academic Probation

A Canadian university system imposes academic probation for students
who have a GPA less than 1.5 after their first year.

Lindo, Sanders, and Oreopoulos [2010] examine the data, test for
discontinuity, and look at covariate smoothness. They perform inference
for treatment effects on future GPA (among other things). Cattaneo,
Idrobo, and Titiunik [2019] replicate and provide the data and code.

GPAs are very much under students’ control. It is very possible (and
extremely low cost) to ask professors to raise your grade.
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Academic Probation – Binscatter

Figure 3: Dashed line indicates treatment.
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Academic Probation - Methods

If 1/3 of grades are high enough that professors raise them one partial
letter (e.g. C+ to B-) on being asked, that is a maximum GPA change of
0.2.

I use a donut of width 0.25.

I bound the 2nd derivative, and follow the original authors in using a
uniform kernel and a bandwidth of 0.6.
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Academic Probation - All Data

Figure 4: Dashed Line is the threshold.

Dowd Donut RD Metrics Lunch – 2019 33



Academic Probation - Drop Donut

Figure 5: Dotted lines are donut boundaries.
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Academic Probation - Inside Bandwidth

Figure 6: Only data within Bandwidths
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Academic Probation - Fit Local Polynomials

Figure 7: Lines are estimates of µt(x), with pointwise 95% CIs around them.
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Academic Probation - Identified Region

Figure 8: Black region is the estimate of the identified region. Y-axis changed.
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Academic Probation - CR for Set

Figure 9: CR inside donut is built to contain entire identified set.
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Academic Probation - CR for elements of set

Figure 10: CR is built to cover elements in the identified set.
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Tau Set

Figure 11: Dashed line gives the value of ∆̂.
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Results

Estimate CR Lower CR Upper

Original 0.233 0.181 0.285
Robust 0.213 0.122 0.304

τ̂ − DONUT [0.275, 0.407] 0.065 0.686

φ̂− DONUT [0.275, 0.407] 0.034 0.727

Table 1: Comparison of Estimates from rdrobust and Donut routines

Note the improvement of the CR width between τ̂ intervals and φ̂ intervals.
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Conclusion

We have discussed:

Derivative based conditions under which a set is identified.

Asymptotically Conservative inference for both parameters and the
identified set.

Application to Academic probation.

Future Work:

Can we give more guidance on donut sizes?

Efficiency in estimating φ?

Guidance on polynomial order.
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Thank you
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