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1 P R O LO G U E ∗,†

The less you understand the world, the
easier it is to make a decision.

5
Figure 1.1: The problem is not awareness of "fat tails", but the lack of understanding of their conse-
quences. Saying "it is fat tailed" implies much more than changing the name of the distribution, but
a general overhaul of the statistical tools and types of decisions made. Credit Stefan Gasic.

The main idea behind the Incerto project is that while there is a lot of un-
certainty and opacity about the world, and an incompleteness of informa-
tion and understanding, there is little, if any, uncertainty about what actions
should be taken based on such an incompleteness, in any given situation.

T
his book consists in 1) published papers and 2) (uncensored) commentary,

about classes of statistical distributions that deliver extreme events, and
how we should deal with them for both statistical inference and decision

making. Most "standard" statistics come from theorems designed for thin tails:

Discussion chapter.

1



2 prologue∗,†

Figure 1.2: Complication
without insight: the clarity
of mind of many profes-
sionals using statistics
and data science without
an understanding of the
core concepts, what it is
fundamentally about.
Credit: Wikimedia.

they need to be adapted preasymptotically to fat tails, which is not trivial –or
abandoned altogether.

So many times this author has been told of course we know this or the beastly
portmanteau nothing new about fat tails by a professor or practitioner who just pro-
duced an analysis using "variance", "GARCH", "kurtosis" , "Sharpe ratio", or "value
at risk", or produced some "statistical significance" that is clearly not significant.

More generally, this book draws on the author’s multi-volume series, Incerto [226]
and associated technical research program, which is about how to live in the real
world, a world with a structure of uncertainty that is too complicated for us.

The Incerto tries to connect five different fields related to tail probabilities and
extremes: mathematics, philosophy, social science, contract theory, decision theory,
and the real world. If you wonder why contract theory, the answer is: option
theory is based on the notion of contingent and probabilistic contracts designed
to modify and share classes of exposures in the tails of the distribution; in a way
option theory is mathematical contract theory. Decision theory is not about under-
standing the world, but getting out of trouble and ensuring survival. This point is
the subject of the next volume of the Technical Incerto, with the temporary working
title Convexity, Risk, and Fragility.

a word on terminology
"Thick tails" is often used in academic contexts. For us, here, it maps to much
"higher kurtosis than the Gaussian" –to conform to the finance practitioner’s lingo.
As to "Fat Tails", we prefer to reserve it both extreme thick tails or membership in
the power law class (which we show in Chapter 8 cannot be disentangled). For
many it is meant to be a narrower definition, limited to "power laws" or "regular
variations" – but we prefer to call "power laws" "power laws" (when we are quite



prologue∗,† 3

13

Figure 1.3: The classic response: a "substitute" is something that does not harm rent-seeking. Credit:
Stefan Gasic.

certain about the process), so what we call "fat tails" may sometimes be more
technically "extremely thick tails" for many.

To avoid ambiguity, we stay away from designations such as "heavy tails" or "long
tails".

The next two chapters will clarify.

acknowledgments
In addition to coauthors mentioned earlier, the author is indebted to Zhuo Xi, Jean-
Philippe Bouchaud, Robert Frey, Spyros Makridakis, Mark Spitznagel, Brandon
Yarkin, Raphael Douady, Peter Carr, Marco Avellaneda, Didier Sornette, Paul Em-
brechts, Bruno Dupire, Jamil Baz, Damir Delic, Yaneer Bar-Yam, Diego Zviovich,
Joseph Norman, Ole Peters, Chitpuneet Mann, Harry Crane –and of course end-
less, really endless discussions with the great Benoit Mandelbrot.

Social media volunteer editors such as Maxime Biette, Caio Vinchi, Jason Thorell,
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the author thanks Lauren de Haan, Bert Zwart, and others for comments on ex-
treme value related problems. More specific acknowledgements will be made
within individual chapters. As usual, the author would like to express his grat-
itude to the staff at Naya restaurant in NY.



4 prologue∗,†

T
his author presented the present book and the main points

at the monthly Bloomberg Quant Conference in New York in
September 2018. After the lecture, a prominent mathematical
finance professor came to see me. "This is very typical Taleb",
he said. "You show what’s wrong but don’t offer too many

substitutes".

Clearly, in business or in anything subjected to the rigors of the real world,
he would have been terminated. People who never had any skin in the game
[236] cannot figure out the necessity of circumstantial suspension of belief
and the informational value of unreliability for decision making: don’t give a
pilot a faulty metric, learn to provide only reliable information; letting the pilot know
that the plane is defective saves lives. Nor can they get the outperformance of
via negativa –Popperian science works by removal. The late David Freedman
had tried unsuccessfully to tame vapid and misleading statistical modeling
vastly outperformed by "nothing".

But it is the case that the various chapters and papers here do offer solu-
tions and alternatives, except that these aren’t the most comfortable for some
as they require some mathematical work for re-derivations for fat tailed con-
ditions.



2 G LO S S A RY, D E F I N I T I O N S , A N D
N OTAT I O N S

T
his is a catalogue raisonné of the main topics and notations.

Notations are redefined in the text every time; this is an aid
for the random peruser. Some chapters extracted from papers
will have specific notations, as specified. Note that while our
terminology may be at variance with that of some research

groups, it aims at remaining consistent.

2.1 general notations and frequently used symbols
P is the probability symbol; typically in P(X > x), X is the random variable, x

is the realization. More formal measure-theoretic definitions of events and other
French matters are in Chapter 11 and other places where such formalism makes
sense.

E is the expectation operator.

V is the Variance operator.

M is the mean absolute deviation which is, when centered, centered around the
mean (rather than the median).

ϕ(.) and f (.) are usually reserved for the PDF (probability density function) of
a pre-specified distribution. In some chapters, a distinction is made for fx(x) and
fy(y), particularly when X and Y follow two separate distributions.

n is usually reserved for the number of summands.

p is usually reserved for the moment order.

r.v. is short for a random variable.

F(.) is reserved for the CDF (cumulative distribution function P(X < x), F(.), or
S is the survival function P(X > x).

5



6 glossary , definitions , and notations

∼ indicates that a random variable is distributed according to a certain specified
law.

χ(t) = E(eitXs ) is the characteristic function of a distribution. In some discussions,
the argument t ∈ R is represented as ω. Sometimes Ψ is used.

D→ denotes convergence in distribution, as follows. Let X1, X2, . . . , Xn be a se-

quence of random variables; Xn
D→ X means the CDF Fn for Xn has the following

limit:
lim

n→∞
Fn(x) = F(x)

for every real x for which F is continuous.

P→ denotes convergence in probability, that is for ε > 0, we have, using the same
sequence as before

lim
n→∞

Pr (|Xn − X| > ε) = 0.

a.s.→ denotes almost sure convergence, the stronger form:

P
(

lim
n→∞

Xn = X
)

= 1.

Sn is typically a sum for n summands.

α and αs: we shall typically try to use αs ∈ (0, 2] to denote the tail exponent
of the limiting and Platonic stable distribution and αp ∈ (0, ∞) the corresponding
Paretian (preasymptotic) equivalent but only in situations where there could be
some ambiguity. Plain α should be understood in context.

N (µ1, σ1) the Gaussian distribution with mean µ1 and variance σ2
1 .

L(., .) or LN (., .) is the Lognormal distribution, with PDF f (L)(.) typically parametrized
here as L(X0 − 1

σ2 , σ) to get a mean X0, and variance
(

eσ2 − 1
)

X2
0.

S(αS , β, µ, σ) is the stable distribution with tail index αs in (0, 2], symmetry index
β in −1, 1), centrality parameter µ in R and scale σ > 0.

P is the power law class (see below).

S is the subexponential class (see below).

δ(.) is the Dirac delta function.

θ(.) is the Heaviside theta function.

erf(.), the error function, is the integral of the Gaussian distribution erf(z) =
2√
π

∫ z
0 dte−t2

. erfc(.), is the complementary error function 1− er f (.).

‖.‖p is a norm defined for (here a real vector) X = (X1, . . . , Xn)T ,

‖X‖p!
(

1
n ∑n

i=1|xi|p
)1/p

. Note the absolute value in this text.
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1F1(.; .; .) is the Kummer confluent hypergeometric function: 1F1(a; b; z) = ∑∞
k=0

ak
zk
k !

bk
.

2 F̃2 is the generalized hypergeometric function regularized: 2 F̃2(., .; ., .; .) = 2 F2(a;b;z)
(Γ(b1)...Γ(bq))

and pFq(a; b; z) has series expansion ∑∞
k=0

(a1)k ...(ap)k
(b1)k ...(bp)k

zk/k!, were (aq)(.) is the Pockham-
mer symbol.

(aq)(.) is the Q-Pochhammer symbol (aq)n = ∏n−1
i=1

(
1− aqi

)
.

2.2 catalogue raisonné of general & idiosyncratic concepts
Next is the duplication of the definition of some central topics.

2.2.1 Power Law Class P

The power law class is conventionally defined by the property of the survival func-
tion, as follows. Let X be a random variable belonging to the class of distributions
with a "power law" right tail, that is:

P(X > x) = L(x) x−α (2.1)

where L : [xmin, +∞)→ (0, +∞) is a slowly varying function, defined as

lim
x→+∞

L(kx)
L(x)

= 1

for any k > 0 [22].

The survival function of X is called to belong to the "regular variation" class RVα.
More specifically, a function f : R+ → R+ is index varying at infinity with index ρ
( f ∈ RVρ) when

lim
t→∞

f (tx)
f (t)

= xρ .

More practically, there is a point where L(x) approaches its limit, l, becoming
a constant –which we call the "Karamata constant" and the point is dubbed the
"Karamata point". Beyond such value the tails for power laws are calibrated using
such standard techniques as the Hill estimator. The distribution in that zone is
dubbed the strong Pareto law by B. Mandelbrot[162],[75].

The same applies, when specified, to the left tail.
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2.2.2 Law of Large Numbers (Weak)

The standard presentation is as follows. Let X1, X2, . . . Xn be an infinite sequence
of independent and identically distributed (Lebesgue integrable) random variables
with expected value E(Xn) = µ (though one can somewhat relax the i.i.d. assump-
tions). The sample average Xn = 1

n (X1 + · · · + Xn) converges to the expected value,
Xn → µ, for n→ ∞.

Finiteness of variance is not necessary (though of course the finite higher mo-
ments accelerate the convergence).

The strong law is discussed where needed.

2.2.3 The Central Limit Theorem (CLT)

The Standard (Lindeberg-Lévy) version of CLT is as follows. Suppose a sequence of
i.i.d. random variables with E(Xi) = µ and V(Xi) = σ2 < +∞, and Xn the sample
average for n. Then as n approaches infinity, the sum of the random variables√

n(Xnµ) converges in distribution to the Gaussian [20] [21]:

√
n
(
Xn − µ

) d−→ N
(

0, σ2
)

.

Convergence in distribution here means that the CDF (cumulative distribution
function) of

√
n converges pointwise to the CDF of N (0, σ) for every real z,

lim
n→∞

P
(√

n(Xn − µ) ≤ z
)

= lim
n→∞

P

[√
n(Xn − µ)

σ
≤ z

σ

]
= Φ

( z
σ

)
, σ > 0

where Φ(z) is the standard normal CDF evaluated at z.

There are many other versions of the CLT, presented as needed.

2.2.4 Law of Medium Numbers or Preasymptotics

This is pretty much the central topic of this book. We are interested in the behavior
of the random variable for n large but not too large or asymptotic. While it is not
a big deal for the Gaussian owing to extremely rapid convergence (by both LLN
and CLT), this is not the case for other random variables.

See Kappa next.

2.2.5 Kappa Metric

Metric here should not be interpreted in the mathematical sense of a distance
function, but rather in its engineering sense, as a quantitative measurement.
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Kappa, in [0, 1], developed by this author here, in Chapter 8, and in a paper [235],
gauges the preasymptotic behavior or a random variable; it is 0 for the Gaussian
considered as benchmark, and 1 for a Cauchy or a r.v. that has no mean.

Let X1, . . . , Xn be i.i.d. random variables with finite mean, that is E(X) < +∞.
Let Sn = X1 + X2 + . . . + Xn be a partial sum. Let M(n) = E(|Sn −E(Sn)|) be the
expected mean absolute deviation from the mean for n summands (recall we do
not use the median but center around the mean). Define the "rate" of convergence
for n additional summands starting with n0:

κn0,n :
M(n)
M(n0)

=
(

n
n0

) 1
2−κn0,n

, n0, n = 1, 2, ..., (2.2)

n > n0 ≥ 1, hence

κ(n0, n) = 2− log(n)− log(n0)

log
(

M(n)
M(n0)

) . (2.3)

Further, for the baseline values n = n0 + 1, we use the shorthand κn0 .

2.2.6 Elliptical Distribution

X, a p× 1 random vector is said to have an elliptical (or elliptical contoured) dis-
tribution with location parameters µ, a non-negative matrix Σ and some scalar
function Ψ if its characteristic function is of the form exp(it′µ)Ψ(tΣt′).

In practical words, one must have a single covariance matrix for the joint distri-
bution to be elliptical. Regime switching, stochastic covariances (correlations), all
these prevent the distributions from being elliptical. So we will show in Chap-
ter 6 that a linear combination of variables following thin-tailed distributions can
produce explosive thick-tailed properties when ellipticality is violated. This (in
addition to fat tailedness) invalidates much of modern finance.

2.2.7 Statistical independence

Independence between two variables X and Y with marginal PDFs f (x) and f (y)
and joint PDF f (x, y) is defined by the identity:

f (x, y)
f (x) f (y)

= 1,

regardless of the correlation coefficient. In the class of elliptical distributions, the
bivariate Gaussian with coefficient 0 is both independent and uncorrelated. This
does not apply to the Student T or the Cauchy in their multivariate forms.
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2.2.8 Stable (Lévy stable) Distribution

This is a generalization of the CLT.

Let X1, . . . , Xn be independent and identically distributed random variables. Con-
sider their sum Sn. We have

Sn− an
bn

D→ Xs , (2.4)

where Xs follows a stable distribution S , an and bn are norming constants, and, to

repeat, D→ denotes convergence in distribution (the distribution of X as n → ∞).
The properties of S will be more properly defined and explored in the next chapter.
Take it for now that a random variable Xs follows a stable (or α-stable) distribution,
symbolically Xs ∼ S(αs , β, µ, σ), if its characteristic functionχ(t) = E(eitXs ) is of the
form:

χ(t) = e(iµt−|tσ|αs (1−iβ tan( πα−s
2 )sgn(t))) when αs ,= 1. (2.5)

The constraints are −1 ≤ β ≤ 1 and 0 < αs ≤ 2.

2.2.9 Multivariate Stable Distribution

A random vector X = (X1, . . . , Xk)T is said to have the multivariate stable distri-
bution if every linear combination of its components Y = a1X1 + · · · + akXk has a
stable distribution. That is, for any constant vector a ∈ Rk, the random variable
Y = aTX should have a univariate stable distribution.

2.2.10 Karamata Point

See Power Law Class

2.2.11 Subexponentiality

The natural boundary between Mediocristan and Extremistan occurs at the subex-
ponential class which has the following property:

Let X = X1, . . . , Xn be a sequence of independent and identically distributed
random variables with support in (R+), with cumulative distribution function F.
The subexponential class of distributions is defined by (see [248], [196]):

lim
x→+∞

1− F∗2(x)
1− F(x)

= 2 (2.6)

where F∗2 = F′ ∗ F is the cumulative distribution of X1 + X2, the sum of two inde-
pendent copies of X. This implies that the probability that the sum X1 + X2 exceeds
a value x is twice the probability that either one separately exceeds x. Thus, every
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time the sum exceeds x, for large enough values of x, the value of the sum is due
to either one or the other exceeding x—the maximum over the two variables—and
the other of them contributes negligibly.

More generally, it can be shown that the sum of n variables is dominated by
the maximum of the values over those variables in the same way. Formally, the
following two properties are equivalent to the subexponential condition [43],[84].
For a given n ≥ 2, let Sn = Σn

i=1xi and Mn = max1≤i≤n xi

a) limx→∞
P(Sn>x)
P(X>x) = n,

b) limx→∞
P(Sn>x)

P(Mn>x) = 1.

Thus the sum Sn has the same magnitude as the largest sample Mn, which is
another way of saying that tails play the most important role.

Intuitively, tail events in subexponential distributions should decline more slowly
than an exponential distribution for which large tail events should be irrelevant.
Indeed, one can show that subexponential distributions have no exponential mo-
ments: ∫ ∞

0
eεx dF(x) = +∞ (2.7)

for all values of ε greater than zero. However, the converse isn’t true, since dis-
tributions can have no exponential moments, yet not satisfy the subexponential
condition.

2.2.12 Student T as Proxy

We use the student T with α degrees of freedom as a convenient two-tailed power
law distribution. For α = 1 it becomes a Cauchy, and of course Gaussian for α→ ∞.

The student T is the main bell-shaped power law, that is, the PDF is continu-
ous and smooth, asymptotically approaching zero for large negative/positive x,
and with a single, unimodal maximum (further, the PDF is quasiconcave but not
concave).

2.2.13 Citation Ring

A highly circular mechanism by which academic prominence is reached thanks
to discussions where papers are considered prominent because other people are
citing them, with no external filtering, thus causing research to concentrate and
get stuck around "corners", focal areas of no real significance. This is linked to
the operation of the academic system in the absence of adult supervision or the
filtering of skin in the game.
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E
xample of fields that are, practically, frauds in the sense that

their results are not portable to reality and only serve to feed
additional papers that, in turn, will produce more papers: Mod-
ern Financial Theory, econometrics (particularly for macro vari-
ables), GARCH processes, psychometrics, stochastic control

models in finance, behavioral economics and finance, decision making un-
der uncertainty, macroeconomics, and a bit more.

2.2.14 Rent seeking in academia

There is a conflict of interest between a given researcher and the subject under
consideration. The objective function of an academic department (and person)
becomes collecting citations, honors, etc. at the expense of the purity of the subject:
for instance many people get stuck in research corners because it is more beneficial
to their careers and to their department.

2.2.15 Pseudo-empiricism or Pinker Problem

Discussion of "evidence" that is not statistically significant, or use of metrics that
are uninformative because they do not apply to the random variables under con-
sideration –like for instance making inferences from the means and correlations
for fat tailed variables. This is the result of:

i) the focus in statistical education on Gaussian or thin-tailed variables,

ii) the absence of probabilistic knowledge combined with memorization of statis-
tical terms,

iii) complete cluelessness about dimensionality,

all of which are prevalent among social scientists.

Example of pseudo-empiricism: comparing death from terrorist actions or epi-
demics such as ebola (fat tailed) to falls from ladders (thin tailed).

This confirmatory "positivism" is a disease of modern science; it breaks down
under both dimensionality and fat-tailedness.

Actually one does not need to distinguish between fat tailed and Gaussian vari-
ables to get the lack of rigor in these activities: simple criteria of statistical signif-
icance are not met –nor do these operators grasp the notion of such a concept as
significance.

2.2.16 Preasymptotics

Mathematical statistics is largely concerned with what happens with n = 1 (where
n is the number of summands) and n = ∞. What happens in between is what we
call the real world –and the major focus of this book. Some distributions (say those
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with finite variance) are Gaussian in behavior asymptotically, for n = ∞, but not
for extremely large but not infinite n.

2.2.17 Stochasticizing

Making a deterministic parameter stochastic, (i) in a simple way, or (ii) via a more
complex continuous or discrete distribution.

(i) Let s be the deterministic parameter; we stochasticize (entry-level style) by
creating a two-state Bernouilli with p probability of taking a value s1, 1 − p of
taking value s2. A transformation is mean-preserving when ps1 + (1 − p)s2 = s,
that is, preserves the mean of the s parameter. More generally, it can be in a
similar manner variance preserving, etc.

(ii) We can use a full probability distribution, typically a Gaussian if the variable
is two-tailed, and the Lognormal or the exponential if the variable is one-tailed
(rarely a power law). When s is standard deviation, one can stochasticize s2, where
it becomes "stochastic volatility", with a variance or standard deviation typically
dubbed "Vvol".

2.2.18 Value at Risk, Conditional VaR

The mathematical expression of the Value at Risk, VaR, for a random variable X
with distribution function F and threshold λ ∈ [0, 1]

VaRλ(X) = − inf {x ∈ R : F(x) > λ},

and the corresponding CVar or Expected Shortfall ES at threshold λ:

ESλ(X) = E
(
−X |X≤−VaRλ(X)

)

or, in the positive domain, by considering the tail for X instead of that of −X.

More generally the expected shortfall for threshold K is E(X|X>K).

2.2.19 Skin in the Game

A filtering mechanism that forces cooks to eat their own cooking and be exposed
to harm in the event of failure, thus throws dangerous people out of the system.
Fields that have skin in the game: plumbing, dentistry, surgery, engineering, ac-
tivities where operators are evaluated by tangible results or subjected to ruin and
bankruptcy. Fields where people have no skin in the game: circular academic fields
where people rely on peer assessment rather than survival pressures from reality.
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2.2.20 MS Plot

The MS plot, "maximum to sum", allows us to see the behavior of the LLN for a
given moment consider the contribution of the maximum observation to the total,
and see how it behaves as n grows larger. For a r.v. X, an approach to detect
if E(Xp) exists consists in examining convergence according to the law of large
numbers (or, rather, absence of), by looking the behavior of higher moments in a
given sample. One convenient approach is the Maximum-to-Sum plot, or MS plot
as shown in Figure 10.3.

The MS Plot relies on a consequence of the law of large numbers [184] when it
comes to the maximum of a variable. For a sequence X1, X2, ..., Xn of nonnegative
i.i.d. random variables, if for p = 1, 2, 3, . . . , E[Xp] < ∞, then

Rp
n = Mp

n/Sp
n →a.s. 0

as n → ∞, where Sp
n =

n

∑
i=1

Xp
i is the partial sum, and Mp

n = max(Xp
1 , ..., Xp

n) the

partial maximum. (Note that we can have X the absolute value of the random
variable in case the r.v. can be negative to allow the approach to apply to odd
moments.)

2.2.21 Maximum Domain of Attraction, MDA

The extreme value distribution concerns that of the maximum r.v., when x → x∗,
where x∗ = sup{x : F(x) < 1} (the right "endpoint" of the distribution) is in the
maximum domain of attraction, MDA [116]. In other words,

max(X1, X2, . . . Xn) P→ x∗ .

2.2.22 Substitution of Integral in the psychology literature

The verbalistic literature makes the following conflation. Let K ∈ R+ be a thresh-
old, f (.) a density function and pK ∈ [0, 1] the probability of exceeding it, and g(x)
an impact function. Let I1 be the expected payoff above K:

I1 =
∫ ∞

K
g(x) f (x) dx,

and Let I2 be the impact at K multiplied by the probability of exceeding K:

I2 = g(K)
∫ ∞

K
f (x) dx = g(K)pK .

The substitution comes from conflating I1 and I2, which becomes an identity if
and only if g(.) is constant above K (say g(x) = θK(x), the Heaviside theta function).
For g(.) a variable function with positive first derivative, I1 can be close to I2 only
under thin-tailed distributions, not under the fat tailed ones.



2.2 catalogue raisonné of general & idiosyncratic concepts 15

2.2.23 Inseparability of Probability (another common error)

Let F : A → [0, 1] be a probability distribution (with derivative f ) and g : R → R

a measurable function, the "payoff"". Clearly, for A′ a subset of A:

∫

A′
g(x)dF(x) =

∫

A′
f (x)g(x)dx

,=
∫

A′
f (x)dx g

(∫

A′
dx
)

In discrete terms, with π(.) a probability mass function:

(2.8)∑
x ∈A′

π(x)g(x) ,= ∑
x∈A′

π(x) g

(
1
n ∑

x∈A′
x

)

= probability of event × payoff of average event

The general idea is that probability is a kernel into an equation not an end product
by itself outside of explicit bets.

2.2.24 Wittgenstein’s Ruler

"Wittgenstein’s ruler" is the following riddle: are you using the ruler to measure
the table or using the table to measure the ruler? Well, it depends on the results.
Assume there are only two alternatives: a Gaussian distribution and a Power Law
one. We show that a large deviation, say a "six sigma" indicates the distribution is
power law.

2.2.25 Black Swans

Black Swans result from the incompleteness of knowledge with effects that can be
very consequential in fat tailed domains.

Basically, they are things that fall outside what you can expect and model, and
carry large consequences. The idea is to not predict them, but be convex (or at
least not concave) to their impact: fragility to a certain class of events is detectable,
even measurable (by gauging second order effects and asymmetry of responses),
while the statistical attributes of these events may remain elusive.

It is hard to explain to modelers that we need to learn to work with things we
have never seen (or imagined) before, but it is what it is1.

Note the epistemic dimension: Black swans are observer-dependent: a Black
Swan for the turkey is a White Swan for the butcher. September 11 was a Black

1 As Paul Portesi likes to repeat (attributing or perhaps misattributing to this author): "You haven’t seen the
other side of the distribution".
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Swan for the victims, but not to the terrorists. This observer dependence is a central
property. An "objective" probabilistic model of Black Swan isn’t just impossible,
but defeats the purpose, owing to the incomplete character of information and its
dissemination.

Grey Swans: Large deviations that are are both consequential and have a very low
frequency but remain consistent with statistical properties are called "Grey Swans".
But of course the "greyness" depends on the observer: a Grey Swan for someone using
a power law distribution will be a Black Swan to naive statisticians irremediably
stuck within, and wading into, thin-tailed frameworks and representations.

Let us repeat: no, it is not about fat tails; it is just that fat tails make them worse.
The connection between fat-tails and Black Swans lies in the exaggerated impact
from large deviations in fat tailed domains.

2.2.26 The Empirical Distribution is Not Empirical

The empirical distribution, or survival function F̂(t) is as follows: Let X1, . . . Xn
be independent, identically distributed real random variables with the common
cumulative distribution function F(t).

F̂n(t) =
1
n

n

∑
i=1

1xi≥t ,

where 1A is the indicator function.

By the Glivenko-Cantelli theorem, we have uniform convergence of the max norm
to a specific distribution –the Kolmogorov-Smirnoff –regardless of the initial dis-
tribution. We have:

sup
t∈R

∣∣∣F̂n(t)− F(t)
∣∣∣ as.−→ 0; (2.9)

this distribution-independent convergence concerns probabilities of course, not
moments –a result this author has worked on and generalized for the "hidden
moment" above the maximum.

We note the main result (further generalized by Donsker into a Brownian Bridge
since we know the extremes are 0 and 1)

√
n
(

F̂n(t)− F(t)
)

D→ N (0, F(t)(1− F(t))) (2.10)

"The empirical distribution is not empirical" means that since the empirical dis-
tributions are necessarily censured on the interval [xmin , xmax], for fat tails this can
carry huge consequences because we cannot analyze fat tails in probability space
but in payoff space.

Further see the entry on the hidden tail (next).
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2.2.27 The Hidden Tail

Consider Kn the maximum of a sample of n independent identically distributed
variables; Kn = max (X1, X2, . . . , Xn). Let φ(.) be the density of the underlying
distribution. We can decompose the moments in two parts, with the "hidden"
moment above K0.

E(Xp) =
∫ Kn

L
xpφ(x) dx

︸ ︷︷ ︸
µL,p

+
∫ ∞

Kn
xpφ(x) dx

︸ ︷︷ ︸
µK,p

where µL is the observed part of the distribution and µK the hidden one (above K).
By Glivenko-Cantelli the distribution of µK,0 should be independent of the initial
distribution of X, but higher moments do not, hence there is a bit of a problem
with Kolmogorov-Smirnoff-style tests.

2.2.28 Shadow Moment

This is called in this book "plug-in" estimation. It is not done by measuring the
directly observable sample mean which is biased under fat-tailed distributions, but
by using maximum likelihood parameters, say the tail exponent α, and deriving
the shadow mean or higher moments.

2.2.29 Tail Dependence

Let X1 and X2 be two random variables not necessarily in the same distribution
class. Let F←(q) be the inverse CDF for probability q, that is F←(q) = inf{x ∈ R :
F(x) ≥ q}, λu the upper tail dependence is defined as

λu = lim
q→1

P (X2 > F←2 (q)|X1 > F←1 (q)) (2.11)

Likewise for the lower tail dependence index.

2.2.30 Metaprobability

Comparing two probability distributions via some tricks which includes stochas-
ticizing parameters. Or stochasticize a parameter to get the distribution of a call
price, a risk metric such as VaR (see entry), CVaR, etc., and check the robustness
or convexity of the resulting distribution.
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2.2.31 Dynamic Hedging

The payoff of a European call option C on an underlying S with expiration time
indexed at T should be replicated with the following stream of dynamic hedges,
the limit of which can be seen here, between present time t and T:

lim
∆t→0

(
n=T/∆t

∑
i=1

∂C
∂S

|S=St+(i−1)∆t,t=t+(i−1)∆t,
(
St+i∆t − St+(i−1)∆t

)
)

(2.12)

We break up the period into n increments ∆t. Here the hedge ratio ∂C
∂S is computed

as of time t +(i-1) ∆t, but we get the nonanticipating difference between the price
at the time the hedge was initiatied and the resulting price at t+ i ∆t.

This is supposed to make the payoff deterministic at the limit of ∆t → 0. In the
Gaussian world, this would be an Ito-McKean integral.

We show where this replication is never possible in a fat-tailed environment,
owing to the special presamptotic properties.
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Psalms

T
his chapter presents a nontechnical yet comprehensive presen-

tation of of the entire statistical consequences of thick tails project.
It compresses the main ideas in one place. Mostly, it provides
a list of more than a dozen consequences of thick tails on sta-
tistical inference.

3.1 on the difference between thin and thick tails
We begin with the notion of thick tails and how it relates to extremes using the
two imaginary domains of Mediocristan (thin tails) and Extremistan (thick tails).

Research and discussion chapter.

A shorter version of this chapter was presented at Darwin College, Cambridge (UK) on January 27 2017,
as part of the Darwin College Lecture Series on Extremes. The author extends the warmest thanks to
D.J. Needham and Julius Weitzdörfer, as well as their invisible assistants who patiently and accurately
transcribed the lecture into a coherent text. The author is also grateful towards Susan Pfannenschmidt
and Ole Peters who corrected some mistakes. Jamil Baz prevailed upon me to add more commentary
to the chapter to accommodate economists and econometricians who, one never knows, may eventually
identify with some of it.
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• In Mediocristan, when a sample under consideration gets large, no sin-
gle observation can really modify the statistical properties.

• In Extremistan, the tails (the rare events) play a disproportionately large
role in determining the properties.

Another way to view it:

Assume a large deviation X.

• In Mediocristan, the probability of sampling higher than X twice in a
row is greater than sampling higher than 2X once.

• In Extremistan, the probability of sampling higher than 2X once is
greater than the probability of sampling higher than X twice in a row.

Let us randomly select two people in Mediocristan; assume we obtain a (very
unlikely) combined height of 4.1 meters – a tail event. According to the Gaussian
distribution (or, rather its one-tailed siblings), the most likely combination of the
two heights is 2.05 meters and 2.05 meters. Not 10 centimeters and 4 meters.

Simply, the probability of exceeding 3 sigmas is 0.00135. The probability of ex-
ceeding 6 sigmas, twice as much, is 9.86× 10−10. The probability of two 3-sigma
events occurring is 1.8 × 10−6. Therefore the probability of two 3-sigma events
occurring is considerably higher than the probability of one single 6-sigma event.
This is using a class of distribution that is not fat-tailed.

Figure 3.1 shows that as we extend the ratio from the probability of two 3-sigma
events divided by the probability of a 6-sigma event, to the probability of two 4-
sigma events divided by the probability of an 8-sigma event, i.e., the further we
go into the tail, we see that a large deviation can only occur via a combination (a
sum) of a large number of intermediate deviations: the right side of Figure 3.1. In
other words, for something bad to happen, it needs to come from a series of very
unlikely events, not a single one. This is the logic of Mediocristan.

Let us now move to Extremistan and randomly select two people with combined
wealth of $ 36 million. The most likely combination is not $18 million and $ 18
million. It should be approximately $ 35,999,000 and $ 1,000.

This highlights the crisp distinction between the two domains; for the class of
subexponential distributions, ruin is more likely to come from a single extreme
event than from a series of bad episodes. This logic underpins classical risk theory
as outlined by the actuary Filip Lundberg early in the 20th Century [155] and
formalized in the 1930s by Harald Cramer [51], but forgotten by economists in
recent times. For insurability, losses need to be more likely to come from many
events than a single one, thus allowing for diversification,

This indicates that insurance can only work in Mediocristan; you should never
write an uncapped insurance contract if there is a risk of catastrophe. The point is
called the catastrophe principle.

As we saw earlier, with thick tailed distributions, extreme events away from the
centre of the distribution play a very large role. Black Swans are not "more fre-
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quent" (as it is commonly misinterpreted), they are more consequential. The fattest
tail distribution has just one very large extreme deviation, rather than many depar-
tures form the norm. Figure 4.4 shows that if we take a distribution such as the
Gaussian and start fattening its tails, then the number of departures away from one
standard deviation drops. The probability of an event staying within one standard
deviation of the mean is 68 percent. As the tails fatten, to mimic what happens in
financial markets for example, the probability of an event staying within one stan-
dard deviation of the mean rises to between 75 and 95 percent. So note that as we
fatten the tails we get higher peaks, smaller shoulders, and a higher incidence of
a very large deviation. Because probabilities need to add up to 1 (even in France)
increasing mass in one area leads to decreasing it in another.

1 2 3 4
K (in σ)

5000

10000

15000

20000

25000

S (K)2

S (2 K)

Figure 3.1: Ratio of S(.)
survival functions for two
occurrences of size K by
one of 2K for a Gaussian
distribution∗. The larger the
K, that is, the more we are in
the tails, the more likely the
event is to come from two in-
dependent realizations of K
(hence P(K)2, and the less
likely from a single event of
magnitude 2K.
∗This is fudging for peda-
gogical simplicity. The more
rigorous approach would be
to compare 2 occurrences of
size K to 1 occurrence of size
2K plus 1 regular deviation –
but the end graph would not
change at all.

3.2 tail wagging dogs: an intuition

The tail wags the dog effect

Centrally, the thicker the tails of the distribution, the more the tail wags the
dog, that is, the information resides in the tails and less so in the "body" (the
central part) of the distribution. Effectively, for very fat tailed phenomena, all
deviations become informationally sterile except for the large ones.

The center becomes just noise. Although the "evidence based" science might not
quite get it yet, under such conditions, there is no evidence in the body.

This property also explains the slow functioning of the law of large numbers in
certain domains as tail deviations, where the information resides, are –by definition–
rare.

The property explains why, for instance, a million observations of white swans
do not confirm the non-existence of black swans, or why a million confirmatory
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Figure 3.2: Iso-densities for
two independent Gaussian
distributions. The line
shows x + y = 4.1. Visi-
bly the maximal probability
is for x = y = 2.05.
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Figure 3.3: Iso-densities for
two independent thick tailed
distributions (in the power
law class). The line shows
x + y = 36. Visibly the max-
imal probability is for either
x = 36− ε or y = 36− ε,
with ε going to 0 as the sum
x + y becomes larger.

observations count less than a single disconfirmatory one. We will link it to the
Popper-style asymmetries later in the chapter.
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x+y=36
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Figure 3.4: Same represen-
tation as in Figure 3.1, but
concerning power law dis-
tributions with support on
the real line; we can see the
iso-densities looking more
and more like a cross for
lower and lower probabili-
ties. More technically, there
is a loss of ellipticality.

It also explains why one should never compare random variables driven by the
tails (say, pandemics) to ones driven by the body (say, number of people who
drown in their swimming pool). See Cirillo and Taleb (2020) [48] for the policy
implications of systemic risks.

3.3 a (more advanced) categorization and its consequences
Let us now consider the degrees of thick tailedness in a casual way for now (we
will get deeper and deeper later in the book). The ranking is by severity.

Distributions:

Thick Tailed ⊃ Subexponential ⊃ Power Law (Paretian)

First there are entry level thick tails. This is any distribution with fatter tails
than the Gaussian i.e. with more observations within ±1 standard deviation than
erf
(

1√
2

)
≈ 68.2%3 and with kurtosis (a function of the fourth central moment)

higher than 3 4.

Second, there are subexponential distributions satisfying our thought experiment
earlier (the one illustrating the catastrophe principle). Unless they enter the class
of power laws, distributions are not really thick tailed because they do not have

3 The error function erf is the integral of the Gaussian distribution erf(z) = 2√
π

∫ z
0 dte−t2 .

4 The moment of order p for a random variable X is the expectation of a p power of X, E(Xp).
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Figure 3.5: The law of large
numbers, that is how long it
takes for the sample mean to
stabilize, works much more
slowly in Extremistan (here
a Pareto distribution with
1.13 tail exponent , cor-
responding to the "Pareto
80-20". Both have the
same mean absolute devia-
tion. Note that the same ap-
plies to other forms of sam-
pling, such as portfolio the-
ory.

monstrous impacts from rare events. In other words, they can have all the moments
.

Level three, what is called by a variety of names, power law, or member of the
regular varying class, or the "Pareto tails" class; these correspond to real thick tails
but the fattailedness depends on the parametrization of their tail index. Without
getting into a tail index for now, consider that there will be some moment that is
infinite, and moments higher than that one will also be infinite.

Let us now work our way from the bottom to the top of the central tableau in
Figure 3.7. At the bottom left we have the degenerate distribution where there
is only one possible outcome i.e. no randomness and no variation. Then, above
it, there is the Bernoulli distribution which has two possible outcomes, not more.
Then above it there are the two Gaussians. There is the natural Gaussian (with
support on minus and plus infinity), and Gaussians that are reached by adding
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Figure 3.6: What happens to the distribution of an average as the number of observations n increases?
This is the same representation as in Figure 3.5 seen in distribution/probability space. The fat tailed
distribution does not compress as easily as the Gaussian. You need a much, much larger sample. It is
what it is.

Degenerate

Bernoulli

Thin- Tailed from Convergence to Gaussian

COMPACT 

SUPPORT

Subexponential 

Supercubic α ≤ 3

Lévy-Stable α<2 

α≤1

CRAMER

CONDITION

ℒ1

LAW OF LARGE NUMBERS (WEAK) CONVERGENCE ISSUES

Gaussian from Lattice Approximation

Fuhgetaboudit

CENTRAL LIMIT — BERRY-ESSEEN

Figure 3.7: The tableau of thick tails, along the various classifications for convergence purposes (i.e.,
convergence to the law of large numbers, etc.) and gravity of inferential problems. Power Laws are in
white, the rest in yellow. See Embrechts et al [82].

random walks (with compact support, sort of, unless we have infinite summands)5.
These are completely different animals since one can deliver infinity and the other

5 Compact support means the real-valued random variable X takes realizations in a bounded interval, say
[a, b],(a, b], [a, b), etc. The Gaussian has an exponential decline e−x2 that accelerates with deviations, so
some people such as Adrien Douady consider it effectively of compact support.
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cannot (except asymptotically). Then above the Gaussians sit the distributions
in the subexponential class that are not members of the power law class. These
members have all moments. The subexponential class includes the lognormal,
which is one of the strangest things in statistics because sometimes it cheats and
fools us. At low variance, it is thin-tailed; at high variance, it behaves like the very
thick tailed. Some people take it as good news that the data is not Paretian but
lognormal; it is not necessarily so. Chapter 8 gets into the weird properties of the
lognormal.

Membership in the subexponential class does not satisfy the so-called Cramer
condition, allowing insurability, as we illustrated in Figure 3.1, recall out thought
experiment in the beginning of the chapter. More technically, the Cramer condition
means that the expectation of the exponential of the random variable exists.6

Once we leave the yellow zone, where the law of large numbers (LLN) largely
works7, and the central limit theorem (CLT) eventually ends up working8, then
we encounter convergence problems. So here we have what are called power laws.
We rank them by their tail index α, on which later; take for now that the lower the
tail index, the fatter the tails. When the tail index is α ≤ 3 we call it supercubic
(α = 3 is cubic). That’s an informal borderline: the distribution has no moment
other than the first and second, meaning both the laws of large number and the
central limit theorem apply in theory.

Then there is a class with α ≤ 2 we call the Levy-Stable to simplify (though it
includes similar power law distributions with α less than 2 not explicitly in that
class; but in theory, as we add add up variables, the sum ends up in that class
rather than in the Gaussian one thanks to something called the generalized central
limit theorem, GCLT ). From here up we are increasingly in trouble because there
is no variance. For 1 ≤ α ≤ 2 there is no variance, but mean absolute deviation
(that is, the average variations taken in absolute value) exists.

Further up, in the top segment, there is no mean. We call it the Fuhgetaboudit. If
you see something in that category, you go home and you don’t talk about it.

The traditional statisticians approach to thick tails has been to claim to assume a
different distribution but keep doing business as usual, using same metrics, tests,
and statements of significance. Once we leave the yellow zone, for which statistical
techniques were designed (even then), things no longer work as planned. The
next section presents a dozen issues, almost all terminal. We will get a bit more
technical and use some jargon.

6 Technical point: Let X be a random variable. The Cramer condition: for all r > 0,

E(erX) < +∞,

where E is the expectation operator.
7 Take for now the following definition for the law of large numbers: it roughly states that if a distribution

has a finite mean, and you add independent random variables drawn from it —that is, your sample gets
larger— you eventually converge to the mean. How quickly? that is the question and the topic of this
book.

8 We will address ad nauseam the central limit theorem but here is the initial intuition. It states that
n-summed independent random variables with finite second moment end up looking like a Gaussian
distribution. Nice story, but how fast? Power laws on paper need an infinity of such summands, meaning
they never really reach the Gaussian. Chapter 7 deals with the limiting distributions and answers the
central question: "how fast?" both for CLT and LLN. How fast is a big deal because in the real world we
have something different from n equals infinity.
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Summary of the problem with overstandardized statistics

S
tatistical estimation is based on two elements: the central

limit theorem (which is assumed to work for "large" sums, thus
making about everything conveniently normal) and that of the
law of large numbers, which reduces the variance of the esti-
mation as one increases the sample size. However, things are

not so simple; there are caveats. In Chapter 8, we show how sampling is
distribution dependent, and varies greatly within the same class. As shown
by Bouchaud and Potters in [27] and Sornette in [214], the tails for some fi-
nite variance but infinite higher moments can, under summation, converge to
the Gaussian within ±

√
n log n, meaning the center of the distribution inside

such band becomes Gaussian, but remote parts, those tails, don’t –and the
remote parts determine so much of the properties.
Life happens in the preasymptotics.
Sadly, in the entry on estimators in the monumental Encyclopedia of Statistical
Science [147], W. Hoeffding writes:

"The exact distribution of a statistic is usually highly compli-
cated and difficult to work with. Hence the need to approximate
the exact distribution by a distribution of a simpler form whose
properties are more transparent. The limit theorems of probability
theory provide an important tool for such approximations. In par-
ticular, the classical central limit theorems state that the sum of a
large number of independent random variables is approximately
normally distributed under general conditions. In fact, the nor-
mal distribution plays a dominating role among the possible limit
distributions. To quote from Gnedenko and Kolmogorov’s text
[[111], Chap. 5]:

"Whereas for the convergence of distribution functions of
sums of independent variables to the normal law only restric-
tions of a very general kind, apart from that of being infinites-
imal (or asymptotically constant), have to be imposed on the
summands, for the convergence to another limit law some
very special properties are required of the summands".

Moreover, many statistics behave asymptotically like sums of in-
dependent random variables. All of this helps to explain the
importance of the normal distribution as an asymptotic distribu-
tion."

Now what if we do not reach the normal distribution, as life happens before
the asymptote? This is what this book is about.a

a The reader is invited to consult a "statistical estimation" entry in any textbook or online encyclope-
dia. Odds are that the notion of "what happens if we do not reach the asymptote" will never be
discussed –as in the 9500 pages of the monumental Encyclopedia of Statistics. Further, ask a regular
user of statistics about how much data one needs for such and such distributions, and don’t be
surprised at the answer. The problem is that people have too many prepackaged statistical tools
in their heads, ones they never had to rederive themselves. The motto here is: "statistics is never
standard".
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Figure 3.8: In the presence of thick tails, we can fit markedly different regression lines to the same
story (the Gauss-Markov theorem —necessary to allow for linear regression methods —doesn’t apply
anymore). Left: a regular (naïve) regression. Right: a regression line that tries to accommodate the
large deviation —a "hedge ratio" so to speak, one that protects the agent from a large deviation, but
mistracks small ones. Missing the largest deviation can be fatal. Note that the sample doesn’t include
the critical observation, but it has been guessed using "shadow mean" methods.

3.4 the main consequences and how they link to the book

Figure 3.9: Inequality measures such as the Gini
coefficient require completely different methods
of estimation under thick tails, as we will see in
Part III. Science is hard.

Here are some consequences of moving out of the yellow zone, the statistical
comfort zone:
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Consequence 1

The law of large numbers, when it works, works too slowly in the real world.

This is more shocking than you think as it cancels most statistical estimators. See
Figure 3.5 in this chapter for an illustration. The subject is treated in Chapter 8
and distributions are classified accordingly.9

Consequence 2

The mean of the distribution will rarely correspond to the sample mean; it will
have a persistent small sample effect (downward or upward) particularly when the
distribution is skewed (or one-tailed).

This is another problem of sample insufficiency. In fact, there is no very thick
tailed- one tailed distribution in which the population mean can be properly esti-
mated directly from the sample mean –rare events determine the mean, and these,
being rare, take a lot of data to show up10. Consider that some power laws (like the
one described as the "80/20" in common parlance have 92 percent of the observa-
tions falling below the true mean). For the sample average to be informative, we
need orders of magnitude more data than we do (people in economics still do not
understand this, though traders have an intuitive grasp of the point). The prob-
lem is discussed briefly further down in 3.8, and more formally in the "shadow
mean" chapters, Chapters 15 and 16. Further, we will introduce the notion of hid-
den properties are in 3.8. Clearly by the same token, variance will be likely to be
underestimatwd.

Consequence 3

Metrics such as standard deviation and variance are not useable.

They fail out of sample –even when they exist; even when all moments exist. Dis-
cussed in ample details in Chapter 4. It is a scientific error that the notion of
standard deviation (often mistaken for average deviation by its users) found its
way as a measure of variation as it is very narrowly accurate in what it purports
to do, in the best of circumstances.

Consequence 4

Beta, Sharpe Ratio and other common hackneyed financial metrics are uninforma-
tive.

9 What we call preasymptotics is the behavior of a sum or sequence when n is large but not infinite. This is
(sort of) the focus of this book.

10 The population mean is the average if we sampled the entire population. The sample mean is, obviously,
what we have in front of us. Sometimes, as with wealth or war casualties, we can have the entire popula-
tion, yet the population mean isn’t that of the sample. In these situations we use the concept of "shadow
mean", which is the expectation as determined by the data generating process or mechanism.
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Figure 3.10: We plot
the Sharpe ratio of
hedge funds on the hor-
izontal axis as com-
puted up to crisis of
2008 and their subse-
quent losses expressed
in standard deviation
during the crisis. Not
only does the Sharpe
ratio completely fail to
predict out of sample
performance, but, if
anything, it can be
seen as a weak predic-
tor of failure. Courtesy
Raphael Douady.

This is a simple consequence of the previous point.11 Either they require much
more data, many more orders of magnitude, or some different model than the
one being used, of which we are not yet aware. Figure 3.4 show the Sharpe ratio,
supposed to predict performance, fails out of sample — it acts in exact reverse of
the intention. Yet it is still used because people can be suckers for numbers.

Practically every single economic variable and financial security is thick tailed.
Of the 40,000 securities examined, not one appeared to be thin-tailed. This is
the main source of failure in finance and economics.

Financial theorists claim something highly unrigorous like "if the first two mo-
ments exist, then mean-variance portfolio theory works, even if the distribution
has thick tails" (they add some conditions of ellipticality we will discuss later). The
main problem is that even if variance exists, we don’t know what it can be with accept-
able precision; it obeys a slow law of large numbers because the second moment of a random
variable is necessarily more thick tailed than the variable itself. Further, stochastic cor-
relations or covariances also represent a form of thick tails (or loss of ellipticality),
which invalidates these metrics.

Practically any paper in economics using covariance matrices is suspicious.

Details are in Chapter 4 for the univariate case and Chapter 6 for multivariate
situations.

Consequence 5

Robust statistics is not robust and the empirical distribution is not empirical.

11 Roughly, Beta is a metric showing how much an asset A is expected to move in response to a move in the
general market (or a given benchmark or index), expressed as the ratio of the covariance between A and
the market over the variance of the market.
The Sharpe ratio expresses the average return (or excess return) of an asset or a strategy divided by its
standard deviation.
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The story of my life. Much like the Soviet official journal was named Pravda
which means "truth" in Russian, almost as a joke, robust statistics are like a type
of prank, except that most professionals aren’t aware of it.

First, robust statistics shoots for measures that can handle tail events —large ob-
servations —without changing much. This the wrong idea of robustness: a metric
that doesn’t change in response of a tail event may be doing so precisely because it
is uninformative. Further, these measures do not help with expected payoffs. Sec-
ond, robust statistics are usually associated with a branch called "nonparametric"
statistics, under the impression that the absence of parameters will make the anal-
ysis less distribution dependent. This book shows all across that it makes things
worse.

The winsorization of the data, by removing outliers, distorts the expectation op-
eration and actually reduces information –though it would be a good idea to check
if the outlier is real or a fake outlier of the type we call in finance a "bad print"
(some clerical error or computer glitch).

The so-called (nonparametric) "empirical distribution" is not empirical at all (as
it misrepresents the expected payoffs in the tails), as we will show in Chapter 10
—this is at least the case for the way it is used in finance and risk management.
Take for now the following explanation: future maxima are poorly tracked by past
data without some intelligent extrapolation.

Consider someone looking at building a flood protection system with levees. The
naively obtained "empirical" distribution will show the worst past flood level, the
past maxima. Any worse level will have zero probability (or so). But by definition,
if it was a past maxima, it had to have exceeded what was a past maxima before it
to become one, and the empirical distribution would have missed it. For thick tails,
the difference between past maxima and future expected maxima is much larger
than thin tails.

Consequence 6

Linear least-square regression doesn’t work (failure of the Gauss-Markov theorem).

See Figure 3.8 and the commentary. The logic behind the least-square minimiza-
tion method is the Gauss-Markov theorem which explicitly requires a thin-tailed
distribution to allow the line going through the data points to be unique. So either
we need a lot, a lot of data to minimize the squared deviations (in other words,
the Gauss-Markov theorem applies, but not for our preasymptotic situations as
the real world has finite, not infinite data), or we can’t because the second moment
does not exist. In the latter case, if we minimize mean absolute deviations (MAD),
as we see in 4.1, not only we may still be facing an insufficiency of data for proper
convergence, but the deviation slope may not be unique.

We discuss the point in some details in 6.7 and show how thick tails produce an
in-sample higher coefficient of determination (R2) than the real one because of the
small sample effect of thick tails. When variance is infinite, R2 should be 0. But
because samples are necessarily finite, it will show, deceivingly, higher numbers
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than 0. Effectively, to conclude, under thick tails, R2 is useless, uninformative, and
often (as with IQ studies) downright fraudulent.

Consequence 7

Maximum likelihood methods can work well for some parameters of the distribution
(good news).

Take a power law. We may estimate a parameter for its shape, the tail exponent (for
which we use the symbol α in this book12), which, adding some other parameter
(the scale) connects us back to its mean considerably better than going about it
directly by sampling the mean.

Example: The mean of a simple Pareto distribution with minimum value L and
tail exponent α and PDF αLαx−α−1 is L α

α−1 , a function of α. So we can get it
from these two parameters, one of which may already be known. This is what
we call "plug-in" estimator. One can estimate α with a low error with visual aid
(or using maximum likelihood methods with low variance — it is inverse-gamma
distributed), then get the mean. It beats the direct observation of the mean.

The logic is worth emphasizing:

The tail exponent α captures, by extrapolation, the low-probability deviation
not seen in the data, but that plays a disproportionately large share in deter-
mining the mean.

This generalized approach to estimators is also applied to Gini and other inequality
estimators.

So we can produce more reliable (or at least less unreliable) estimators for, say, a
function of the tail exponent in some situations. But, of course, not all.

Now a real-world question is warranted: what do we do when we do not have
a reliable estimator? Better stay home. We must not expose ourselves to harm in
the presence of fragility, but can still take risky decisions if we are bounded for
maximum losses (Figure 3.4).

Consequence 8

The gap between disconfirmatory and confirmatory empiricism is wider than in sit-
uations covered by common statistics i.e., the difference between absence of evidence
and evidence of absence becomes larger. (What is called "evidence based" science,
unless rigorously disconfirmatory, is usually interpolative, evidence-free, and unsci-
entific.)

From a controversy the author had with the cognitive linguist and science writer
Steven Pinker: making pronouncements (and generating theories) from recent vari-
ations in data is not acceptable, unless one meets some standards of significance,

12 To clear up the terminology: in this book, the tail exponent, commonly written α is the limit of quotient of
the log of the survival function in excess of K over log K, which would be 1 for Cauchy. Some researchers
use α− 1 from the corresponding density function.
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which requires more data under thick tails (the same logic as that of the slow LLN).
Stating "violence has dropped" because the number of people killed in wars has
declined from the previous year or decade is not a scientific statement: a scientific
claim distinguishes itself from an anecdote as it aims at affecting what happens
out of sample, hence the concept of statistical significance.

Let us repeat that nonstatistically significant statements are not the realm of sci-
ence. However, saying violence has risen upon a single observation may be a
rigorously scientific claim. The practice of reading into descriptive statistics may
be acceptable under thin tails (as sample sizes do not have to be large), but never
so under thick tails, except, to repeat, in the presence of a large deviation.

Consequence 9

Principal component analysis (PCA) and factor analysis are likely to produce spuri-
ous factors and loads.

This point is a bit technical; it adapts the notion of sample insufficiency to large
random vectors seen via the dimension reduction technique called principal com-
ponent analysis (PCA) . The issue a higher dimensional version of our law of large
number complications. The story is best explained in Figure 3.26, which shows the
accentuation of what is called the "Wigner Effect", from insufficiency of data for
the PCA. Also, to be technical, note that the Marchenko-Pastur distribution is not
applicable in the absence of a finite fourth moment (or, has been shown in [23], for
tail exponent in excess of 4).13

Figure 3.11: Under thick
tails (to the left), mistakes
are terminal. Under thin
tails (to the left) they can be
great learning experiences.
Source: You had one Job.

Consequence 10

The method of moments (MoM) fails to work. Higher moments are uninformative
or do not exist.

The same applies to the GMM, the generalized method of moment, crowned with a
Bank of Sweden Prize known as a Nobel. This is a long story, but take for now that
the estimation of a given distribution by moment matching fails if higher moments
are not finite, so every sample delivers a different moment –as we will soon see
with the 4th moment of the SP500.

13 To be even more technical, principal components are independent when correlations are 0. However, for
fat tailed distributions, as we will see more technically in 6.3.1, absence of correlation does not imply
independence.
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Simply, higher moments for thick tailed distributions are explosive. Particularly
in economics.

Consequence 11

There is no such thing as a typical large deviation.

Conditional on having a "large" move, the magnitude of such a move is not con-
vergent, especially under serious thick tails (the Power Law tails class). This is
associated with the catastrophe principle we saw earlier. In the Gaussian world,
the expectation of a movement, conditional that the movement exceeds 4 standard
deviations, is about 4 standard deviations. For a Power Law it will be a multiple
of that. We call this the Lindy property and it is discussed in 5 and particularly in
Chapter 11.

Consequence 12

The Gini coefficient ceases to be additive..

Methods of measuring sample data for Gini are interpolative –they in effect have
the same problem we saw earlier with the sample mean underestimating or overes-
timating the true mean. Here, an additional complexity arises as the Gini becomes
super-additive under thick tails. As the sampling space grows, the conventional
Gini measurements give an illusion of large concentrations of wealth. (In other
words, inequality in a continent, say Europe, can be higher than the weighted
average inequality of its members). The same applies to other measures of concen-
tration such as the top 1% has x percent of the total wealth, etc.

It is not just Gini, but other measures of concentration such as the top 1% owns
x% of the total wealth, etc. The derivations are in Chapters 13 and 14.

Consequence 13

Large deviation theory fails to apply to thick tails. I mean, it really doesn’t apply.

I really mean it doesn’t apply14. The methods behind the large deviation principle
(Varadan [260] , Dembo and Zeituni [59], etc.) will be very useful in the thin-tailed
world. And there only. See discussion and derivations in Appendix C as well as
the limit theorem chapters, particularly Chapter 7.

Consequence 14

Risks of financial options are never mitigated by dynamic hedging.

This might be technical and uninteresting for nonfinance people but the entire basis
of financial hedging behind Black-Scholes rests on the possibility and necessity of

14 Do not confuse large deviation theory LDT, with extreme value theory, EVT, which covers all major classes
of distributions
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dynamic hedging, both of which will be shown to be erroneous in Chapters 20
and21 ,and 22. The required exponential decline of deviates away from the center
requires the probability distribution to be outside the sub-exponential class. Again,
we are talking about something related the Cramer condition –it all boils down to
that exponential moment.

Recall the author has been an option trader and to option traders dynamic hedg-
ing is not the way prices are derived —and it has been so, as shown by Haug and
the author, for centuries.

Consequence 15

Forecasting in frequency space diverges from expected payoff.

And also:

Consequence 16

Much of the claims in the psychology and decision making literature concerning
the "overestimation of tail probability" and irrational behavior with respect of rare
events comes form misunderstanding by researchers of tail risk, conflation of prob-
ability and expected payoffs, misuse of probability distributions, and ignorance of
extreme value theory (EVT).

These point is explored in the next section here and in an entire chapter (Chapter
??): the foolish notion of focus on frequency rather than expectation can carry a
mild effect under thin tails; not under thick tails. Figures 3.12 and 3.13 show the
effect.

Consequence 17

Ruin problems are more acute and ergodicity is required under thick tails.

This is a bit technical but explained in the end of this chapter.

Let us discuss some of the points.

3.4.1 Forecasting

In Fooled by Randomness (2001/2005), the character is asked which was more proba-
ble that a given market would go higher or lower by the end of the month. Higher,
he said, much more probable. But then it was revealed that he was making trades
that benefit if that particular market goes down. This of course, appears to be para-
doxical for the nonprobabilist but very ordinary for traders, particularly under
nonstandard distributions (yes, the market is more likely to go up, but should it
go down it will fall much much more). This illustrates the common confusion
between a forecast and an exposure (a forecast is a binary outcome, an exposure
has more nuanced results and depends on full distribution). This example shows
one of the extremely elementary mistakes of talking about probability presented as
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Figure 3.12: Probabilistic calibration as seen in the psychology literature. The x axis shows the
estimated probability produced by the forecaster, the y axis the actual realizations, so if a weather
forecaster predicts 30% chance of rain, and rain occurs 30% of the time, they are deemed "calibrated".
We hold that calibration in frequency (probability) space is an academic exercise (in the bad sense of
the word) that mistracks real life outcomes outside narrow binary bets. It is particularly fallacious
under thick tails. The point is discussed at length in Chapter 11.
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Figure 3.13: How miscalibration in probability corresponds to miscalibration in payoff under power
laws. The distribution under consideration is Pareto with tail index α = 1.15.Again, the point is
discussed at length in Chapter 11.
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single numbers not distributions of outcomes, but when we go deeper into the
subject, many less obvious, or less known paradox-style problems occur. Simply,
it is of the opinion of the author, that it is not rigorous to talk about "probability"
as a final product, or even as a "foundation"of decisions.

In the real world one is not paid in probability, but in dollars (or in survival, etc.).
The fatter the tails, the more one needs to worry about payoff space – the saying
goes: "payoff swamps probability" (see box). One can be wrong very frequently
if the cost is low, so long as one is convex to payoff (i.e. make large gains when
one is right). Further, one can be forecasting with 99.99% accuracy and still go
bust (in fact, more likely to go bust: funds with impeccable track records were
those that went bust during the 2008-2009 rout 15). A point that may be technical
for those outside quantitative finance: it is the difference between a vanilla option
and a corresponding binary of the same strike, as discussed in Dynamic Hedging
[225]: counterintuitively, thick tailedness lowers the value of the binary and raise
that of the vanilla. This is expressed by the author’s adage: "I’ve never seen a
rich forecaster." We will examine in depth in 4.3.1 where we show that fattening
the tails cause the probability of events higher than 1 standard deviations to drop
–but the consequences to rise (in term of contribution to moments, say effect on
the mean or other metrics).

Figure 3.12 shows the extent of the problem.

Remark 1

Probabilistic forecast errors ("calibration") are in a different probability class from
that true real-world P/L variations (or true payoffs).

"Calibration", which is a measure of how accurate one’s predictions, lies in prob-
ability space –between 0 and 1. Any standard measure of such calibration will
necessarily be thin-tailed (and, if anything, extra-thin tailed since it is bounded) –
whether the random variable under such prediction is thick tailed or not. On the
other hand, payoffs in the real world can be thick tailed, hence the distribution of
such "calibration" will follow the property of the random variable.

We show full derivations and proofs in Chapter 11.

3.4.2 The Law of Large Numbers

Let us now discuss the law of large numbers which is the basis of much of statistics.
The law of large numbers tells us that as we add observations the mean becomes
more stable, the rate being around

√
n. Figure 3.5 shows that it takes many more

observations under a fat-tailed distribution (on the right hand side) for the mean
to stabilize.

The "equivalence" is not straightforward.

15 R. Douady, data from Risk Data about funds that collapsed in the 2008 crisis, personal communication
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P
ayoff swamps probability in Extremistan: To see the main dif-

ference between Mediocristan and Extremistan, consider the
event of a plane crash. A lot of people will lose their lives,
something very sad, say between 100 and 400 people, so the
event is counted as a bad episode, a single one. For forecasting

and risk management, we work on minimizing such a probability to make it
negligible.
Now, consider a type of plane crashes that will kill all the people who ever
rode the plane, even all passengers who ever rode planes in the past. All. Is
it the same type of event? The latter event is in Extremistan and, for these, we
don’t talk about probability but focus instead on the magnitude of the event.

• For the first type, management consists in reducing the probability –the
frequency – of such events. Remember that we count events and aim at
reducing their counts.

• For the second type, it consists in reducing the effect should such an
event take place. We do not count events, we measure impact.

If you think the thought experiment is a bit weird, consider that the money
center banks lost in 1982 more money than they ever made in their history,
the Savings and Loans industry (now gone) did so in 1991, and the entire
banking system lost every penny ever made in 2008-9. One can routinely
witness people lose everything they earned cumulatively in a single market
event. The same applies to many, many industries (e.g. automakers and
airlines).
But banks are only about money; consider that for wars we cannot afford the
naive focus on event frequency without taking into account the magnitude,
as done by the science writer Steven Pinker in [194], discussed in Chapter
16. This is without even examining the ruin problems (and nonergodicity)
presented in the end of this section. More technically, one needs to meet the
Cramer condition of non-subexponentiality for a tally of events (taken at face
value) for raw probability to have any meaning at all. The plane analogy was
proposed by the insightful Russ Robert during one of his Econtalk podcasts
with the author.

One of the best known statistical phenomena is Pareto’s 80/20 e.g. twenty per-
cent of Italians own 80 percent of the land. Table 3.1 shows that while it takes 30
observations in the Gaussian to stabilize the mean up to a given level, it takes 1011

observations in the Pareto to bring the sample error down by the same amount
(assuming the mean exists).

Despite this being trivial to compute, few people compute it. You cannot make
claims about the stability of the sample mean with a thick tailed distribution. There
are other ways to do this, but not from observations on the sample mean.
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Figure 3.14: Life is about payoffs, not forecasting, and the difference increases in Extremistan.
(Why "Gabish" rather than "capisce"? Gabish is the recreated pronunciation of Siculo-Galabrez (Cal-
abrese); the "p" used to sound like a "b" and the "g" like a Semitic kof, a hard K, from Punic. Much
like capicoli is "gabagool".)

Table 3.1: Corresponding nα, or how many observations to get a drop in the error around the mean
for an equivalent α-stable distribution (the measure is discussed in more details in Chapter 8). The
Gaussian case is the α = 2. For the case with equivalent tails to the 80/20 one needs at least 1011 more
data than the Gaussian.

α nα nβ=± 1
2

α nβ=±1
α

Symmetric Skewed One-tailed

1 Fughedaboudit - -

9
8 6.09× 1012 2.8× 1013 1.86× 1014

5
4 574,634 895,952 1.88× 106

11
8 5,027 6,002 8,632

3
2 567 613 737

13
8 165 171 186

7
4 75 77 79

15
8 44 44 44

2 30. 30 30

3.5 epistemology and inferential asymmetry
Definition 3.1 (Asymmetry in distributions)
It is much easier for a criminal to fake being an honest person than for an honest person
to fake being a criminal. Likewise it is easier for a fat-tailed distribution to fake being thin
tailed than for a thin tailed distribution to fake being thick tailed.
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Figure 3.15: The Masquerade Problem (or Central Asymmetry in Inference). To the left, a
degenerate random variable taking seemingly constant values, with a histogram producing a Dirac
stick. One cannot rule out nondegeneracy. But the right plot exhibits more than one realization. Here
one can rule out degeneracy. This central asymmetry can be generalized and put some rigor into
statements like "failure to reject" as the notion of what is rejected needs to be refined. We can use the
asymmetry to produce rigorous rules.

Principle 3.1 (Epistemology: the invisibility of the generator.)

• We do not observe probability distributions, just realizations.

• A probability distribution cannot tell you if the realization belongs to it.

• You need a meta-probability distribution to discuss tail events (i.e., the condi-
tional probability for the variable to belong to a certain distributions vs. oth-
ers).

Let us now examine the epistemological consequences. Figure 3.15 illustrates
the Masquerade Problem (or Central Asymmetry in Inference). On the left is a
degenerate random variable taking seemingly constant values with a histogram
producing a Dirac stick.

We have known at least since Sextus Empiricus that we cannot rule out degen-
eracy but there are situations in which we can rule out non-degeneracy. If I see
a distribution that has no randomness, I cannot say it is not random. That is, we
cannot say there are no Black Swans. Let us now add one observation. I can now
see it is random, and I can rule out degeneracy. I can say it is not "not random".
On the right hand side we have seen a Black Swan , therefore the statement that
there are no Black Swans is wrong. This is the negative empiricism that underpins
Western science. As we gather information, we can rule things out. The distribu-
tion on the right can hide as the distribution on the left, but the distribution on the
right cannot hide as the distribution on the left (check). This gives us a very easy
way to deal with randomness. Figure 3.16 generalizes the problem to how we can
eliminate distributions.
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Figure 3.16: "The probabilistic veil". Taleb and Pilpel [245] cover the point from an epistemological
standpoint with the "veil" thought experiment by which an observer is supplied with data (generated
by someone with "perfect statistical information", that is, producing it from a generator of time series).
The observer, not knowing the generating process, and basing his information on data and data only,
would have to come up with an estimate of the statistical properties (probabilities, mean, variance,
value-at-risk, etc.). Clearly, the observer having incomplete information about the generator, and no
reliable theory about what the data corresponds to, will always make mistakes, but these mistakes have
a certain pattern. This is the central problem of risk management.

If we see a 20 sigma event, we can rule out that the distribution is thin-tailed. If
we see no large deviation, we can not rule out that it is not thick tailed unless we
understand the process very well. This is how we can rank distributions. If we
reconsider Figure 3.7 we can start seeing deviations and ruling out progressively
from the bottom. These ranks are based on how distributions can deliver tail events.
Ranking distributions (by order or priority for the sake of inference) becomes very
simple. Consider the logic: if someone tells you there is a ten-sigma event, it is
much more likely that they have the wrong distribution than it is that you really
have ten-sigma event (we will refine the argument later in this chapter). Likewise,
as we saw, thick tailed distributions do not deliver a lot of deviation from the mean.
But once in a while you get a big deviation. So we can now rule out what is not
mediocristan. We can rule out where we are not Ş we can rule out mediocristan. I
can say this distribution is thick tailed by elimination. But I can not certify that it
is thin tailed. This is the Black Swan problem.

Application of the Maquerade Problem: Argentina’s stock market before and
after Aug 12, 2019 For an illustration of the asymmetry of inference applied
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Figure 3.17: Popper’s solution of the
problem of induction is in asymme-
try: relying on confirmatory empiri-
cism, that is focus on "ruling out"
what fails to work, via negativa style.
We extend this approach to statistical
inference with the probabilistic veil by
progressively ruling out entire classes
of distributions.

Scientific Rigor and Asymmetries by The Russian School of Probability

O
ne can believe in the rigor of mathematical statements about
probability without falling into the trap of providing naive
computations subjected to model error. There is a wonderful
awareness of the asymmetry throughout the works of the Rus-
sian school of probability –and asymmetry here is the analog

of Popper’s idea in mathematical space.
Members across three generations: P.L. Chebyshev, A.A. Markov, A.M. Lya-
punov, S.N. Bernshtein (ie. Bernstein), E.E. Slutskii, N.V. Smirnov, L.N.
Bol’shev, V.I. Romanovskii, A.N. Kolmogorov, Yu.V. Linnik, and the new gen-
eration: V. Petrov, A.N. Nagaev, A. Shyrayev, and a few more.
They had something rather potent in the history of scientific thought: they
thought in inequalities, not equalities (most famous: Markov, Chebyshev,
Bernstein, Lyapunov). They used bounds, not estimates. Even their central
limit version was a matter of bounds, which we exploit later by seeing what
takes place outside the bounds. They were world apart from the new generation
of users who think in terms of precise probability –or worse, mechanistic
social scientists. Their method accommodates skepticism, one-sided thinking:
"A is > x, AO(x) [Big-O: "of order" x], rather than A = x.
For those working on integrating the mathematical rigor in risk bearing they
provide a great source. We always know one-side, not the other. We know the
lowest value we are willing to pay for insurance, not necessarily the upper
bound (or vice versa).a

a The way this connects asymmetry to robustness is as follows. Is robust what does not produce
variability across perturbation of parameters of the probability distribution. If there is change, but
with an asymmetry, i.e. a concave or convex response to such perturbations, the classification is
fragility and antifragility, respectively, see [223].



3.5 epistemology and inferential asymmetry 45

Figure 3.18: The Problem of Induc-
tion. The philosophical problem of enu-
merative induction, expressed in the
question:
"How many white swans do you
need to count before ruling out the
future occurrence of a black one?"
maps surprisingly perfectly to our
problem of the working of the law of
large numbers:
"How much data do you need be-
fore making a certain claim with
an acceptable error rate?"
It turns out that the very nature of sta-
tistical inference reposes on a clear defi-
nition and quantitative measure of the
inductive mechanism. It happens that,
under thick tails, we need considerably
more data; as we will see in Chapters
7 and 8 there is a way to gauge the
relative speed of the inductive mecha-
nism, even if ultimately the problem of
induction cannot be perfectly solved.
The problem said of induction is gener-
ally misattributed to Hume, [227] .

.

Figure 3.19: A Discourse to Show
that Skeptical Philosophy is of Great
Use in Science by François de La
Mothe Le Vayer (1588-1672), appar-
ently Bishop Huet’s source. Every
time I find a IJoriginal thinkerİ who
figured out the skeptical solution to
the Black Swan problem, it turns out
that he may just be cribbing a prede-
cessor –not maliciously, but we for-
get to dig to the roots. As we in-
sist, "Hume’s problem" has little to
do with Hume, who carried the heavy
multi-volume Dictionary of Pierre
Bayle (his predecessors) across Eu-
rope. I thought it was Huet who was
as one digs, new predecessors crop up

to parameters of a distribution, or how a distribution can masquerade as having
thinner tails than it actually has, consider what we knew about the Argentinian
market before and after the large drop of Aug 12, 2019 (shown in Figure 3.21).
Using this reasoning, any future parameter uncertainty should make tails fatter,
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Figure 3.20: It is not possible to "accept" thin tails, very easy to reject thintailedness. One distribution
can produce jumps and quiet days will not help rule out their occurrence.
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Figure 3.21: A single day
reveals the true tails of a dis-
tribution. Argentina’s stock
market before and after Aug
12, 2019. You may suddenly
revise the tails as thicker
(lower parameter α), never
the reverse –it would take
a long, long time for that
to happen. Data obtained
thanks to Diego Zviovich.

not thinner. Rafal Weron, in [264], showed how we are more likely to overestimate
the tail index when fitting a stable distribution (lower means fatter tails).

3.6 naive empiricism: ebola should not be compared to falls from
ladders

Let us illustrate one of the problem of thin-tailed thinking in the fat-tailed domain
with a real world example. People quote so-called "empirical" data to tell us we are
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Figure 3.22: Naive empiricism: never compare
thick tailed variables to thin tailed ones, since
the means do not belong to the same class of
distributions. This is a generalized mistake
made by The Economist, but very common in
the so-called learned discourse. Even the Royal
Statistical Society fell for it once they hired a
"risk communication" person with a sociology
or journalism background to run it.

foolish to worry about ebola when only two Americans died of ebola in 2016. We
are told that we should worry more about deaths from diabetes or people tangled
in their bedsheets. Let us think about it in terms of tails. If we were to read in the
newspaper that 2 billion people have died suddenly, it is far more likely that they
died of ebola than smoking or diabetes or tangled in their bedsheets?

Principle 3.2
Thou shalt not compare a multiplicative fat-tailed process in Extremistan in the
subexponential class to a thin-tailed process from Mediocristan, particularly one that
has Chernoff bounds..

This is a simple consequence of the catastrophe principle we saw earlier, as illus-
trated in Figure 3.1.

Alas few "evidence based" people get (at the time of writing) the tail wag the dog
effect.
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Figure 3.23: Bill Gates’s Naive (Non-Statistical) Empiricism: the founder of Microsoft1 is promoting
and financing the development of the above graph, yet at the same time claiming that the climate
is causing an existential risk, not realizing that his arguments conflict since existential risks are
necessarily absent in past data. Furthermore, a closer reading of the graphs shows that cancer, heart
disease, and Alzheimer, being ailments of age, do not require the attention on the part of young adults
and middle-aged people something terrorism and epidemics warrant.

Another logical flaw is that terrorism is precisely low because of the attention it commands. Relax
your vigilance and it may go out of control. The same applies to homicide: fears lead to safety.

If this map shows something, it is the rationality of common people with a good tail risk detector,
compared to the ignorance of "experts". People are more calibrated to consequences and properties of
distributions than psychologists claim.
1 Microsoft is a technology company still in existence at the time of writing.

Figure 3.24: Because of the slowness of the law of large numbers, under thick tails, the past’s past
doesn’t resemble the past’s future; accordingly, today’s past will not resemble today’s future. Things
are easier under thin tails. Credit Stefan Gasic.

It is naïve empiricism to compare these processes, to suggest that we worry too
much about ebola (epidemics or pandemics) and too little about diabetes. In fact



3.6 naive empiricism: ebola should not be compared to falls from ladders 49

Figure 3.25: Beware the lobbyist using pseudo-
empirical arguments. "Risk communications"
shills such as the fellow here, with a journalism
background, are hired by firms such as Monsanto
(and cars and Tobacco companies) to engage
in smear campaigns on their behalf using "sci-
ence", "empirical arguments" and "evidence",
and downplay "public fears" they deem irra-
tional. Lobbying organizations penetrate such
centers as "Harvard Center for Risk Analysis"
with a fancy scholarly name that helps convince
the layperson. The shills’ line of argument, com-
monly, revolves around "no evidence of harm"
and "rationality". Other journalists, in turn, es-
pouse such arguments owing to their ability to
sway the statistically naive. Probabilistic and
risk literacy, statistical knowledge and journal-
ism have suffered greatly from the spreading of
misconceptions by nonscientists, or, worse, non-
statisticians.

it is the other way round. We worry too much about diabetes and too little about
ebola and other ailments with multiplicative effects. This is an error of reasoning
that comes from not understanding thick tails –sadly it is more and more common.
What is worse, such errors of reasoning are promoted by empirical psychology
which does not appear to be empirical. It is also used by shills for industry passing
for "risk communicators" selling us pesticides and telling us not to worry because
harm appears to be minimal in past data (see Figure ).

The correct reasoning is generally absent in decision theory and risk circles out-
side of the branches of extreme value theory and the works of the ABC group
in Berlin’s Max Planck directed by Gerd Gigerenzer [108] which tells you that
your grandmother’s instincts and teachings are not to be ignored and, when her
recommendations clash with psychologists and decision theorists, it is usually the
psychologists and decision theorists who are unrigorous. A simple look at the sum-
mary by "most cited author" Baruch Fishhoff’s in Risk: a Very Short Introduction [93]
shows no effort to disentangle the two classes of distribution. The problem linked
to the "risk calibration" and "probabilistic calibration" misunderstood by psychol-
ogists and discussed more technically in Chapter 11 discussing expert calibration
under thick tails.16

3.6.1 How some multiplicative risks scale

The "evidence based" approach is still too primitive to handle second order
effects (and risk management) and has certainly caused way too much harm
with the COVID-19 pandemic to remain useable outside of single patient
issues. One of the problems is the translation between individual and collec-

16 The Gigerenzer school is not immune to mistakes, as evidenced by their misunderstanding of the risks of
COVID-19 in early 2020 –the difference between Mediocristan and Extremistan has not reached them yet.
But this author is optimistic that it will.



50 a non-technical overview - the darwin college lecture ∗,‡

tive risk (another is the mischaracterization of evidence and conflation with
absence of evidence).

At the beginning of the COVID-19 pandemic, many epidemiologists inno-
cent of probability compared the risk of death from it to that of drowning in a
swimming pool. For a single individual, this might have been true (although
COVID-19 turned out rapidly to be the main source of fatality in many parts,
and later even caused 80% of the fatalities New York City). But conditional
on having 1000 deaths, the odds of the cause being drowning in swimming
pools is slim.

This is because your neighbor having COVID increases the chances that you
get it, whereas your neighbor drowning in her or his swimming pool does
not increase your probability of drowning (if anything, like plane crashes, it
decreases other people’s chance of drowning ).

This aggregation problem is discussed in more technical terms with ellipti-
cality, see Section 6.8 –joint distributions are no longer elliptical, causing the
sum to be fat-tailed even when individual variables are thin-tailed.

It is also discussed as a problem in ethics [247]: by contracting the disease
you cause more deaths than your own. Although the risk of death from
a contagious disease can be smaller than, say, that from a car accident, it
becomes psychopathic to follow "rationality" (that is, first order rationality
models) as you will eventually cause systemic harm and even, eventually,
certain self-harm.

3.7 primer on power laws (almost without mathematics)
Let us now discuss the intuition behind the Pareto Law. It is simply defined as: say
X is a random variable. For a realization x of X sufficiently large, the probability of
exceeding 2x divided by the probability of exceeding x is "not too different" from
the probability of exceeding 4x divided by the probability of exceeding 2x, and so
forth. This property is called "scalability".17

So if we have a Pareto (or Pareto-style) distribution, the ratio of people with $ 16
million compared to $ 8 million is the same as the ratio of people with $ 2 million
and $ 1 million. There is a constant inequality. This distribution has no charac-
teristic scale which makes it very easy to understand. Although this distribution
often has no mean and no standard deviation we can still understand it –in fact
we can understand it much better than we do with more standard statistical distri-
butions. But because it has no mean we have to ditch the statistical textbooks and
do something more solid, more rigorous, even if it seems less mathematical.

17 To put some minimum mathematics: let X be a random variable belonging to the class of distributions
with a "power law" right tail:

P(X > x) = L(x) x−α (3.1)

where L : [xmin, +∞) → (0, +∞) is a slowly varying function, defined as limx→+∞
L(kx)
L(x) = 1 for any k > 0.

We can transform and apply to the negative domain.
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Table 3.2: An example of a power law

Richer than 1 million 1 in 62.5
Richer than 2 million 1 in 250
Richer than 4 million 1 in 1,000
Richer than 8 million 1 in 4,000
Richer than 16 million 1 in 16,000
Richer than 32 million 1 in ?

Table 3.3: Kurtosis from a single observation for financial data
Max

(
X4

t−∆ti)
n
i=0

∑n
i=0 X4

t−∆ti

Security Max Q Years.
Silver 0.94 46.
SP500 0.79 56.
CrudeOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CT 0.25 48.
DAX 0.2 18.

A Pareto distribution has no higher moments: moments either do not exist or
become statistically more and more unstable. So next we move on to a problem
with economics and econometrics. In 2009 I took 55 years of data and looked at
how much of the kurtosis (a function of the fourth moment) came from the largest
observation –see Table 3.3. For a Gaussian the maximum contribution over the
same time span should be around .008 ± .0028. For the S&P 500 it was about
80 percent. This tells us that we don’t know anything about the kurtosis of these
securities. Its sample error is huge; or it may not exist so the measurement is
heavily sample dependent. If we don’t know anything about the fourth moment,
we know nothing about the stability of the second moment. It means we are not
in a class of distribution that allows us to work with the variance, even if it exists.
Science is hard; quantitative finance is hard too.

For silver, in 46 years 94 percent of the kurtosis came from one single observation.
We cannot use standard statistical methods with financial data. GARCH (a method
popular in academia) does not work because we are dealing with squares. The
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variance of the squares is analogous to the fourth moment. We do not know the
variance. But we can work very easily with Pareto distributions. They give us less
information, but nevertheless, it is more rigorous if the data are uncapped or if
there are any open variables.

Table 3.3, for financial data, debunks all the college textbooks we are currently
using. A lot of econometrics that deals with squares goes out of the window. This
explains why economists cannot forecast what is going on –they are using the
wrong methods and building the wrong confidence intervals. It will work within
the sample, but it will not work outside the sample –and samples are by definition
finite and will always have finite moments. If we say that variance (or kurtosis) is
infinite, we are not going to observe anything that is infinite within a sample.

Principal component analysis, PCA (see Figure 3.26) is a dimension reduction
method for big data and it works beautifully with thin tails (at least sometimes).
But if there is not enough data there is an illusion of what the structure is. As
we increase the data (the n variables), the structure becomes flat (something called
in some circles the "Wigner effect" for random matrices, after Eugene Wigner —
do not confuse with Wigner’s discoveries about the dislocation of atoms under
radiation). In the simulation, the data that has absolutely no structure: principal
components (PCs) should be all equal (asymptotically, as data becomes large); but
the small sample effect causes the ordered PCs to show a declining slope. We have
zero correlation on the matrix. For a thick tailed distribution (the lower section),
we need a lot more data for the spurious correlation to wash out i.e., dimension
reduction does not work with thick tails.

3.8 where are the hidden properties?
The following summarizes everything that I wrote in The Black Swan (a message
that somehow took more than a decade to go through without distortion). Distri-
butions can be one-tailed (left or right) or two-tailed. If the distribution has a thick
tail, it can be thick tailed one tail or it can be thick tailed two tails. And if is thick
tailed one tail, it can be thick tailed left tail or thick tailed right tail.

See Figure 3.28 for the intuition: if it is thick tailed and we look at the sample
mean, we observe fewer tail events. The common mistake is to think that we can
naively derive the mean in the presence of one-tailed distributions. But there are
unseen rare events and with time these will fill in. But by definition, they are low
probability events.

It is easier to be fooled by randomness about the quality of the performance with
a short volatility time series (left skewed, exposed to sharp losses) than with
a long tail volatility one (right skewed, exposed to sharp gains). Simply short
volatility overestimate the performance (while the other underestimates it
(see Fig 3.28). This is another version of the asymmetry attributed to Popper
that we saw earlier in the chapter.
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Figure 3.26: Spurious PCAs Under Thick Tails: A Monte Carlo experiment that shows how spu-
rious correlations and covariances are more acute under thick tails. Principal Components ranked
by variance for 30 Gaussian uncorrelated variables (above), n = 100 (shaded) and 1000 data points
(transparent), and principal components ranked by variance for 30 stable distributed ( below, with tail
α = 3

2 , symmetry β = 1, centrality µ = 0, scale σ = 1), with same n = 100 (shaded) and n = 1000
(transparent). Both are "uncorrelated" identically distributed variables. We can see the "flatter" PCA
structure with the Gaussian as n increases (the difference between PCAs shrinks). Such flattening
does not occur in reasonable time under fatter tails.

The trick is to estimate the distribution and then derive the mean (which implies
extrapolation). This is called in this book "plug-in" estimation, see Table 3.4. It
is not done by measuring the directly observable sample mean which is biased
under fat-tailed distributions. This is why, outside a crisis, banks seem to make
large profits. Then once in a while they lose everything and more and have to be
bailed out by the taxpayer. The way we handle this is by differentiating the true
mean (which I call "shadow") from the realized mean, as in the Tableau in Table
3.4.

We can also do that for the Gini coefficient to estimate the "shadow" one rather
than the naively observed one.
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13

Figure 3.27: A central asymmetry: the difference between absence of evidence and evidence of
absence is compounded by thick tails. It requires a more elaborate understanding of random events
—or a more naturalistic one. (Please do not attribute IQ points here as equivalent to the ones used in
common psychometrics: the suspicion is that high scoring people on IQ tests fail to get the asymmetry.
IQ here should be interpreted as "real" intelligence, not the one from that test. ) Courtesy Stefan
Gasic.

This is what we mean when we say that the "empirical" distribution is not "em-
pirical". In other words: 1) there is a wedge between population and sample
attributes and, 2) even exhaustive historical data must be seen as mere sampling
from a broader phenomenon (the past is in sample; inference is what works out of
sample).

Table 3.4: Shadow mean vs. Sample mean and their ratio for different minimum thresholds. The
shadow mean is obtained via maximum likelihood, ML (from plug-in estimators) . In bold the values
for the 145k threshold. Rescaled data. From Cirillo and Taleb [46]. Details are explained in Chapters
16 and 13.

L Sample Mean ML Mean Ratio
10K 9.079× 106 3.11× 107 3.43
25K 9.82× 106 3.62× 107 3.69
50K 1.12× 107 4.11× 107 3.67

100K 1.34× 107 4.74× 107 3.53
200K 1.66× 107 6.31× 107 3.79
500K 2.48× 107 8.26× 107 3.31

Once we have figured out the distribution, we can estimate the statistical mean.
This works much better than directly measuring the sample mean. For a Pareto
distribution, for instance, 98% of observations are below the mean. There is a bias
in the observed mean. But once we know that we have a Pareto distribution, we
should ignore the sample mean and look elsewhere. Chapters 13 and 15 discuss
the techniques.

Note that the field of Extreme Value Theory [115] [82] [116] focuses on tail prop-
erties, not the mean or statistical inference.
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WITTGENSTEIN’S RULER: WAS IT REALLY A "10 SIGMA EVENT"?

I
n the summer of 1998, the hedge fund called "Long Term Cap-

ital Management" (LTCM) proved to have a very short life; it
went bust from some deviations in the markets –those "of an
unexpected nature". The loss was a yuuuge deal because two
of the partners received the Swedish Riksbank Prize, marketed

as the "Nobel" in economics. More significantly, the fund harbored a large
number of finance professors; LTCM had imitators among professors (at least
sixty finance PhDs blew up during that period from trades similar to LTCM’s,
and owing to risk management methods that were identical). At least two of
the partners made the statement that it was a "10 sigma" event (10 standard
deviations), hence they should be absolved of all accusations of incompetence
(I was first hand witness of two such statements).
Let us apply what the author calls "Wittgenstein’s ruler": are you using the
ruler to measure the table or using the table to measure the ruler?
Assume to simplify there are only two alternatives: a Gaussian distribution
and a Power Law one. For the Gaussian, the "event" we define as the survival
function of 10 standard deviations is 1 in 1.31× 10−23. For the Power law of
the same scale, a student T distribution with tail exponent 2, the survival
function is 1 in 203.
What is the probability of the data being Gaussian conditional on a 10 sigma
event, compared to that alternative?

We start with Bayes’ rule. P(A|B) = P(A)P(B|A)
P(B) . Replace P(B) = P(A)P(B|A) +

P(A)P(B|A) and apply to our case.

P(Gaussian|Event) =
P(Gaussian)P(Event|Gaussian)

(1− P(Gaussian))P(Event|NonGaussian) + P(Gaussian)P(Event|Gaussian)

P(Gaussian) P(Gaussian|Event)
0.5 2× 10−21

0.999 2× 10−18

0.9999 2× 10−17

0.99999 2× 10−16

0.999999 2× 10−15

1 1

Moral: If there is a tiny probability, < 10−10 that the data might not be Gaus-
sian, one can firmly reject Gaussianity in favor of the thick tailed distribution.
The heuristic is to reject Gaussianity in the presence of any event > 4 or
> 5 STDs –we will see throughout the book why patches such as conditional
variance are inadequate and can be downright fraudulent.a

a The great Benoit Mandelbrot used to be extremely critical of methods that relied on a Gaussian
and added jumps or other ad hoc tricks to explain what happened in the data (say Merton’s jump
diffusion process [173]) –one can always fit back jumps ex post. He used to cite the saying attributed
to John von Neumann: "With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk."
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Figure 3.28: Shadow Mean at work: Below: Inverse Turkey Problem – The unseen rare event is
positive. When you look at a positively skewed (antifragile) time series and make (nonparametric)
inferences about the unseen, you miss the good stuff and underestimate the benefits. Above: The
opposite problem. The filled area corresponds to what we do not tend to see in small samples, from
insufficiency of data points. Interestingly, the shaded area increases with model error (owing to the
convexity of tail probabilities to uncertainty).

3.9 bayesian schmayesian
In the absence of reliable information, Bayesian methods can be of little help. This
author has faced since the publication of The Black Swan numerous questions con-
cerning the use of something vaguely Bayesian to solve problems about the un-
known under thick tails. Since one cannot manufacture information beyond what’s
available, no technique, Bayesian nor Schmayesian can help. The key is that one
needs a reliable prior, something not readily observable (see Diaconis and Fried-
man [66] for the difficulty for an agent in formulating a prior).

A problem is the speed of updating, as we will cover in Chapter 7, which is highly
distribution dependent. The mistake in the rational expectation literature is to
believe that two observers supplied with the same information would necessarily
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converge to the same view. Unfortunately, the conditions for that to happen in real
time or to happen at all are quite specific.

One of course can use Bayesian methods (under adequate priors) for the esti-
mation of parameters if 1) one has a clear idea about the range of values (say
from universality classes or other stable basins) and 2) these parameters follow a
tractable distribution with low variance such as, say, the tail exponent of a Pareto
distribution (which is inverse-gamma distributed), [11].

M
oral hazard and rent seeking in financial education: One of

the most depressing experience this author had was when
teaching a course on Fat Tails at the University of Mas-
sachusetts Amherst, at the business school, during a very brief
stint there. One PhD student in finance bluntly said that he

liked the ideas but that a financial education career commanded "the highest
salary in the land" (that is, among all other specialties in education). He pre-
ferred to use Markowitz methods (even if they failed in fat-tailed domains)
as these were used by other professors, hence allowed him to get his papers
published, and get a high paying job.
I was disgusted, but predicted he would subsequently have a very successful
career writing non-papers. He did.

3.10 x vs f (x): exposures to x confused with knowledge about
x

Take X a random or nonrandom variable, and F(X) the exposure, payoff, the effect
of X on you, the end bottom line. (X is often is higher dimensions but let’s assume
to simplify that it is a simple one-dimensional variable).

Practitioners and risk takers often observe the following disconnect: people (non-
practitioners) talking X (with the implication that practitioners should care about
X in running their affairs) while practitioners think about F(X), nothing but F(X).
And the straight confusion since Aristotle between X and F(X) has been chronic
as discussed in Antifragile [230] which is written around that theme. Sometimes
people mention F(X) as utility but miss the full payoff. And the confusion is at
two level: one, simple confusion; second, in the decision-science literature, seeing
the difference and not realizing that action on F(X) is easier than action on X.

• The variable X can be unemployment in Senegal, F1(X) is the effect on the
bottom line of the IMF, and F2(X) is the effect on your grandmother (which I
assume is minimal).

• X can be a stock price, but you own an option on it, so F(X) is your exposure
an option value for X, or, even more complicated the utility of the exposure
to the option value.
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• X can be changes in wealth, F(X) the convex-concave way it affects your well-
being. One can see that F(X) is vastly more stable or robust than X (it has
thinner tails).

Convex vs. linear functions of a variable X Consider Fig. 3.30; confusing F(X)
(on the vertical) and X (the horizontal) is more and more significant when F(X)
is nonlinear. The more convex F(X), the more the statistical and other properties
of F(X) will be divorced from those of X. For instance, the mean of F(X) will be
different from F(Mean ofX), by Jensen’s inequality. But beyond Jensen’s inequality,
the difference in risks between the two will be more and more considerable. When
it comes to probability, the more nonlinear F, the less the probabilities of X matters
compared to that of F. Moral of the story: focus on F, which we can alter, rather
than on the measurement of the elusive properties of X.

Probability Distribution of X Probability Distribution of F(X)

Figure 3.29: The Conflation Problem X (random variable) and F(X) a function of it (or payoff). If
F(X) is convex we don’t need to know much about it –it becomes an academic problem. And it is safer
to focus on transforming F(X) than X.

Figure 3.30: The Conflation Problem: a convex-concave transformation of a thick tailed X produces a
thin tailed distribution (above). A sigmoidal transformation (below) that is bounded on a distribution
in (−∞, ∞) produces an ArcSine distribution, with compact support.
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Limitations of knowledge What is crucial, our limitations of knowledge apply
to X not necessarily to F(X). We have no control over X, some control over F(X).
In some cases a very, very large control over F(X).

Concave-Convex Transformation Distribution of x Distribution of f(x)

Figure 3.31: A concave-convex transformation (of the style of a probit –an inverse CDF for the
Gaussian– or of a logit) makes the tails of the distribution of f (x) thicker

The danger with the treatment of the Black Swan problem is as follows: people
focus on X ("predicting X"). My point is that, although we do not understand
X, we can deal with it by working on F which we can understand, while others
work on predicting X which we can’t because small probabilities are incomputable,
particularly in thick tailed domains. F(x) is how the end result affects you.

The probability distribution of F(X) is markedly different from that of X, partic-
ularly when F(X) is nonlinear. We need a nonlinear transformation of the distribu-
tion of X to get F(X). We had to wait until 1964 to start a discussion on “convex
transformations of random variables”, Van Zwet (1964)[259] –as the topic didn’t
seem important before.

Ubiquity of S curves F is almost always nonlinear (actually I know of no excep-
tion to nonlinearity), often “S curved”, that is convex-concave (for an increasing
function). See the longer discussion in F.

Fragility and Antifragility When F(X) is concave (fragile), errors about X
can translate into extreme negative values for F(X). When F(X) is convex,
one is largely immune from severe negative variations. In situations of trial
and error, or with an option, we do not need to understand X as much as our
exposure to the risks. Simply the statistical properties of X are swamped by
those of H. The point of Antifragile is that exposure is more important than
the naive notion of “knowledge”, that is, understanding X.
The more nonlinear F the less the probabilities of X matters in the probability
distribution of the final package F.
Many people confuse the probabilites of X with those of F. I am serious: the
entire literature reposes largely on this mistake. For Baal’s sake, focus on F,
not X.
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B
etter be convex than right: In the fall of 2017, a firm went bust

betting against volatility –they were predicting lower real mar-
ket volatility (rather, variance) than "expected" by the market.
They were correct in the prediction, but went bust nevertheless. They
were just very concave in the payoff function. Recall that x is

not f (x) and that in the real world there are almost no linear f (x).
The following example can show us how. Consider the following pay-
off in the figure below. The payoff function is f (x) = 1 − x2 daily,
meaning if x moves by up to 1 unit (say, standard deviation), there is
a profit, losses beyond. This is a typical contract called "variance swap".

-3 -2 -1 1 2 3
x

-4

-2

2

4

f(x)=1-x2

Now consider the following two types successions of deviations of x for 7
days (expressed in standard deviations).
Succession 1 (thin tails): {1, 1, 1, 1, 1, 0, 0}. Mean variation= 0.71. P/L= 2.
Succession 2 (thick tails): {0, 0, 0, 0, 0, 0, 5}. Mean variation= 0.71 (same).
P/L=−18 (bust, really bust).
In both cases they forecast right, but the lumping of the volatility –the fatness
of tails– made a huge difference.
This in a nutshell explains why, in the real world, "bad" forecasters can make
great traders and decision makers and vice versa –something every operator
knows but that the mathematically and practically unsophisticated "forecast-
ing" literature, centuries behind practice, misses.

3.11 ruin and path dependence
Let us finish with path dependence and time probability. Our greatgrandmothers
did understand thick tails. These are not so scary; we figured out how to survive
by making rational decisions based on deep statistical properties.

Path dependence is as follows. If I iron my shirts and then wash them, I get
vastly different results compared to when I wash my shirts and then iron them.
My first work, Dynamic Hedging [225], was about how traders avoid the "absorbing
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barrier" since once you are bust, you can no longer continue: anything that will
eventually go bust will lose all past profits.

The physicists Ole Peters and Murray Gell-Mann [186] shed new light on this
point, and revolutionized decision theory showing that a key belief since the de-
velopment of applied probability theory in economics was wrong. They pointed
out that all economics textbooks make this mistake; the only exception are by in-
formation theorists such as Kelly and Thorp.

Let us explain ensemble probabilities.

Assume that 100 of us, randomly selected, go to a casino and gamble. If the
28th person is ruined, this has no impact on the 29th gambler. So we can compute
the casino’s return using the law of large numbers by taking the returns of the 100
people who gambled. If we do this two or three times, then we get a good estimate
of what the casino’s "edge" is. The problem comes when ensemble probability is
applied to us as individuals. It does not work because if one of us goes to the casino
and on day 28 is ruined, there is no day 29. This is why Cramer showed insurance
could not work outside what he called "the Cramer condition", which excludes
possible ruin from single shocks. Likewise, no individual investor will achieve the
alpha return on the market because no single investor has infinite pockets (or, as
Ole Peters has observed, is running his life across branching parallel universes).
We can only get the return on the market under strict conditions.

Time probability and ensemble probability are not the same. This only works
if the risk takers has an allocation policy compatible with the Kelly criterion

Figure 3.32: Ensemble probability vs.
time probability. The treatment by op-
tion traders is done via the absorbing
barrier. I have traditionally treated
this in Dynamic Hedging [225] and
Antifragile[223] as the conflation be-
tween X (a random variable) and f (X)
a function of said r.v., which may in-
clude an absorbing state.
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Figure 3.33: A hierarchy
for survival. Higher en-
tities have a longer life
expectancy, hence tail risk
matters more for these.
Lower entities such as you
and I are renewable.

[142],[250] using logs. Peters wrote three papers on time probability (one with
Murray Gell-Mann) and showed that a lot of paradoxes disappeared.

Let us see how we can work with these and what is wrong with the literature.
If we visibly incur a tiny risk of ruin, but have a frequent exposure, it will go to
probability one over time. If we ride a motorcycle we have a small risk of ruin, but
if we ride that motorcycle a lot then we will reduce our life expectancy. The way
to measure this is:

Principle 3.3 (Repetition of exposures)
Focus only on the reduction of life expectancy of the unit assuming repeated exposure
at a certain density or frequency.

Behavioral finance so far makes conclusions from statics not dynamics, hence
misses the picture. It applies trade-offs out of context and develops the consensus
that people irrationally overestimate tail risk (hence need to be "nudged" into tak-
ing more of these exposures). But the catastrophic event is an absorbing barrier.
No risky exposure can be analyzed in isolation: risks accumulate. If we ride a mo-
torcycle, smoke, fly our own propeller plane, and join the mafia, these risks add
up to a near-certain premature death. Tail risks are not a renewable resource.

Every risk taker who managed to survive understands this. Warren Buffett un-
derstands this. Goldman Sachs understands this. They do not want small risks,
they want zero risk because that is the difference between the firm surviving and
not surviving over twenty, thirty, one hundred years. This attitude to tail risk can
explain that Goldman Sachs is 149 years old –it ran as partnership with unlimited
liability for approximately the first 130 years, but was bailed out once in 2009, after
it became a bank. This is not in the decision theory literature but we (people with
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skin in the game) practice it every day. We take a unit, look at how long a life we
wish it to have and see by how much the life expectancy is reduced by repeated
exposure.

Remark 2: Psychology of decision making

The psychological literature focuses on one-single episode exposures and narrowly
defined cost-benefit analyses. Some analyses label people as paranoid for overestimat-
ing small risks, but don’t get that if we had the smallest tolerance for collective tail
risks, we would not have made it for the past several million years.

Next let us consider layering, why systemic risks are in a different category from
individual, idiosyncratic ones. Look at the (inverted) pyramid in Figure 3.33: the
worst-case scenario is not that an individual dies. It is worse if your family, friends
and pets die. It is worse if you die and your arch enemy survives. They collectively
have more life expectancy lost from a terminal tail event.

So there are layers. The biggest risk is that the entire ecosystem dies. The pre-
cautionary principle puts structure around the idea of risk for units expected to
survive.

Ergodicity in this context means that your analysis for ensemble probability trans-
lates into time probability. If it doesn’t, ignore ensemble probability altogether.

3.12 what to do?
To summarize, we first need to make a distinction between mediocristan and Ex-
tremistan, two separate domains that about never overlap with one another. If
we fail to make that distinction, we don’t have any valid analysis. Second, if we
don’t make the distinction between time probability (path dependent) and ensem-
ble probability (path independent), we don’t have a valid analysis.

The next phase of the Incerto project is to gain understanding of fragility, robust-
ness, and, eventually, anti-fragility. Once we know something is fat-tailed, we can
use heuristics to see how an exposure there reacts to random events: how much is
a given unit harmed by them. It is vastly more effective to focus on being insulated
from the harm of random events than try to figure them out in the required details
(as we saw the inferential errors under thick tails are huge). So it is more solid,
much wiser, more ethical, and more effective to focus on detection heuristics and
policies rather than fabricate statistical properties.

The beautiful thing we discovered is that everything that is fragile has to present
a concave exposure [223] similar –if not identical –to the payoff of a short option,
that is, a negative exposure to volatility. It is nonlinear, necessarily. It has to have
harm that accelerates with intensity, up to the point of breaking. If I jump 10m
I am harmed more than 10 times than if I jump one meter. That is a necessary
property of fragility. We just need to look at acceleration in the tails. We have built
effective stress testing heuristics based on such an option-like property [240].
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In the real world we want simple things that work [109]; we want to impress
our accountant and not our peers. (My argument in the latest instalment of the
Incerto, Skin in the Game is that systems judged by peers and not evolution rot from
overcomplication). To survive we need to have clear techniques that map to our
procedural intuitions.

The new focus is on how to detect and measure convexity and concavity. This is
much, much simpler than probability.

next
The next three chapters will examine the technical intuitions behind thick tails in
discussion form, in not too formal a language. Derivations and formal proofs come
later with the adaptations of the journal articles.



4 U N I VA R I AT E FAT TA I L S , L E V E L 1 ,
F I N I T E M O M E N T S †

T
he Next Two chapters organized as follows. We look at three lev-

els of fat-tails with more emphasis on the intuitions and heuristics
than formal mathematical differences, which will be pointed out
later in the discussions of limit theorems. The three levels are:

• Fat tails, entry level (sort of), i.e., finite moments

• Subexponential class

• Power Law class

Level one will be the longest as we will use it to build intuitions. While
this approach is the least used in mathematics papers (fat tails are usually
associated with power laws and limit behavior), it is relied upon the most
analytically and practically. We can get the immediate consequences of fat-
tailedness with little effort, the equivalent of a functional derivative that pro-
vides a good grasp of local sensitivities. For instance, as a trader, the author
was able to get most of the effect of fattailedness with a simple heuristic of av-
eraging option prices across two volatilities, which proved sufficient in spite
of its simplicity.

4.1 a simple heuristic to create mildly fat tails
A couple of reminders about convexity and Jensen’s inequality:

Let A be a convex set in a vector space in R, and let ϕ : A → R be a function; ϕ
is called convex if ∀x1, x2 ∈ A , ∀t ∈ [0, 1] :

ϕ (tx1 + (1− t)x2) ≤ tϕ (x1) + (1− t)ϕ (x2)

Discussion chapter.

65



66 univariate fat tails , level 1 , finite moments†

Figure 4.1: How random
volatility creates fatter tails
owing to the convexity of
some parts of the density to
the scale of the distribution.

For a random variable X and ϕ(.) a convex function, by Jensen’s inequality[135]:

ϕ(E[X]) ≤ E[ϕ(X)].

Remark 3: Fat Tails and Jensen’s inequality

For a Gaussian distribution (and, members of the location-scale family of distribu-
tions), tail probabilities are convex to the scale of the distribution, here the standard
deviation σ (and to the variance σ2). This allows us to fatten the tails by "stochas-
ticizing" either the standard deviation or the variance, hence checking the effect of
Jensen’s inequality on the probability distribution.

Heteroskedasticity is the general technical term often used in time series analysis
to characterize a process with fluctuating scale. Our method "stochasticizes", that
is, perturbates the variance or the standard deviation2 of the distribution under
the constraint of conservation of the mean.

2 "Volatility" in the quant language means standard deviation, but "stochastic volatility" is usually stochastic
variance.



4.1 a simple heuristic to create mildly fat tails 67

But note that any heavy tailed process, even a power law, can be described in
sample (that is finite number of observations necessarily discretized) by a simple
Gaussian process with changing variance, a regime switching process, or a combi-
nation of Gaussian plus a series of variable jumps (though not one where jumps
are of equal size, see the summary in [174]).3

This method will also allow us to answer the great question: "where do the tails
start?" in 4.3.

Let f (
√

a, x) be the density of the normal distribution (with mean 0) as a function
of the variance for a given point x of the distribution.

Compare f
(

1
2

(√
1− a +

√
a + 1

)
, x
)

to 1
2

(
f
(√

1− a, x
)

+ f
(√

a + 1, x
))

; the dif-
ference between the two will be owed to Jensen’s inequality. We assume the aver-
age σ2 constant, but the discussion works just as well if we just assumed σ constant
—it is a long debate whether one should put a constraint on the average variance
or on that of the standard deviation, but 1) doesn’t matter much so long as one re-
mains consistent, 2) for our illustrative purposes here there is no real fundamental
difference.

Since higher moments increase under fat tails, though not necessarily lower ones,
it should be possible to simply increase fat tailedness (via the fourth moment)
while keeping lower moments (the first two or three) invariant. 4

4.1.1 A Variance-preserving heuristic

Keep E
(
X2) constant and increase E

(
X4), by "stochasticizing" the variance of the

distribution, since E
(
X4)is itself analog to the variance of E

(
X2) measured across

samples – E
(
X4) is the noncentral equivalent of E

((
X2 −E

(
X2))2

)
so we will

focus on the simpler version outside of situations where it matters. Further, we will
do the "stochasticizing" in a more involved way in later sections of the chapter.

An effective heuristic to get some intuition about the effect of the fattening of
tails consists in simulating a random variable set to be at mean 0, but with the
following variance-preserving tail fattening trick: the random variable follows a
distribution N

(
0, σ
√

1− a
)

with probability p = 1
2 and N

(
0, σ
√

1 + a
)

with the

remaining probability 1
2 , with 0 " a < 1.

The characteristic function5 is

φ(t, a) =
1
2

e−
1
2 (1+a)t2σ2

(
1 + eat2σ2

)
(4.1)

3 The jumps for such a process can be simply modeled as a regime that is characterized by a Gaussian
with low variance and extremely large mean (and a low-probability of occurrence), so, technically, Poisson
jumps are mixed Gaussians.

4 To repeat what we stated in the previous chapter, the literature sometimes separates "Fat tails" from "Heavy
tails", the first term being reserved for power laws, the second to subexponential distribution (on which,
later). Fughedaboutdit. We simply call "Fat Tails" something with a higher kurtosis than the Gaussian,
even when kurtosis is not defined. The definition is functional as used by practioners of fat tails, that is,
option traders and lends itself to the operation of "fattening the tails", as we will see in this section.

5 Note there is no difference between characteristic and moment generating functions when the mean is 0,
a property that will be useful in later, more technical chapters.
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Odd moments are nil. The second moment is preserved since

M(2) = (−i)2∂t,2φ(t)|0 = σ2 (4.2)

and the fourth moment

M(4) = (−i)4∂t,4φ|0= 3
(

a2 + 1
)

σ4 (4.3)

which puts the traditional kurtosis at 3
(
a2 + 1

)
(assuming we do not remove 3 to

compare to the Gaussian). This means we can get an "implied a from kurtosis.
The value of a is roughly the mean deviation of the stochastic volatility parameter
"volatility of volatility" or Vvol in a more fully parametrized form.

Limitations of the simple heuristic This heuristic, while useful for intuition
building, is of limited powers as it can only raise kurtosis to twice that of a Gaus-
sian, so it should be used only pedagogically, to get some intuition about the effects
of the convexity. Section 4.1.2 will present a more involved technique.

Remark 4: Peaks

As Figure 4.4 shows: fat tails manifests themselves with higher peaks, a concentra-
tion of observations around the center of the distribution.

This is usually misunderstood.

4.1.2 Fattening of Tails With Skewed Variance

We can improve on the fat-tail heuristic in 4.1, (which limited the kurtosis to twice
the Gaussian) as follows. We Switch between Gaussians with variance:

{
σ2(1 + a), with probability p
σ2(1 + b), with probability 1− p

(4.4)

with p ∈ [0, 1) and b = −a p
1−p , giving a characteristic function:

φ(t, a) = p e−
1
2 (a+1)σ2t2 − (p− 1) e−

σ2 t2(ap+p−1)
2(p−1)

with Kurtosis 3((1−a2)p−1)
p−1 thus allowing polarized states and high kurtosis, all

variance preserving.

Thus with, say, p = 1/1000, and the corresponding maximum possible a = 999,
kurtosis can reach as high a level as 3000.
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This heuristic approximates quite well the effect on probabilities of a lognormal
weighting for the characteristic function

φ(t, V) =
∫ ∞

0

e−
t2v
2 −

(
log(v)−v0+ Vv2

2

)2

2Vv2

√
2πvVv

dv (4.5)

where v is the variance and Vv is the second order variance, often called volatility
of volatility. Thanks to integration by parts we can use the Fourier transform to
obtain all varieties of payoffs (see Gatheral [102]). But the absence of a closed-
form distribution can be remedied as follows, with the use of distributions for the
variance that are analytically more tractable.
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Figure 4.2: Stochastic Variance: Gamma distribution and Lognormal of same mean and variance.

Gamma Variance The gamma distribution applied to the variance of a Gaussian
is is a useful shortcut for a full distribution of the variance, which allows us to go
beyond the narrow scope of heuristics [36]. It is easier to manipulate analytically
than the Lognormal.

Assume that the variance of the Gaussian follows a gamma distribution.

Γa(v) =
va−1

(
V
a

)−a
e−

av
V

Γ(a)

with mean V and variance V√
a . Figure 4.2 shows the matching to a lognormal with

same first two moments where we calibrate the lognormal to mean 1
2 log

(
aV3

aV+1

)

and standard deviation
√
− log

(
aV

aV+1

)
. The final distribution becomes (once

again, assuming the same mean as a fixed volatility situation:

fa,V(x) =
∫ ∞

0

e−
(x−µ)2

2v
√

2π
√

v
Γa(v)dv, (4.6)
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-4 -2 0 2 4

Gaussian With Gamma Variance

Figure 4.3: Stochas-
tic Variance using
Gamma distribution
by perturbating α in
equation 4.7.

allora:

fα,V(x) =
2

3
4−

a
2 a

a
2 + 1

4 V−
a
2−

1
4 |x− µ|a−

1
2 Ka− 1

2

(√
2
√

a|x−µ|√
V

)

√
πΓ(a)

. (4.7)

where Kn(z) is the Bessel K function, which satisfies the differential equation
−y
(
n2 + z2) + z2y′′ + zy′ = 0.

Let us now get deeper into the different forms of stochastic volatility.

4.2 does stochastic volatility generate power laws?
We have not yet defined power laws; take for now the condition that least one of
the moments is infinite.

And the answer: depend on whether we are stochasticizing σ or σ2 on one hand,
or 1

σ or 1
σ2 on the other.

Assume the base distribution is the Gaussian, the random variable X ∼ N (µ, σ).
Now there are different ways to make σ, the scale, stochastic. Note that since σ is
nonnegative, we need it to follow some one-tailed distribution.

• We can make σ2 (or, possibly σ) follow a Lognormal distribution. It does not
yield closed form solutions, but we can get the moments and verify it is not
a power law.

• We can make σ2 (or σ) follow a gamma distribution. It does yield closed
form solutions, as we saw in the example above, in Eq. 4.7.

• We can make 1
σ2 —the precision parameter—follow a gamma distribution.

• We can make 1
σ2 follow a lognormal distribution.

The results shown in Table 4.1 come from the following simple properties of
density functions and expectation operators. Let X be any random variable with
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Table 4.1: Transformations for stochastic volatility. We can see from the density of the transformations
1
x or 1√

x if we have a power law on hand. LN , N ,G and P are the Lognormal, Normal, Gamma, and
Pareto distributions, respectively.

distr p(x) p
(

1
x

)
p
(

1√
x

)

LN (m, s) e
− (m−log(x))2

2s2√
2πsx

e
− (m+log(x))2

2s2√
2πsx

√
2
π e
− (m+2 log(x))2

2s2

sx

N (m, s) e
− (m−x)2

2s2√
2πs

e
−
(m− 1

x )
2

2s2√
2πsx2

√
2
π e
−
(m− 1

x2 )
2

2s2

sx3

G(a, b) b−a xa−1e−
x
b

Γ(a)
b−a x−a−1e−

1
bx

Γ(a)
2b−a x−2a−1e

− 1
bx2

Γ(a)
P(1, α) αx−α−1 αxα−1 2αx2α−1

Table 4.2: The p-moments of possible distributions for variance

distr E (Xp) E
(

( 1
X )p
)

E
(

( 1√
X

)p
)

LN (m, s) emp+ p2s2
2 e

1
2 p(ps2−2m) e

1
8 p(ps2−4m)

G(a, b) bp(a)p
(−1)pb−p

(1−a)p
, p < a fughedaboudit

P(1, α) α
α−p , p < α α

α+p
2α

2α+p

PDF f (.) in the location-scale family, and λ any random variable with PDF g(.); X
and λ are assumed to be independent. Since by standard results, the moments of
order p for the product and the ratio X

λ are:

E
(
(Xλ)p) = E (Xp)E (λp)

and

E

((
X
λ

)p)
= E

((
1
λ

)p)
E (Xp) .

(via the Mellin transform).

Note that as proprety of location-scale family, 1
λ f x

λ
( x

λ ) = fx( x
λ ) so, for instance, if

x ∼ N (0, 1) (that is, normally distributed), then x
σ ∼ N (0, σ).

4.3 the body , the shoulders , and the tails
Where do the tails start?

We assume the tails start at the level of convexity of the segment of the proba-
bility distribution to the scale of the distribution –in other words, affected by the
stochastic volatility effect.
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4.3.1 The Crossovers and Tunnel Effect.

Notice in Figure 4.4 a series of crossover zones, invariant to a. Distributions called
"bell shape" have a convex-concave-convex shape (or quasi-concave shape).

Let X be a random variable with distribution with PDF p(x) from a general
class of all unimodal one-parameter continuous pdfs pσ with support D ⊆ R and
scale parameter σ. Let p(.) be quasi-concave on the domain, but neither convex
nor concave. The density function p(x) satisfies: p(x) ≥ p(x + ε) for all ε > 0, and
x > x∗ and p(x) ≥ p(x− ε) for all x < x∗ with x∗ = argmaxx p(x)

p (ω x + (1−ω) y) ≥ min (p(x), p(y)) .

A- If the variable is "two-tailed", that is, its domain of support D= (-∞,∞), and
where pδ(x) ! p(x,σ+δ)+p(x,σ−δ)

2 ,

1. There exist a "high peak" inner tunnel, AT= ( a2, a3) for which the δ-perturbed
σ of the probability distribution pδ(x)≥p(x) if x ∈ ( a2, a3)

2. There exists outer tunnels, the "tails", for which pδ(x)≥p(x) if x ∈ (−∞, a1)
or x ∈ (a4, ∞)

3. There exist intermediate tunnels, the "shoulders", where pδ(x)≤ p(x) if x ∈
(a1, a2 ) or x ∈ (a3, a4 )

a4

a

a3a2a1

“Shoulders”
!a1, a2",

!a3, a4"

“Peak”

(a2, a3"

Right tail

Left tail

!4 !2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.4: Where do the tails start? Fatter and fatter fails through perturbation of the scale param-
eter σ for a Gaussian, made more stochastic (instead of being fixed). Some parts of the probability
distribution gain in density, others lose. Intermediate events are less likely, tails events and moderate
deviations are more likely. We can spot the crossovers a1 through a4. The "tails" proper start at a4 on
the right and a1on the left.
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The Black Swan Problem: As we saw, it is not merely that events in the
tails of the distributions matter, happen, play a large role, etc. The point is
that these events play the major role and their probabilities are not (easily)
computable, not reliable for any effective use. The implication is that Black
Swans do not necessarily come from fat tails; le problem can result from an
incomplete assessment of tail events.

Let A = {ai} the set of solutions
{

x : ∂2 p(x)
∂σ 2 |a= 0

}
.

For the Gaussian (µ, σ), the solutions obtained by setting the second derivative
with respect to σ to 0 are:

e−
(x−µ)2

2σ2
(
2σ4 − 5σ2(x− µ)2 + (x− µ)4)

√
2πσ7

= 0,

which produces the following crossovers:

(4.8)
{a1, a2, a3, a4} =

{
µ −

√
1
2

(
5−
√

17
)

σ, µ −
√

1
2

(
5 +
√

17
)

σ,

µ +
√

1
2

(
5−
√

17
)

σ, µ +
√

1
2

(
5 +
√

17
)

σ

}

In figure 4.4, the crossovers for the intervals are numerically {−2.13σ,−.66σ, .66σ, 2.13σ}.

As to a symmetric power law(as we will see further down), the Student T Distri-
bution with scale s and tail exponent α:

p(x) !

(
α

α+ x2
s2

) α+1
2

√
αsB

(
α
2 , 1

2

)

{a1, a2, a3, a4} =
{
−

√
5α−
√

(α+1)(17α+1)+1
α−1 s
√

2
,−

√
5α+
√

(α+1)(17α+1)+1
α−1 s
√

2
,

√
5α−
√

(α+1)(17α+1)+1
α−1 s
√

2
,

√
5α+
√

(α+1)(17α+1)+1
α−1 s
√

2

}

where B(.) is the Beta function B(a, b) = Γ(a)Γ(b)
Γ(a+b) =

∫ 1
0 dtta−1(1− t)b−1.

When the Student is "cubic", that is, α = 3:

{a1, a2, a3, a4} =
{
−
√

4−
√

13s,−
√

4 +
√

13s,
√

4−
√

13s,
√

4 +
√

13s
}
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In Summary, Where Does the Tail Start?

For a general class of symmetric distributions with power laws, the tail starts

at: ±
√

5α+
√

(α+1)(17α+1)+1
α−1 s
√

2
, with α infinite in the stochastic volatility Gaussian case

where s is the standard deviation. The "tail" is located between around 2
and 3 standard deviations. This flows from our definition: which part of the
distribution is convex to errors in the estimation of the scale.
But in practice, because historical measurements of STD will be biased lower
because of small sample effects (as we repeat fat tails accentuate small sample
effects), the deviations will be > 2-3 STDs.

1 + 1
2

2
π

�x�

1 + x2
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Figure 4.5: We compare the
behavior of

√
K + x2 and

K + |x|. The difference be-
tween the two weighting
functions increases for large
values of the random vari-
able x, which explains the
divergence of the two (and,
more generally, higher mo-
ments) under fat tails.

We can verify that when α → ∞, the crossovers become those of a Gaussian. For
instance, for a1:

lim
α→∞

−

√
5α−
√

(α+1)(17α+1)+1
α−1 s
√

2
= −

√
1
2

(
5−
√

17
)

s

B- For some one-tailed distribution that have a "bell shape" of convex-concave-
convex shape, under some conditions, the same 4 crossover points hold. The Log-
normal is a special case.

{a1, a2, a3, a4} =
{

e
1
2

(
2µ−
√

2
√

5σ2−
√

17σ2
)

,

e
1
2

(
2µ−
√

2
√√

17σ2+5σ2
)

, e
1
2

(
2µ+
√

2
√

5σ2−
√

17σ2
)

, e
1
2

(
2µ+
√

2
√√

17σ2+5σ2
)}

Stochastic Parameters The problem of elliptical distributions is that they do not
map the return of securities, owing to the absence of a single variance at any point
in time, see Bouchaud and Chicheportiche (2010) [42]. When the scales of the dis-
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tributions of the individuals move but not in tandem, the distribution ceases to
be elliptical. Figure 6.2 shows the effect of applying the equivalent of stochastic
volatility methods: the more annoying stochastic correlation. Instead of perturbat-
ing the correlation matrix Σ as a unit as in section 6, we perturbate the correlations
with surprising effect.

4.4 fat tails , mean deviation and the rising norms
Next we discuss the beastly use of standard deviation and its interpretation.

4.4.1 The Common Errors

We start by looking at standard deviation and variance as the properties of higher
moments. Now, What is standard deviation? It appears that the same confusion
about fat tails has polluted our understanding of standard deviation.

The difference between standard deviation (assuming mean and median of

0 to simplify) σ =
√

1
n ∑ x2

i and mean absolute deviation MAD = 1
n ∑|xi|

increases under fat tails, as one can see in Figure 4.5 . This can provide a
conceptual approach to the notion.

Dan Goldstein and the author [113] put the following question to investment pro-
fessionals and graduate students in financial engineering –people who work with
risk and deviations all day long.

A stock (or a fund) has an average return of 0%. It moves on average 1% a day
in absolute value; the average up move is 1% and the average down move is 1%.
It does not mean that all up moves are 1% –some are .6%, others 1.45%, and so
forth.

Assume that we live in the Gaussian world in which the returns (or daily per-
centage moves) can be safely modeled using a Normal Distribution. Assume
that a year has 256 business days. What is its standard deviation of returns (that

Time
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Figure 4.6: The Ratio
STD/MAD for the daily
returns of the SP500 over
the past 47 years, seen
with a monthly rolling
window. We can consider
the level

√
π
2 ≈ 1.253 (as

approximately the value for
Gaussian deviations), as the
cut point for fat tailedness.
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is, of the percentage moves), the ĂIJsigma that is used for volatility in financial
applications?

What is the daily standard deviation?

What is the yearly standard deviation?

As the reader can see, the question described mean deviation. And the answers
were overwhelmingly wrong. For the daily question, almost all answered 1%. Yet
a Gaussian random variable that has a daily percentage move in absolute terms
of 1% has a standard deviation that is higher than that, about 1.25%. It should
be up to 1.7% in empirical distributions. The most common answer for the yearly
question was about 16%, which is about 80% of what would be the true answer.
The professionals were scaling daily volatility to yearly volatility by multiplying
by
√

256 which is correct provided one had the correct daily volatility.

So subjects tended to provide MAD as their intuition for STD. When profession-
als involved in financial markets and continuously exposed to notions of volatility
talk about standard deviation, they use the wrong measure, mean absolute devia-
tion (MAD) instead of standard deviation (STD), causing an average underestima-
tion of between 20 and 40%. In some markets it can be up to 90%. Further, re-
sponders rarely seemed to immediately understand the error when it was pointed
out to them. However when asked to present the equation for standard deviation
they effectively expressed it as the mean root mean square deviation. Some were
puzzled as they were not aware of the existence of MAD.

Why this is relevant: Here you have decision-makers walking around talking
about "volatility" and not quite knowing what it means. We note some clips in the
financial press to that effect in which the journalist, while attempting to explain
the "VIX", i.e., volatility index, makes the same mistake. Even the website of the
department of commerce misdefined volatility.

Further, there is an underestimation as MAD is by Jensen’s inequality lower (or
equal) than STD.

How the ratio rises For a Gaussian the ratio ∼ 1.25, and it rises from there with
fat tails.

Example: Take an extremely fat tailed distribution, with n=106, observations are
all -1 except for a single one of 106,

X =
{
−1,−1, ...,−1, 106

}
.

The mean absolute deviation, MAD (X) = 2. The standard deviation STD (X)=1000.
The ratio standard deviation over mean deviation is 500.

4.4.2 Some Analytics

The ratio for thin tails As a useful heuristic, consider the ratio h:
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h =
√

E (X2)
E(|X|) ,

where E is the expectation operator (under the probability measure of concern and
X is a centered variable such E(x) = 0); the ratio increases with the fat tailedness

of the distribution; (The general case corresponds to (E(xp))
1
p

E(|x|) , p > 1, under the
condition that the distribution has finite moments up to n, and the special case
here n = 2).6

Simply, xp is a weighting operator that assigns a weight, xp−1, which is large for
large values of X, and small for smaller values.

The effect is due to the convexity differential between both functions, |X| is piece-
wise linear and loses the convexity effect except for a zone around the origin.

Mean Deviation vs Standard Deviation, more technical Why the [REDACTED]
did statistical science pick STD over Mean Deviation? Here is the story, with
analytical derivations not seemingly available in the literature. In Huber [131]:

There had been a dispute between Eddington and Fisher, around
1920, about the relative merits of dn (mean deviation) and Sn (standard
deviation). Fisher then pointed out that for exactly normal observa-
tions, Sn is 12% more efficient than dn, and this seemed to settle the
matter. (My emphasis)

Let us rederive and see what Fisher meant.

Let n be the number of summands:

Asymptotic Relative Efficiency (ARE) = lim
n→∞

(
V(Std)
E(Std)2

/
V(Mad)
E(Mad)2

)

Assume we are certain that Xi, the components of the sample follow a Gaussian
distribution, normalized to mean=0 and a standard deviation of 1.

Relative Standard Deviation Error The characteristic function Ψ1(t) of the distri-

bution of x2: Ψ1(t) =
∫ ∞
−∞

e−
x2
2 +itx2
√

2π
dx = 1√

1−2it
. With the squared deviation z = x2,

f , the pdf for n summands becomes:

fZ(z) =
1

2π

∫ ∞

−∞
exp(−itz)

(
1√

1− 2it

)n
dt =

2−
n
2 e−

z
2 z

n
2−1

Γ
( n

2
) , z > 0.

6 The word "infinite" moment is a big ambiguous, it is better to present the problem as "undefined" moment
in the sense that it depends on the sample, and does not replicate outside. Say, for a two-tailed distribution
(i.e. with support on the real line), the designation"infinite" variance might apply for the fourth moment,
but not to the third.
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Now take y =
√

z, fY(y) = 21− n
2 e−

z2
2 zn−1

Γ( n
2 )

, z > 0, which corresponds to the Chi

Distribution with n degrees of freedom. Integrating to get the variance: Vstd(n) =

n− 2Γ( n+1
2 )

2

Γ( n
2 )

2 . And, with the mean equalling
√

2Γ( n+1
2 )

Γ( n
2 )

, we get V(Std)
E(Std)2 = nΓ( n

2 )
2

2Γ( n+1
2 )

2 − 1.

Relative Mean Deviation Error Characteristic function again for |x| is that of a
folded Normal distribution, but let us redo it:

Ψ2(t) =
∫ ∞

0

√
2
π e−

x2
2 +itx = e−

t2
2

(
1 + i erfi

(
t√
2

))
, where erfi is the imaginary error

function er f (iz)/i.

The first moment: M1 = −i ∂
∂t1

(
e−

t2
2n2
(

1 + i erfi
(

t√
2n

)))n ∣∣∣
t=0

=
√

2
π .

The second moment, M2 = (−i)2 ∂2

∂t2

(
e−

t2
2n2
(

1 + i erfi
(

t√
2n

)))n ∣∣∣
t=0

= 2n+π−2
πn .

Hence, V(Mad)
E(Mad)2 = M2−M2

1
M2

1
= π−2

2n .

Finalmente, the Asymptotic Relative Efficiency For a Gaussian

ARE = lim
n→∞

n
(

nΓ( n
2 )

2

Γ( n+1
2 )

2 − 2
)

π − 2
=

1
π − 2

≈ .875

which means that the standard deviation is 12.5% more "efficient" than the mean
deviation conditional on the data being Gaussian and these blokes bought the argu-
ment. Except that the slightest contamination blows up the ratio. We will show
later why Norm !2 is not appropriate for about anything; but for now let us get a
glimpse on how fragile the STD is.

4.4.3 Effect of Fatter Tails on the "efficiency" of STD vs MD

Consider a standard mixing model for volatility with an occasional jump with
a probability p. We switch between Gaussians (keeping the mean constant and
central at 0) with:

V(x) =
{

σ2(1 + a)
σ2

with probability p
with probability (1− p)

For ease, a simple Monte Carlo simulation would do. Using p = .01 and n = 1000...
Figure 4.8 shows how a=2 causes degradation. A minute presence of outliers
makes MAD more "efficient" than STD. Small "outliers" of 5 standard deviations
cause MAD to be five times more efficient.7

7 The natural way is to center MAD around the median; we find it more informative for many of our
purposes here (and decision theory) to center it around the mean. We will make note when the centering
is around the mean.
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Figure 4.7: Harald Cramér, of the
Cramer condition, and the ruin prob-
lem.
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a

2
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RE

Figure 4.8: A simulation of
the Relative Efficiency ratio
of Standard deviation over
Mean deviation when inject-
ing a jump size

√
(1 + a)×

σ, as a multiple of σ the
standard deviation.

4.4.4 Moments and The Power Mean Inequality

Let X ! (xi)
n
i=1,

‖X‖p!
(

∑n
i=1|xi|p

n

)1/p
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Figure 4.9: Mean deviation
(blue) vs standard deviation
(yellow) for a finite vari-
ance power law. The re-
sult is expected (MD is the
thinner distribution), com-
plicated by the fact that
standard deviation has an
infinite variance since the
square of a Paretian random
variable with exponent α is
Paretian with an exponent
of 1

2 α. In this example the
mean deviation of standard
deviation is 5 times higher.
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Figure 4.10: For a Gaus-
sian, there is small differ-
ence in distribution between
MD and STD (adjusting for
the mean for the purpose of
visualization).

For any 1 ≤ p < q the following inequality holds:

p

√
n

∑
i=1

wi|xi|p ≤ q

√
n

∑
i=1

wi|xi|q (4.9)

where the positive weights wi sum to unity. (Note that we avoid p < 1 because it
does not satisfy the triangle inequality).

Proof. The proof for positive p and q is as follows: Define the following function:
f : R+ → R+; f (x) = x

q
p . f is a power function, so it does have a second derivative:

f ′′(x) =
(

q
p

)(
q
p
− 1
)

x
q
p−2

which is strictly positive within the domain of f , since q > p, f is convex. Hence,

by Jensen’s inequality : f
(

∑n
i=1 wix

p
i

)
≤ ∑n

i=1 wi f (xp
i ), so

p
q

√
n

∑
i=1

wix
p
i ≤ ∑n

i=1 wix
q
i

after raising both side to the power of 1/q (an increasing function, since 1/q is
positive) we get the inequality.
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What is critical for our exercise and the study of the effects of fat tails is that,
for a given norm, dispersion of results increases values. For example, take a flat
distribution, X= {1, 1}. ‖X‖1 =‖X‖2 =... =‖X‖n = 1. Perturbating while preserving
‖X‖1 , X =

{
1
2 , 3

2

}
produces rising higher norms:

{‖X‖n }5
n=1 =

{
1,
√

5
2

,
3
√

7
22/3 ,

4
√

41
2

,
5
√

61
24/5

}
. (4.10)

Trying again, with a wider spread, we get even higher values of the norms, X ={
1
4 , 7

4

}
,

{||X||n}5
n=1 =





1,

5
4

,

3

√
43
2

2
,

4
√

1201
4

,
5
√

2101
2× 23/5





. (4.11)

So we can see (removing constraints and/or allowing for negative values) how
higher moments become rapidly explosive.

One property quite useful with power laws with infinite moment:

‖X‖∞ = sup (|xi|)n
i=1 (4.12)

Gaussian Case For a Gaussian, where x ∼ N(0, σ), as we assume the mean is 0
without loss of generality,

Let E(X) be the expectation operator for X,

E
(

X1/p
)

E(|X|) = 2
p−3

2 ((−1)p + 1) σp−1Γ
(

p + 1
2

)

or, alternatively

E (Xp)
E(|X|) = 2

1
2 (p−3) (1 + (−1)p)

(
1

σ2

) 1
2−

p
2

Γ
(

p + 1
2

)
(4.13)

where Γ(z) is the Euler gamma function; Γ(z) =
∫ ∞

0 tz−1e−tdt. For odd moments,
the ratio is 0. For even moments:

E
(
X2)

E (|X|) =
√

π

2
σ

hence

√
E (X2)

E (|X|) =
STD
MD

=
√

π

2
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As to the fourth moment, it equals 3
√

π
2 σ3 .

For a Power Law distribution with tail exponent α=3, say a Student T

√
E (X2)

E (|X|) =
STD
MD

=
π

2

We will return to other metrics and definitions of fat tails with Power Law dis-
tributions when the moments are said to be "infinite", that is, do not exist. Our
heuristic of using the ratio of moments to mean deviation works only in sample,
not outside.

Pareto Case For a standard Pareto distribution with minimum value (and scale)

L, PDF f (x) = αLαx−α−1 and standard deviation
√

α
α−2 L

α−1 , we have

STD
MD

=
1

2
√

α− 2(α− 1)α−1α
1
2−α

, (4.14)

by centering around the mean.

"Infinite" moments Infinite moments, say infinite variance, always manifest them-
selves as computable numbers in observed sample, yielding finite moments of all
orders, simply because the sample is finite. A distribution, say, Cauchy, with unde-
fined means will always deliver a measurable mean in finite samples; but different
samples will deliver completely different means. Figures 4.11 and 4.12 illustrate
the "drifting" effect of the moments with increasing information.

2000 4000 6000 8000 10 000
T

!2

!1

1

2

3

4

MT

X!A, x"

Figure 4.11: The mean of a
series with undefined mean
(Cauchy).

4.4.5 Comment: Why we should retire standard deviation, now!

The notion of standard deviation has confused hordes of scientists; it is time to
retire it from common use and replace it with the more effective one of mean de-
viation. Standard deviation, STD, should be left to mathematicians, physicists and
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T
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2"

Figure 4.12: The square
root of the second moment
of a series with infinite vari-
ance. We observe pseudo-
convergence before a jump.

mathematical statisticians deriving limit theorems. There is no scientific reason
to use it in statistical investigations in the age of the computer, as it does more
harm than good-particularly with the growing class of people in social science
mechanistically applying statistical tools to scientific problems.

Say someone just asked you to measure the "average daily variations" for the tem-
perature of your town (or for the stock price of a company, or the blood pressure
of your uncle) over the past five days. The five changes are: (-23, 7, -3, 20, -1). How
do you do it?

Do you take every observation: square it, average the total, then take the square
root? Or do you remove the sign and calculate the average? For there are serious
differences between the two methods. The first produces an average of 15.7, the
second 10.8. The first is technically called the root mean square deviation. The
second is the mean absolute deviation, MAD. It corresponds to "real life" much
better than the first-and to reality. In fact, whenever people make decisions after
being supplied with the standard deviation number, they act as if it were the
expected mean deviation.

It is all due to a historical accident: in 1893, the great Karl Pearson introduced
the term "standard deviation" for what had been known as "root mean square
error". The confusion started then: people thought it meant mean deviation. The
idea stuck: every time a newspaper has attempted to clarify the concept of market
"volatility", it defined it verbally as mean deviation yet produced the numerical
measure of the (higher) standard deviation.

But it is not just journalists who fall for the mistake: I recall seeing official doc-
uments from the department of commerce and the Federal Reserve partaking of
the conflation, even regulators in statements on market volatility. What is worse,
Goldstein and I found that a high number of data scientists (many with PhDs) also
get confused in real life.

It all comes from bad terminology for something non-intuitive. By a psychologi-
cal phenomenon called attribute substitution, some people mistake MAD for STD
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because the former is easier to come to mind – this is "Lindy"8 as it is well known
by cheaters and illusionists.

1) MAD is more accurate in sample measurements, and less volatile than STD
since it is a natural weight whereas standard deviation uses the observation itself as
its own weight, imparting large weights to large observations, thus overweighing
tail events.

2) We often use STD in equations but really end up reconverting it within the
process into MAD (say in finance, for option pricing). In the Gaussian world, STD
is about 1.25 time MAD, that is,

√
π
2 . But we adjust with stochastic volatility

where STD is often as high as 1.6 times MAD.

3) Many statistical phenomena and processes have "infinite variance" (such as
the popular Pareto 80/20 rule) but have finite, and sometimes very well behaved,
mean deviations. Whenever the mean exists, MAD exists. The reverse (infinite
MAD and finite STD) is never true.

4) Many economists have dismissed "infinite variance" models thinking these
meant "infinite mean deviation". Sad, but true. When the great Benoit Mandel-
brot proposed his infinite variance models fifty years ago, economists freaked out
because of the conflation.

It is sad that such a minor point can lead to so much confusion: our scientific tools
are way too far ahead of our casual intuitions, which starts to be a problem with
science. So I close with a statement by Sir Ronald A. Fisher: ’The statistician cannot
evade the responsibility for understanding the process he applies or recommends.’

Note The usual theory is that if random variables X1, . . . , Xn are independent,
then

V(X1 + · · · + Xn) = V(X1) + · · · + V(Xn).

by the linearity of the variance. But then it assumes that one cannot use another
metric then by simple transformation make it additive9. As we will see, for the

Gaussian md(X) =
√

2
π σ —for the Student T with 3 degrees of freedom, the factor

is 2
π , etc.

8 See a definition of "Lindy" in 5.0.2
9 For instance option pricing in the Black-Scholes formula is done using variance, but the price maps directly

to MAD; an at-the-money straddle is just a conditional mean deviation. So we translate MAD into standard
deviation, then back to MAD
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Figure 4.13: Rising norms and the unit
circle/square: values of the iso-norm
(
|x1|p + |x2|p

)1/p = 1. We notice the
area inside the norm (i.e. satisfying norm ≤ 1),

v(p) =
4Γ
(

p+1
p

)2

Γ
(

p+2
p

) , with v(1) = 2 and v(∞) = 4.

Figure 4.14: Rising
norms and the unit
cube: values of the iso-norm
(
|x1|p + |x2|p + |x3|p

)1/p =
1 for p = 1, 3

2 , 2, 3, 4, and
∞. The volume satisfying
the inequality norm ≤ 1
increases for 4

3 for p = 1,
4π
3 for p = 2 (the unit

sphere), to 23 for p = ∞ (the
unit cube), a much higher
increase than in Figure 4.13
. We can see the operation of
the curse of dimensionality
in the smaller and smaller
volume for p = 1, relative to
the maximum when p = ∞.
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5 10 50 100
Log d

1042

1092

10142

Log
Vd
∞

Vd
1

Norms and Dimensionality

Figure 4.15: The curse of di-
mensionality, with yuuuge
applications across statisti-
cal areas, particularly model
error in higher dimentions.
As d increases, the ratio of
V1 over V∞ blows up. If for
d = 2, it is 2 it is already six
figures for d = 9.

4.5 visualizing the effect of rising p on iso-norms

Consider the region R(n)
(p) defined as X = (x1 , . . . , xn) :∈

(
∑n

i=1 xp
i
)1/p ≤ 1, with

the border defined by the identity. As the norm rises, we calculate the following
measure of the ball:

Vp
n =

∫
. . .
∫

X∈R(n)
(n)

1dX =

(
4Γ
(

1 + 1
p

))n

Γ
(

n
p + 1

)

Figures 4.13 and 4.14 show two effects.

The first is how rising norms occupy a larger share of the space.

The second gives us a hint of the curse of dimensionality, useful in many circum-
stances (and, centrally, for model error). Compare figures 4.13 and 4.14: you will
notice that in the first case, for d = 2, p = 1, m occupies half the area of the square,
with p = ∞ all of it. The ratio of norms is 1

2 . But for d = 3, p = 1 occupies 4/3
23 = 1

6
of the space (again, p = ∞ occupies all of it). The ratio of higher moments to lower
moments increases with dimensionality, as seen in Figure 4.15.
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F
urther Reading: We stop here and present probability books

in general. For more general intuition about probability, the in-
dispensable Borel’s [85]. Kolmogorov [145], Loeve [154], Feller
[92],[91]. For measure theory, Billingsley [20].

For subexponentiality Pitman [196], Embrechts and Goldie (1982) [83], Em-
brechts (1979, which seems to be close to his doctoral thesis) [84], Chistyakov
(1964) [43], Goldie (1978) [112], and Teugels [248].

For extreme value distributions Embrechts et al [82], De Haan and Fer-
reira [116].

For stable distributions Uchaikin and Zolotarev [257], Zolotarev [271],
Samorindsky and Taqqu [209].

Stochastic processes Karatsas and Shreve [141], Oksendal [182], Varadhan
[261].





5 L E V E L 2 : S U B E X P O N E N T I A L S A N D
P O W E R L A W S

T
his Chapter briefly presents the subexponential vs. the power

law classes as "true fat tails" (already defined in Chapter 3) and
presents some wrinkles associated with them. Subexponentiality
(without scalability), that is membership in the subexponential

but not power law class is a small category (of the common distributions,
only the borderline exponential –and gamma associated distributions such
as the Laplace – and the the lognormal fall in that class).

5.0.1 Revisiting the Rankings

Table 5.1 reviews the rankings of Chapter 3. Recall that probability distributions
range between extreme thin-tailed (Bernoulli) and extreme fat tailed. Among the
categories of distributions that are often distinguished due to the convergence
properties of moments are:

1. Having a support that is compact (but not degenerate)

2. Subgaussian

3. Subexponential

4. Power Law with exponent greater than 2

5. Power Law with exponent less than or equal to 2. In particular, Power Law
distributions have a finite mean only if the exponent is greater than 1, and
have a finite variance only if the exponent exceeds 2

6. Power Law with exponent less than 1

Our interest is in distinguishing between cases where tail events dominate im-
pacts, as a formal definition of the boundary between the categories of distribu-
tions to be considered as mediocristan and Extremistan.

Centrally, a subexponential distribution is the cutoff between "thin" and "fat" tails.
It is defined as follows.

89
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Table 5.1: Ranking distributions

Class Description

True Thin Tails Compact support (e.g. : Bernouilli,
Binomial)

Thin tails Gaussian reached organically
through summation of true thin
tails, by Central Limit; compact
support except at the limit n→ ∞

Conventional Thin
tails

Gaussian approximation of a natu-
ral phenomenon

Starter Fat Tails Higher kurtosis than the Gaussian
but rapid convergence to Gaussian
under summation

Subexponential (e.g. lognormal)
Supercubic α Cramer conditions do not hold for

t > 3,
∫

e−tx d(Fx) = +∞
Infinite Variance Levy Stable α < 2 ,

∫
e−txdF(x) =

+∞
Undefined First Mo-
ment

Fuhgetaboutdit

The mathematics is crisp: the excedance probability or survival function needs
to be exponential in one not the other. Where is the border?

The natural boundary between Mediocristan and Extremistan occurs at the subex-
ponential class which has the following property:

Let X = X1, . . . , Xn be a sequence of independent and identically distributed
random variables with support in (R+), with cumulative distribution function F.
The subexponential class of distributions is defined by (see [248], [196]):

lim
x→+∞

1− F∗2(x)
1− F(x)

= 2 (5.1)

where F∗2 = F′ ∗ F is the cumulative distribution of X1 + X2, the sum of two inde-
pendent copies of X. This implies that the probability that the sum X1 + X2 exceeds
a value x is twice the probability that either one separately exceeds x. Thus, every
time the sum exceeds x, for large enough values of x, the value of the sum is due
to either one or the other exceeding x—the maximum over the two variables—and
the other of them contributes negligibly.

More generally, it can be shown that the sum of n variables is dominated by
the maximum of the values over those variables in the same way. Formally, the
following two properties are equivalent to the subexponential condition [43],[84].
For a given n ≥ 2, let Sn = Σn

i=1xi and Mn = max1≤i≤n xi

a) limx→∞
P(Sn>x)
P(X>x) = n,
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b) limx→∞
P(Sn>x)

P(Mn>x) = 1.

Thus the sum Sn has the same magnitude as the largest sample Mn, which is
another way of saying that tails play the most important role.

Intuitively, tail events in subexponential distributions should decline more slowly
than an exponential distribution for which large tail events should be irrelevant.
Indeed, one can show that subexponential distributions have no exponential mo-
ments: ∫ ∞

0
eεx dF(x) = +∞ (5.2)

for all values of ε greater than zero. However,the converse isn’t true, since dis-
tributions can have no exponential moments, yet not satisfy the subexponential
condition.

We note that if we choose to indicate deviations as negative values of the variable
x, the same result holds by symmetry for extreme negative values, replacing x →
+∞ with x → −∞. For two-tailed variables, we can separately consider positive
and negative domains.

5.0.2 What is a Borderline Probability Distribution?

The best way to figure out a probability distribution is to... invent one. In fact in
the next section, 5.0.3, we will build one that is the exact borderline between thin
and fat tails by construction. Consider for now that the properties are as follows:

Let F be the survival function. We have F : R→ [0, 1] that satisfies

lim
x→+∞

F(x)n

F(nx)
= 1, (5.3)

and

lim
x→+∞

F(x) = 0

lim
x→−∞

F(x) = 1

Note : another property of the demarcation is the absence of Lucretius fallacy
from The Black Swan, mentioned earlier (i.e. future extremes will not be similar to
past extremes under fat tails, and such dissimilarity increases with fat tailedness):

Let us look at the demarcation properties for now. Let X be a random variable
that lives in either (0, ∞) or (−∞, ∞) and E the expectation operator under "real
world" (physical) distribution. By classical results [82]:
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lim
K→∞

1
K
E(X|X>K) = λ (5.4)

• If λ = 1 , X is said to be in the thin tailed class D1 and has a character-
istic scale

• If λ > 1 , X is said to be in the fat tailed regular variation class D2 and
has no characteristic scale

• If
lim

K→∞
E(X|X>K)− K = µ

where µ > 0, then X is in the borderline exponential class

The first case is called the "Lindy effect" when the random variable X is time sur-
vived. The subject is examined outside of this fat-tails project. See Iddo eliazar’s
exposition [77].

Invented

Gaussian
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PDF

Figure 5.1: Comparing the
invented distribution (at the
cusp of subexponentiality)
to the Gaussian of the same
variance (k = 1). It does not
take much to switch from
Gaussian to subexponential
properties.

5.0.3 Let Us Invent a Distribution

While the exponential distribution is at the cusp of the subexponential class but
with support in [0, ∞), we can construct a borderline distribution with support in
(−∞, ∞), as follows 1. Find survival functions F : R→ [0, 1] that satisfy:

∀x ≥ 0, lim
x→+∞

F(x)2

F(2x)
= 1, F′(x) ≤ 0

and
lim

x→+∞
F = 0.

lim
x→−∞

F = 1.

1 The Laplace distribution, which doubles the exponential on both sides, does not fit the property as the
ratio of the square to the double is 1

2 .
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Let us assume a candidate function a sigmoid, using the hyperbolic tangent

Fκ(x) =
1
2
(1− tanh(kx)) , κ > 0.

We can use this as a kernel distribution (we mix later to modify the kurtosis).

Let f (.) be the density function:

f (x) = − ∂F(x)
∂x

=
1
2

ksech2(kx). (5.5)

The characteristic function:

φ(t) =
πtcsch

(πt
2k
)

2k
. (5.6)

Given that it is all real, we can guess that the mean is 0 –so are all odd moments.

The second moment will be lim
t→0

(−i)2 ∂2

∂t2
πtcsch( πt

2k )
2k = π2

12k2 And the fourth mo-

ment: lim
t→0

(−i)4 ∂4

∂t4
πtcsch( πt

2k )
2k = 7π4

240k4 , hence the Kurtosis will be 21
5 . The distribu-

tion we invented has slightly fatter tails than the Gaussian.

5.1 level 3: scalability and power laws
Now we get into the serious business.

Why power laws? There are a lot of theories on why things should be power
laws, as sort of exceptions to the way things work probabilistically. But it seems
that the opposite idea is never presented: power laws should be the norm, and
the Gaussian a special case ([223]), effectively the topic of Antifragile and the next
volume of the Technical Incerto), owing to concave-convex responses (sort of damp-
ening of fragility and antifragility, bringing robustness, hence thinning the tails).

5.1.1 Scalable and Nonscalable, A Deeper View of Fat Tails

So far for the discussion on fat tails we stayed in the finite moments case. For a
certain class of distributions, those with finite moments, PX>nK

PX>K
depends on n and

K. For a scale-free distribution, with K "in the tails", that is, large enough, PX>nK
PX>K

depends on n not K. These latter distributions lack in characteristic scale and will
end up having a Paretian tail, i.e., for x large enough, PX>x = Cx−α where α is the
tail and C is a scaling constant.

Note: We can see from the scaling difference between the Student and the Pareto
the conventional definition of a Power Law tailed distribution is expressed more
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Figure 5.2: Three Types of Distributions. As we hit the tails, the Student remains scalable while the
Standard Lognormal shows an intermediate position before eventually ending up getting an infinite
slope on a log-log plot. But beware the lognormal as it may have some surprises (Chapter 8)
.

Table 5.2: Scalability, comparing regularly varying functions/powerlaws to other distributions

k P(X > k)−1 P(X>k)
P(X>2 k) P(X > k)−1 P(X>k)

P(X>2 k) P(X > k)−1 P(X>k)
P(X>2 k)

(Gaussian) (Gaussian) Student(3) Student (3) Pareto(2) Pareto (2)

2 44 720 14.4 4.9 8 4

4 31600. 5.1× 1010 71.4 6.8 64 4

6 1.01× 109 5.5× 1023 216 7.4 216 4

8 1.61× 1015 9× 1041 491 7.6 512 4

10 1.31× 1023 9× 1065 940 7.7 1000 4

12 5.63× 1032 fughedaboudit 1610 7.8 1730 4

14 1.28× 1044 fughedaboudit 2530 7.8 2740 4

16 1.57× 1057 fughedaboudit 3770 7.9 4100 4

18 1.03× 1072 fughedaboudit 5350 7.9 5830 4

20 3.63× 1088 fughedaboudit 7320 7.9 8000 4

formally as P(X > x) = L(x)x−α where L(x) is a "slow varying function", which
satisfies the following:

lim
x→∞

L(t x)
L(x)

= 1
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for all constants t > 0.

For x large enough, logP>x

logx
converges to a constant, namely the tail exponent

-α. A scalable should produce the slope α in the tails on a log-log plot, as x → ∞.
Compare to the Gaussian (with STD σ and mean µ) , by taking the PDF this time

instead of the exceedance probability log
(

f (x)
)

= (x−µ)2

2σ2 − log(σ
√

2π) ≈ − 1
2σ2 x2

which goes to −∞ faster than − log(x) for ±x → ∞.

So far this gives us the intuition of the difference between classes of distributions.
Only scalable have "true" fat tails, as others turn into a Gaussian under summation.
And the tail exponent is asymptotic; we may never get there and what we may see
is an intermediate version of it. The figure above drew from Platonic off-the-shelf
distributions; in reality processes are vastly more messy, with switches between
exponents as deviations get larger.

Definition 5.1 (the class P)
The P class of power laws (regular variation) is defined for r.v. X as follows:

P = {X : P(X > x) ∼ L(x) x−α} (5.7)

5.1.2 Grey Swans

Figure 5.3: The graph repre-
sents the log log plot of GBP,
the British currency. We
can see the "Grey Swan" of
Brexit (that is, the jump in
the currency when the un-
expected referendum results
came out); when seen using
a power law the large de-
viation is rather consistent
with the statistical proper-
ties.

Why do we use Student T to simulate symmetric power laws? For convenience,
only for convenience. It is not that we believe that the generating process is Student
T. Simply, the center of the distribution does not matter much for the properties
involved in certain classes of decision making.

The lower the exponent, the less the center plays a role. The higher the exponent,
the more the student T resembles the Gaussian, and the more justified its use will
be accordingly.

More advanced methods involving the use of Levy laws may help in the event
of asymmetry, but the use of two different Pareto distributions with two different
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Figure 5.4: Book Sales: the
near tail can be robust for es-
timation of sales from rank
and vice versa –it works
well and shows robustness
so long as one doesn’t com-
pute general expectations or
higher non-truncated mo-
ments.
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Figure 5.5: The Turkey
Problem, where nothing in
the past properties seems to
indicate the possibility of
the jump.

exponents, one for the left tail and the other for the right one would do the job
(without unnecessary complications).

Estimation issues Note that there are many methods to estimate the tail expo-
nent α from data, what is called a "calibration. However, we will see, the tail
exponent is rather hard to guess, and its calibration marred with errors, owing to
the insufficiency of data in the tails. In general, the data will show thinner tail than
it should.

We will return to the issue in more depth in later chapters.

5.2 some properties of power laws
Two central properties.

5.2.1 Sums of variables
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Property 1: Tail exponent of a sum

Let X1, X2, . . . Xn be random variables neither independent nor identically distributed,
each Xi following a distribution with a different asymptotic tail exponent αi (we as-
sume that random variables outside the power law class will have an asymptotic
alpha = +∞). Assume further we are concerned with the right tail of the distribu-
tion (the argument remains identical when we apply it to the left tail). See [99] for
further details.

Consider the weighted sum Sn = ∑n
i=1 wiXi, with all weights wi strictly positive.

Consider αs the tail exponent for the sum.

For all wi > 0,
αs = min(αi).

Clearly, if α2 ≤ α1 and w2 > 0,

lim
x→∞

log
(
w1x−α1 + w2x−α2

)

log(x)
= α2.

The implication is that adding a single summand with undefined (or infinite)
mean, variance, or higher moments leads to the total sum to have undefined (or
infinite) mean, variance, or higher moments.

Principle 5.1 (Power Laws + Thin Tails = Power Laws)
Mixing power law distributed and thin tailed variables results in power laws, no matter
the composition.

5.2.2 Transformations

The second property while appearing benign, can be vastly more annoying:

Property 2

Let X be a random variable with tail exponent α. The tail exponent of Xp is α
p .

This tells us that the variance of a finite variance random variable with tail expo-
nent < 4 will be infinite. In fact we will see it does cause problems for stochastic
volatility models, when the real process can actually be of infinite variance.

This gives us a hint, without too much technical effort, on how a convex transfor-
mation of a random variable thickens the tail.

Proof. The general approach is as follows. Let p(.) be a probability density function
and φ(.) a transformation (with some restrictions). We have the distribution of the
transformed variable (assuming the support is conserved –stays the same):

p (φ(x)) =
p
(

φ(−1)(x)
)

φ′
(
φ(−1)(x)

) . (5.8)
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Assume that x > l and l is large (i.e. a point where the slowly varying function
"ceases to vary" within some order of x). The PDF for these values of x can be
written as p(x) ∝ Kx−α−1. Consider y = φ(x) = xp: the inverse function of y = xp is

x = y
1
p . Applying to the denominator in Eq. 5.8, we get 1

p x
1−p

p .

Integrating above l, the survival function will be: P(Y > y) ∝ y−
α
p .

5.3 bell shaped vs non bell shaped power laws
The slowly varying function effect, a case study The fatter the tails, the less the
"body" matters for the moments (which become infinite, eventually). But for power
laws with thinner tails, the zone that is not power law (the slowly moving part)
plays a role –"slowly varying" is more or less formally defined in 5.1.1,18.2.2 and
5.1.1. This section will show how apparently equal distributions can have different
shapes.

Let us compare a double Pareto distribution with the following PDF:

fP(x) =






α(1 + x)−α−1 x ≥ 0

α(1− x)−α−1 x < 0

to a Student T with same centrality parameter 0, scale parameter s and PDF

fS(x) =
αα/2

(
α+ x2

s2

) 1
2 (−α−1)

sB( α
2 , 1

2 )
where B(.) is the Euler beta function, B(a, b) = (Γ(a))(Γ(b))

Γ(a+b) =
∫ 1

0 ta−1(1− t)b−1 dt.

We have two ways to compare distributions.

• Equalizing by tail ratio: setting limx→∞
fp(x)
fs(x) = 1 to get the same tail ratio, we

get the equivalent "tail" distribution with s =
(

α1− α
2 B
(

α
2 , 1

2

))1/α
.

• Equalizing by standard deviations (when finite): we have, with α > 2, E(X2
P) =

2
α2−3α+2 and E(X2

S) =
α
(

α1− α
2 B( α

2 , 1
2 )
)2/α

α−2 .

So we could set
√

E(X2
P) =
√

k
√

E(X2
S) k→ 2α−2/α B( α

2 , 1
2 )
−2/α

α−1

}
.

Finally, we have the comparison "bell shape" semi-concave vs the angular double-
convex one as seen in Figure 5.6.
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Figure 5.6: Comparing two
symmetric power laws of
same exponent, one with a
brief slowly varying func-
tion, the other with an ex-
tended one. All moments
eventually become the same
in spite of the central dif-
ferences in their shape for
small deviations.

5.4 interpolative powers of power laws: an example
Consider Jobless Claims during the COVID-19 pandemic: unemployment jumped
many so-called standard deviations in March of 2020. But was the jump an outlier?
Maybe if you look at 5.7 and think like someone trained in thin tails. But not
really. As Figure 5.8 shows, the tail exponent is hardly changed. The scale of
the distribution could perhaps vary, but the exponent is patently robust to out-of-
sample observations.

0.0

0.5

1.0

1.5

2.0

2.5
Log Changes in Jobless Claims

Figure 5.7: Jobless claims:
looks like the jump is a sur-
prise... but only to un-
trained economists. As Fig.
5.8 shows, it shouldn’t be.
And to the trained eyes (a
la Benoit Mandelbrot), vari-
ations were mild but cer-
tainly never Gaussian.

5.5 super-fat tails: the log-pareto distribution
The mother of all fat tails, the log-Pareto distribution, is not present in common
lists of distributions but we can rederive it here. The log-Pareto is the Paretian
analog of the lognormal distribution.
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Figure 5.8: Zipf plot for job-
less claims: we did not need
the abrupt jump during the
COVID-19 pandemic (last
point on the right) to realize
it was a power law.

Remark 5: Rediscovering the log-Pareto distribution

If X ∼ P(L, α) the Pareto distribution with PDF f (P)(x) = αLαx−α−1 , x ≥ L and
survival function S(P)(x) = Lαx−α, then:

eX ∼ LP(L, α) the log-Pareto distribution with PDF

f (LP)(x) =
αLα log−α−1(x)

x
, x ≥ eL

and survival function
S(LP)(x) = Lα log−α(x)

While for a regular power law, we have an asymptotic linear slope on the log-log
plot, i.e.,

lim
x→∞

log
(

Lαx−α
)

log(x)
= −α,

the slope for a log-Pareto goes to 0:

lim
x→∞

log
(

Lα log(x)−α
)

log(x)
= 0,

and clearly no moment can exist regardless of the value of the tail parameter α.
The difference between asymptotic behaviors is visible is Fig 5.9.

5.6 pseudo-stochastic volatility: an investigation
We mentioned earlier in Chapter 3 that a "10 sigma" statement means we are not
in the Gaussian world. We also discussed the problem of nonobservability of
probability distributions: we observe data, not generating processes.
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Figure 5.9: Comparing
log-log plots for the sur-
vival functions of the
Pareto and log-Pareto

It is therefore easy to be fooled by a power law by mistaking it for a heteroskedas-
tic process. In hindsight, we can always say: "conditional volatility was high, at
such standard deviation it is no longer a 10 sigma, but a mere 3 sigma deviation".

The way to debunk these claims is to reason with the aid of an inverse problem:
how a power law with a constant scale can masquerade as a heteroskedastic pro-
cess. We will see in Appendix how econometrics’ reliance on heteroskedasticity
(i.e. moving variance) has severe defects since the variance of that variance doesn’t
have a structure.

500 1000 1500 2000 2500
t

20

40

60

80

100

σ22

Figure 5.10: Running 22-day (i.e., corresponding to monthly) realized volatility (standard deviation)
for a Student T distributed returns sampled daily. It gives the impression of stochastic volatility when
in fact the scale of the distribution is constant.
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Fig. 5.10 shows the volatility of returns of a market that greatly resemble ones
should one use a standard simple stochastic volatility process. By stochastic volatil-
ity we assume the variance is distributed randomly 2.

Let X be the returns with mean 0 and scale σ, with PDF ϕ(.):

ϕ(x) =

(
α

α+ x2
σ2

) α+1
2

√
ασB

(
α
2 , 1

2

) , x ∈ (−∞, ∞).

Transforming to get Y = X2 (to get the distribution of the second moment), ψ, the
PDF for Y becomes,

ψ(y) =

(
ασ2

ασ2+y

) α+1
2

σB
(

α
2 , 1

2

)√
αy

, y ∈ (−∞, ∞),

which we can see transforms into a power law with asymptotic tail exponent α
2 .

The characteristic function χy(ω) = E(exp(iωY)) can be written as

(5.9)
χy(ω) =

1
2B
(

α
2 , 1

2

)
(

π
√

ασ

√
1

ασ2 ((πα) csc)

(√
π 1 F̃1

( 1
2 ; 1− α

2 ;−iασ2ω
)

Γ
(

α+1
2

)

−
(

1
ασ2

)− α
2

(−iω)α/2
1 F̃1

(
α + 1

2
;

α + 2
2

;−iασ2ω

)))

From which we get the mean deviation of the second moment as follows3:

α MD of the second moment

5
2

4

√
5
3

23/4
(

2 2 F1( 1
4 , 7

4 ; 5
4 ;− 5

6 )+3( 6
11 )

3/4
)

σ2Γ( 7
4 )

√
πΓ( 5

4 )
3 6σ2

π
7
2

5 73/4(7 2 F1( 3
4 , 9

4 ; 7
4 ;− 7

6 )−3 2 F1( 7
4 , 9

4 ; 11
4 ;− 7

6 ))σ2Γ( 5
4 )

6 63/4
√

πΓ( 7
4 )

4 1
7

(
3
√

21− 7
)

σ2

9
2

3
4

√
3
2
(

6( 2
5 )

3/4−6 2 F1( 5
4 , 11

4 ; 9
4 ;− 3

2 )
)

σ2Γ( 11
4 )

5
√

πΓ( 9
4 )

5
σ2
(

7
√

15−16 tan−1
(√

5
3

))

6π

2 One can have models with either stochastic variance or stochastic standard deviation. The two have
different expectations.

3 As customary, we do not use standard deviation as a metric owing to its instability and its lack of infor-
mation, but prefer mean deviation.
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next
The next chapter will venture in higher dimensions. Some consequences are obvi-
ous, others less so –say correlations exist even when covariances do not.





6 T H I C K TA I L S I N H I G H E R D I M E N S I O N S †

T
his discussion is about as simplified as possible handling of

higher dimensions. We will look at 1) the simple effect of fat-
tailedness for multiple random variables, 2) Ellipticality and
distributions, 3) random matrices and the associated distribu-
tion of eigenvalues , 4) How we can look at covariance and

correlations when moments don’t exist (say, as in the Cauchy case).
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Figure 6.1: Thick tails in higher dimensions: For a 3 dimentional vector, thin tails (left) and thick tails
(right) of the same variance. In place of a bell curve with higher peak (the "tunnel") of the univariate
case, we see an increased density of points towards the center.

Discussion chapter.
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6.1 thick tails in higher dimension , finite moments
We will build the intuitions of thick tails from convexity to scale as we did in the
previous chapter, but using higher dimensions.

Let
⇀
X = (X1, X2, . . . , Xm) be a p× 1 random vector with the variables assumed

to be drawn from a multivariate Gaussian. Consider the joint probability distribu-
tion f (x1, . . . , xm) . We denote the m-variate multivariate Normal distribution by
N (

⇀
µ , Σ), with mean vector

⇀
µ , variance-covariance matrix Σ, and joint pdf,

f
(⇀

x
)

= (2π)−m/2|Σ|−1/2exp
(
−1

2

(⇀
x −⇀

µ
)T

Σ−1
(⇀

x −⇀
µ
))

(6.1)

where
⇀
x = (x1, . . . , xm) ∈ Rm, and Σ is a symmetric, positive definite (m × m)

matrix.

We can apply the same simplied variance preserving heuristic as in 4.1 to fatten
the tails:

fa
(⇀

x
)

=
1
2

(2π)−m/2|Σ1|−1/2exp
(
−1

2

(⇀
x −⇀

µ
)T

Σ1
−1
(⇀

x −⇀
µ
))

+
1
2

(2π)−m/2|Σ2|−1/2exp
(
−1

2

(⇀
x −⇀

µ
)T

Σ2
−1
(⇀

x −⇀
µ
))

(6.2)

where a is a scalar that determines the intensity of stochastic volatility, Σ1 = Σ(1 + a)
and Σ2 = Σ(1− a).2

Figure 6.2: Elliptically Con-
toured Joint Returns of Powerlaw
(Student T).

2 We can simplify by assuming as we did in the single dimension case, without any loss of generality, that
⇀
µ = (0, . . . , 0).
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Figure 6.3: NonElliptical Joint
Returns, from stochastic correla-
tions.

Notice in Figure 6.1, as with the one-dimensional case, a concentration in the
middle part of the distribution.3

Figure 6.4: Elliptically Con-
toured Joint Returns for for a
multivariate distribution (x, y, z)
solving to the same density.

3 We created thick tails making the variances stochastic while keeping the correlations constant; this is to
preserve the positive definite character of the matrix.
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Figure 6.5: NonElliptical Joint
r.v., from stochastic correlations,
for a multivariate distribution
(x, y, z), solving to the same den-
sity.

6.2 joint fat-tailedness and ellipticality of distributions
There is another aspect, beyond our earlier definition(s) of fat-tailedness, once we
increase the dimensionality into random vectors:

Figure 6.6: History moves by
jumps: A thick tailed historical
process, in which events are dis-
tributed according to a power law
that corresponds to the "80/20", with
α 2 1.13, represented as a 3-D Levy
process.
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Figure 6.7: What the proponents of "great mod-
eration" or "long peace" have in mind: history
as a thin-tailed process.

What is an Elliptically Contoured Distribution? From the standard definition,
[88], X, a p× 1 random vector is said to have an elliptical (or elliptical contoured)
distribution with location parameters µ, a non-negative matrix Σ, and some scalar
function Ψ if its characteristic function ϕ is of the form

ϕ(t) = exp(it′µ)Ψ(tΣt′). (6.3)

There are equivalent definitions focusing on the density; take for now that the
main attribute is that Ψ is a function of a single covariance matrix Σ.

Intuitively, an elliptical distribution should show an ellipse for iso-density plots;
see how we represented in 2-D (for a bivariate) and 3-D (for a trivariate) in Figures
6.2 and 6.4. A noneliptical distribution would violate the shape as shown in Figures
6.3 and 6.5.

The main property of the class of elliptical distribution is that it is closed under
linear transformation. Intuitively, as we saw in Chapter 3 with the example of
height vs wealth, it means (in a bivariate situation) that tails are less likely to come
from one than two marginal deviations.
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Ellipticality and Central Flaws in Financial Theory This closure under linear
transformation leads to attractive properties in the building of portfolios, and in
the results of portfolio theory (in fact one cannot have portfolio theory without
elliticality of distributions).

Under ellipticality, all portfolios can be characterized completely by their location
and scale and any two portfolios with identical location and scale (in return space)
have identical distributions returns.

Note that (ironically) Lévy-Stable distributions are elliptical –but only in the way
they are defined.

So ellipticality (under the condition of finite variance) allows the extension of
the results of modern portfolio theory (MPT) under the so-called "nonnormality",
initally discovered by[183], also see[121]. However it appears (from those of us
who work with stochastic covariances) that returns are not elliptical by any con-
ceivable measure, see Chicheportiche and Bouchaud [42] and simple visual graphs
of stability of correlation as in E.8.

A simple pedagogical example using the 1± a heuristic we presented in 4.1. Con-

sider the bivariate normal with characteristic function Ψ(t1, t2) = e−ρt2t1−
t21
2 −

t22
2 .

Now let us stochasticize the ρ parameter, with p probability of ρ1 and (1 − p)
probability of rho2:

Ψ(t1, t2) = pe−ρ1t2t1−
t21
2 −

t22
2 + (1− p)pe−ρ2t2t1−

t21
2 −

t22
2 (6.4)

Figure 6.8 shows the result with p = 1
2 and ρ1 = ρ2.

We can be more formal and show the difference, when Σ is stochastic, between
Ψ (tE(Σ)t′) and E (Ψ(tΣt′)) in Eq. 6.3.

Diversification

Recall that financial theory fails under thick tails (and no patches have fixed
the issue outside of the "overfitting" we discussed in earlier chapters). Ab-
sence of ellipticality closes the matter. The implication is that all methods
based on Markowitz-style portfolio construction, that is, grounded in the
idea of diversification, fail to reduce the risk, while managing to deceivingly
smooth out daily volatility. Adding leverage makes blowups certain in the
long run a.

a This includes an abhorrent approach called "risk parity" largely used to raise money via pseudothe-
oretical and pseudoacademic smoke, a method called "asset gathering".

6.3 multivariate student t
The multivariate Student T is a convenient way to model, as it collapses to the
Cauchy for α = 1. The alternative would be the multivariate stable, which, we will
see, is devoid of density.
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Figure 6.8: Stochastic
correlation for a stan-
dard binormal distribu-
tion: isodensities for
different combinations.
We use a very simple
technique of Eq. 6.4,
with switch between
ρ1 = ρ and ρ2 =
−ρ over the span with
probability p = 1

2 .

Let X be a (p × 1) vector following a multivariate Student T distribution, X ∼
St (M, Σ, α), where Σ is a (p× p) matrix, M a p length vector and α a Paretian tail
exponent with PDF

f (X) =

(
(X−M).Σ−1.(X−M)

ν
+ 1

)− 1
2 (ν+p)

. (6.5)

In the most simplified case, with p = 2, M = (0, 0), and Σ = =
(

1 ρ
ρ 1

)
,

f (x1, x2) =
ν
√

1− ρ2
(
−νρ2+ν−2ρx1x2+x2

1+x2
2

ν−νρ2

)
− ν

2−1

2π (ν− νρ2)
. (6.6)

6.3.1 Ellipticality and Independence under Thick Tails

Take the product of two Cauchy densities for x and y (what we used in Figure 3.1):

f (x) f (y) =
1

π2 (x2 + 1) (y2 + 1)
(6.7)
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which, patently, as we saw in Chapter 3 (with the example of the two randomly
selected persons with a total net worth of $36 million), is not elliptical. Compare
to the joint distribution fρ(x, y):

fρ(x, y) =
1

2π
√

1− ρ2
(

y
(

y
1−ρ2 − ρx

1−ρ2

)
+ x
(

x
1−ρ2 − ρy

1−ρ2

)
+ 1
)3/2 , (6.8)

and setting ρ = 0 to get no correlation,

f0(x, y) =
1

2π (x2 + y2 + 1)3/2 (6.9)

which is elliptical. This illustrates how absence of correlation is not independence
as:

Independence between two variables X and Y is defined by the identity:

f (x, y)
f (x) f (y)

= 1,

regardless of the correlation coefficient. In the class of elliptical distributions,
the bivariate Gaussian with coefficient 0 is both independent and uncorre-
lated. This does not apply to the Student T or the Cauchy.

The reason the multivariate stable distribution with correlation coefficient set to 0
is not independent is the following.

A random vector X = (X1, . . . , Xk)′ is said to have the multivariate stable distri-
bution if every linear combination of its components Y = a1X1 + · · · + akXk has a
stable distribution. That is, for any constant vector a ∈ Rk, the random variable
Y = aTX should have a univariate stable distribution. And to have a linear com-
bination remain within the same class requires ellipticality. Hence by construction,
f0(x, y) is not necessarily equal to f (x) f (y). Consider the Cauchy case that has an
explicit density function. The denominator of the product of densities includes an
additional term, x2y2, which pushes the iso-densities in one direction or another,
as we saw in the introductory examples of Chapter 3.

6.4 fat tails and mutual information
We notice that because of the artificiality in constructing multivariate distributions,
mutual information is not 0 in the presence of independence, since the ratio of
joint densities/product of densities ,= 1 under 0 "correlation" ρ.

What is the mutual information of a Student T (which includes the Cauchy)?

I(X, Y) = E log
(

f (x, y)
f (x) f (y)

)
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Figure 6.9: The various shapes of the distribution of the eigenvalues for random matrices, which in the
Gaussian case follow the Wigner semicircle distribution. The Cauchy case corresponds to the Student
parametrized to have 1 degrees of freedom.

where the expectation is taken under the joint distribution for X and Y. The mutual
information thanks to the log is additive (Note that one can use any logarithmic
base and translate by dividing by log(2)).

So I(X, Y) = E (log f (x, y)) − Elog ( f (x)) − Elog ( f (y)) or H(X)+H(Y) -H(X, Y)
where H is the entropy and H(X, Y) the joint entropy.

We note that − 1
2 log(1− ρ2) is the mutual information of a Gaussian regardless

of parametrization. So for X, Y ∼ Multivariate Student T (α, ρ), the mutual infor-
mation Iα(X, Y):

Iα(X, Y) = −1
2

log
(

1− ρ2
)

+ λα (6.10)
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where

(6.11)
λα = − 2

α
+ log(α) + 2π(α + 1) csc(πα) + 2 log

(
B
(

α

2
,

1
2

))
− (α + 1)H− α

2
+ (α + 1)H− α

2−
1
2
− 1− log(2π)

where csc(.) is the cosecant of the argument, B(., .) is the beta function and H(.)(r)

is the harmonic number Hr
n = ∑n

i=1
1
ir with Hn = H(1)

n . We note that λα →
α→∞

0.

To conclude this brief section metrics linked to entropy such as mutual infor-
mation are vastly more potent than correlation; mutual information can detect
nonlinearities.

6.5 fat tails and random matrices , a rapid interlude
The eigenvalues of matrices themselves have an analog to Gaussian convergence:
the semi-circle distribution, as shown in Figure 6.9.

Let M be a (n, n) symmetric matrix. We have the eigenvalues λi, 1 ≤ i,≤ n such
that M.Vi = λiVi where Vi is the ith eigenvector.

The Wigner semicircle distribution with support [−R, R] has for PDF f present-
ing a semicircle of radius R centered at (0, 0) and then suitably normalized :

f (λ) =
2

πR2

√
R2 − λ2 for − R ≤ λ ≤ R. (6.12)

This distribution arises as the limiting distribution of eigenvalues of (n, n) sym-
metric matrices with finite moments as the size n of the matrix approaches infinity.

We will tour the "fat-tailedness" of the random matrix in what follows as well as
the convergence.

This is the equivalent of thick tails for matrices. Consider for now that the 4th

moment reaching Gaussian levels (i.e. 3) for an univariate situation is equivalent
to the eigenvalues reaching Wigner’s semicircle.

6.6 correlation and undefined variance
Next we examine a paradox: while covariances can be infinite, correlation is finite.
However, it will have a huge sampling error to be informative –same problem we
discussed with PCA in Chapter 3.

Question: Why it is that a fat tailed distribution in the power law class P with in-
finite or undefined mean (and higher moments) would have, in higher dimensions,
undefined (or infinite) covariance but finite correlation?
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Consider a distribution with support in (−∞, ∞). It has no moments: E(X) is
indeterminate, E(X2) = ∞, no covariance, E(XY) is indeterminate. But the (non-
central) correlation for n variables is bounded by −1 and 1.

r ! ∑n
i=1 xiyi√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

, n = 2, 3, ...

By the subexponentiality property, we have P (X1 + . . . + Xn〉 x)∼ P (max (X1, . . . Xn) > x)
as x → ∞. We note that the power law class is included in the subexponential class
S.

Order the variables in absolute values such that |x1| ≤ |x2| ≤ . . . ≤ |xn|
Let κ1 = ∑n−1

i=1 xiyi , κ2 = ∑n−1
i=1 x2

i , and κ3 = ∑n−1
i=1 y2

i .

lim
xn→∞

xnyn + κ1
√

x2
n + κ2

√
y2

n + κ3

=
yn√

κ3 + y2
n

,

lim
yn→∞

xnyn + κ1
√

x2
n + κ2

√
y2

n + κ3

=
xn√

κ2 + x2
n

lim
xn→+∞
yn→+∞

xnyn + κ1
√

x2
n + κ2

√
y2

n + κ3

= 1

lim
xn→+∞
yn→−∞

xnyn + κ1
√

x2
n + κ2

√
y2

n + κ3

= −1

and
lim

xn→−∞
yn→+∞

xnyn + κ1
√

x2
n + κ2

√
y2

n + κ3

= −1

for all values of n ≥ 2.

-0.5 0.0 0.5 1.0
ρ0

2

4

6

8

10
frequency

Figure 6.10: Sample distri-
bution of correlation for a
sample of 103. The corre-
lation exists for a bivariate
T distribution (exponent 2

3 ,
correlation 3

4 ) but... not
useable.

An example of the distribution of correlation is shown in Fig. 6.10. Finite cor-
relation doesn’t mean low variance: it exists, but may not be useful for statistical
purpose owing to the noise and slow convergence.
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6.7 fat tailed residuals in linear regression models

2×106 5×106 1×107
ϵ^2

0.001

0.010

0.100

P>
Figure 6.11: The log-log-
plot of the survival func-
tion of the squared residuals
ε2 for the IQ-income linear
regression using the stan-
dard Winsconsin Longitudi-
nal Studies (WLS) data. We
notice that the income vari-
ables are winsorized. Clip-
ping the tails creates the il-
lusion of a high R2. Actu-
ally, even without clipping
the tail, the coefficient of de-
termination will show much
higher values owing to the
small sample properties for
the variance of a power law.
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Figure 6.12: An infinite
variance case that shows a
high R2 in sample; but it ul-
timately has a value of 0. Re-
member that R2 is stochas-
tic. The problem greatly
resembles that of P values
in Chapter 19 owing to the
complication of a metadistri-
bution in [0, 1].

We mentioned in Chapter 3 that linear regression fails to inform under fat tails.
Yet it is practiced. For instance, it is patent that income and wealth variables are
power law distributed (with a spate of problems, see our Gini discussions in 13).
However IQ scores are Gaussian (seemingly by design). Yet people regress one on
the other failing to see that it is improper.

Consider the following linear regression in which the independent and indepen-
dent are of different classes:

Y = aX + b + ε,

where X is standard Gaussian (N (0, 1)) and ε is power law distributed, with E(ε) =
0 and E(ε2) < +∞. There are no restrictions on the parameters.

Clearly we can compute the coefficient of determination R2 as 1 minus the ratio
of the expectation of the sum of residuals over the total squared variations, so
we get the more general answer to our idiosyncratic model. Since X ∼ N (0, 1),
aX + b ∼ N (b, |a|), we have
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R2 = 1− SSres
SStot

= 1− ∑n
i=1 (yi − (axi + b + εi))

2

∑n
i=1 (yi − y)2 .

We can show that, for large n

R2 =
a2

a2 + E(ε2
i )

+ O
(

1
n2

)
. (6.13)

And of course, for infinite variance:

lim
E(ε2)→+∞

E(R2) = 0.

When ε is T-distributed with α degrees of freedom, clearly ε2 will follow an
FRatio distribution (1, α) –a power law with exponent α

2 .
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Figure 6.13: A Cauchy re-
gression with an expected
R2 = 0, faking it but show-
ing higher values in small
samples (here .985).

Note that we can also compute the same "expectation" by taking, simply, the
square of the correlation between X and Y. For instance, assume the distribution
for ε is the Student T distribution with zero mean, scale σ and tail exponent α > 2
(as we saw earlier, we get identical results with other ones so long as we constrain
the mean to be 0). Let’s start by computing the correlation: the numerator is the co-
variance Cov(X, Y) = E ((aX + b + ε)X) = a. The denominator (standard deviation

for Y) becomes
√

E (((aX + ε)− a)2) =
√

2αa2−4a2+ασ2

α−2 . So

E(R2) =
a2(α− 2)

2(α− 2)a2 + ασ2 (6.14)

And the limit from above:
lim

α→2+
E(R2) = 0.

We are careful here to use E(R2) rather than the seemingly deterministic R2

because it is a stochastic variable that will be extremely sample dependent, and
only stabilize for large n, perhaps even astronomically large n. Indeed, recall that
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in sample the expectation will always be finite, even if the ε are Cauchy! The point
is illustrated in Figures 6.12 and 6.13. Actually, when one uses the maximum
likelihood estimation of R2 via E

(
ε2) using α, (the "shadow mean" method in

Chapters 13 and 14, among others) we notice that in the IQ example used in the
graph, the mean of the sample residuals are about half of the maximum likelihood
one, making R2 even lower (that is, virtually 0)4.

The point invalidates much studies of the relations IQ-wealth and IQ-income
of the kind [268]; we can see the striking effect in Figure 6.11. Given that R is
bounded in [0, 1], it will reach its true value very slowly – see the P-Value problem
in Chapter 19.

Property 3

When a fat tailed random variable is regressed against a thin tailed one, the coeffi-
cient of determination R2 will be biased higher, and requires a much larger sample
size to converge (if it ever does).

Note that sometimes people try to solve the problem by some nonlinear trans-
formation of a random variable (say, the logarithm) to try to establish a linear
relationship. If the required transformation is exact, things will be fine –but only if
exact. Errors can arise from the discrepancy. For correlation is extremely delicate
and unlike mutual information, non-additive and often uninformative. The point
has been explored by this author in [238].

next
We will examine in chapter 8 the slow convergence of power laws distributed
variables under the law of large numbers (LLN): it can be as much as 1013 times
slower than the Gaussian.

4 2.2 109 vs 1.24 109.
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Figure A.1: A coffee cup is
less likely to incur "small"
than large harm. It shatters,
hence is exposed to (almost)
everything or nothing. The
same type of payoff is preva-
lent in markets with, say,
(reval)devaluations, where
small movements beyond a
barrier are less likely than
larger ones.

F
or unimodal distributions, thick tails are the norm: one can

look at tens of thousands of time series of the socio-economic
variables without encountering a single episode of "platykur-
tic" distributions. But for multimodal distributions, some sur-
prises can occur.

a.1 multimodality and thick tails , or the war and peace model
We noted earlier in 4.1 that stochasticizing (that is, making a deterministic variable
stochastic), ever so mildly, variances, the distribution gains in thick tailedness (as
expressed by kurtosis). But we maintained the same mean.

But should we stochasticize the mean as well (while preserving the initial av-
erage), and separate the potential outcomes wide enough, so that we get many
modes, the "kurtosis" (as measured by the fourth moment) would drop. And if we
associate different variances with different means, we get a variety of "regimes",
each with its set of probabilities.

119
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S1
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Pr

Figure A.2: The War and
peace model. Kurtosis =1.7,
much lower than the Gaus-
sian.

-10 -5 5 10
μ1-μ2

1.5

2.0

2.5

3.0

Kurtosis

Figure A.3: Negative (rela-
tive) kurtosis and bimodal-
ity (3 is the Gaussian).

Either the very meaning of "thick tails" loses its significance under multimodal-
ity, or takes on a new one where the "middle", around the expectation ceases to
matter.[7, 156].

Now, there are plenty of situations in real life in which we are confronted to
many possible regimes, or states. Assuming finite moments for all states, consider
the following structure: s1 a calm regime, with expected mean m1 and standard
deviation σ1, s2 a violent regime, with expected mean m2 and standard deviation
σ2, or more such states. Each state has its probability pi.

Now take the simple case of a Gaussian with switching means and variance: with
probability 1

2 , X ∼ N (µ1, σ1) and with probability 1
2 , X ∼ N (µ2, σ2). The kurtosis

will be

Kurtosis = 3−
2
(
(µ1 − µ2) 4 − 6

(
σ2

1 − σ2
2
)2
)

(
(µ1 − µ2)

2 + 2
(
σ2

1 + σ2
2
))2 (A.1)
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As we see the kurtosis is a function of d = µ1 − µ2. For situations where σ1 = σ2,
µ1 ,= µ2 , the kurtosis will be below that of the regular Gaussian, and our measure
will naturally be negative. In fact for the kurtosis to remain at 3,

|d|= 4
√

6
√

max(σ1, σ2)2 −min(σ1, σ2)2,

the stochasticity of the mean offsets the stochasticity of volatility.

Assume, to simplify a one-period model, as if one was standing in front of a dis-
crete slice of history, looking forward at outcomes. (Adding complications (transi-
tion matrices between different regimes) doesn’t change the main result.)

The characteristic function φ(t) for the mixed distribution becomes:

φ(t) =
N

∑
i=1

pie−
1
2 t2σ2

i +itmi

For N = 2, the moments simplify to the following:

M1 = p1m1 + (1− p1)m2

M2 = p1

(
m2

1 + σ2
1

)
+ (1− p1)

(
m2

2 + σ2
2

)

M3 = p1m3
1 + (1− p1)m2

(
m2

2 + 3σ2
2

)
+ 3m1 p1σ2

1

M4 = p1

(
6m2

1σ2
1 + m4

1 + 3σ4
1

)
+ (1− p1)

(
6m2

2σ2
2 + m4

2 + 3σ4
2

)

Let us consider the different varieties, all characterized by the condition p1 <
(1− p1), m1 < m2, preferably m1 < 0 and m2 > 0, and, at the core, the central
property: σ1 > σ2.

Variety 1: War and Peace. Calm period with positive mean and very low volatil-
ity, turmoil with negative mean and extremely low volatility.

Variety 2: Conditional deterministic state Take a bond B, paying interest r at
the end of a single period. At termination, there is a high probability of getting
B(1 + r), a possibility of defaut. Getting exactly B is very unlikely. Think that there
are no intermediary steps between war and peace: these are separable and discrete
states. Bonds don’t just default "a little bit". Note the divergence, the probability
of the realization being at or close to the mean is about nil. Typically, p(E(x))
the PDF of the expectation are smaller than at the different means of regimes, so
P(x = E(x)) < P (x = m1) and < P (x = m2), but in the extreme case (bonds),
P(x = E(x)) becomes increasingly small. The tail event is the realization around
the mean.

The same idea applies to currency pegs, as devaluations cannot be "mild", with
all-or- nothing type of volatility and low density in the "valley" between the two
distinct regimes.
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S2
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Pr

Figure A.4: The Bond pay-
off/Currency peg model. Ab-
sence of volatility stuck at
the peg, deterministic pay-
off in regime 2, mayhem in
regime 1. Here the kurtosis
K=2.5. Note that the coffee
cup is a special case of both
regimes 1 and 2 being degen-
erate.

Figure A.5: Pressure on
the peg which may give
a Dirac PDF in the "no
devaluation" regime (or,
equivalently,low volatil-
ity). It is typical for fi-
nance imbeciles to mis-
take regime S2 for low
volatility.

With option payoffs, this bimodality has the effect of raising the value of at-the-
money options and lowering that of the out-of-the-money ones, causing the exact
opposite of the so-called "volatility smile".

Note the coffee cup has no state between broken and healthy. And the state of
being broken can be considered to be an absorbing state (using Markov chains for
transition probabilities), since broken cups do not end up fixing themselves.

Nor are coffee cups likely to be "slightly broken", as we see in figure A.1.

A brief list of other situations where bimodality is encountered:

1. Currency pegs

2. Mergers

3. Professional choices and outcomes

4. Conflicts: interpersonal, general, martial, any situation in which there is no
intermediary between harmonious relations and hostility.

5. Conditional cascades
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a.2 transition probabilities: what can break will break
So far we looked at a single period model, which is the realistic way since new
information may change the bimodality going into the future: we have clarity over
one-step but not more. But let us go through an exercise that will give us an idea
about fragility. Assuming the structure of the model stays the same, we can look
at the longer term behavior under transition of states. Let P be the matrix of tran-
sition probabilitites, where pi,jis the transition from state i to state j over ∆t, (that

is, where S(t) is the regime prevailing over period t, P
(

S(t + ∆t) = sj

∣∣∣ S(t) = si

))

P =
(

p1,1 p1,2
p2,1 p2,2

)

After n periods, that is, n steps,

Pn =
(

an bn
cn dn

)

Where

an =
(p1,1 − 1) (p1,1 + p2,2 − 1) n + p2,2 − 1

p1,1 + p2,2 − 2

bn =
(1− p1,1) ((p1,1 + p2,2 − 1) n − 1)

p1,1 + p2,2 − 2

cn =
(1− p2,2) ((p1,1 + p2,2 − 1) n − 1)

p1,1 + p2,2 − 2

dn =
(p2,2 − 1) (p1,1 + p2,2 − 1) n + p1,1 − 1

p1,1 + p2,2 − 2

The extreme case to consider is the one with the absorbing state, where p1,1 = 1,
hence (replacing pi, ,=i|i=1,2 = 1− pi,i).

Pn =
(

1 0
1− pN

2,2 pN
2,2

)

and the "ergodic" probabilities:

lim
n→∞

Pn =
(

1 0
1 0

)

The implication is that the absorbing state regime 1, S(1) will end up dominating
with probability 1: what can break and is irreversible will eventually break.

With the "ergodic" matrix,
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lim
n→∞

Pn = π.1T

where 1T is the transpose of unitary vector {1,1}, π the matrix of eigenvectors.

The eigenvalues become λ =
(

1
p1,1 + p2,2 − 1

)
and associated eigenvectors π =

(
1 1

1−p1,1
1−p2,2

1

)
.
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7 L I M I T D I ST R I B U T I O N S , A
C O N S O L I DAT I O N ∗,†

I
n this expository chapter we proceed to consolidate the litera-

ture on limit distributions seen from our purpose, with some
shortcuts where indicated. After introducing the law of large
numbers, we show the intuition behind the central limit theo-
rem and illustrate how it varies preasymptotically across dis-

tributions. Then we discuss the law of large numbers as applied to higher
moments. A more formal and deeper approach will be presented in the next
chapter.

Both the law of large numbers and the central limit theorem are partial answers
to a general problem: "What is the limiting behavior of a sum (or average) of
random variables as the number of summands approaches infinity?". And our
law of medium numbers (or preasymptotics) is: now what when the number of
summands doesn’t reach infinity?

7.1 refresher: the weak and strong lln
The standard presentation is as follows. Let X1, X2, . . . be an infinite sequence of
independent and identically distributed (Lebesgue integrable) random variables
with expected value E(Xn) = µ (we will see further down one can somewhat
relax the i.i.d. assumptions). For all n, the sample average Xn = 1

n (X1 + · · · + Xn)
converges to the expected value, Xn → µ ,for n→ ∞.

Finiteness of variance is not necessary (though of course the finite higher mo-
ments accelerate the convergence).

There are two modes of convergence: convergence in probability P→ (which im-
plies convergence in distribution, though not always the reverse), and the stronger
a.s.→ almost sure convergence (similar to pointwise convergence) (or almost every-

Discussion chapter (with some research).
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where or almost always). Applied here the distinction corresponds to the weak
and strong LLN respectively.

The weak LLN The weak law of large numbers (or Kinchin’s law, or sometimes
called Bernouilli’s law) can be summarized as follows: the probability of a varia-
tion in excess of some threshold for the average becomes progressively smaller as
the sequence progresses. In estimation theory, an estimator is called consistent if
it thus converges in probability to the quantity being estimated.

Xn
P−→ µ when n→ ∞.

That is, for any positive number ε,

lim
n→∞

P
(
|Xn − µ|> ε

)
= 0.

Note that standard proofs are based on Chebyshev’s inequality: if X has a finite
non-zero variance σ2. Then for any real number k > 0,

Pr(|X− µ|≥ kσ) ≤ 1
k2 .

The strong LLN The strong law of large numbers states that, as the number
of summands n goes to infinity, the probability that the average converges to the
expectation equals 1.

Xn
a.s.−→ µ when n→ ∞.

That is,

P
(

lim
n→∞

Xn = µ
)

= 1.

Relaxations of i.i.d. Now one can relax the identically distributed assumption
under some conditions: Kolmogorov’s proved that non identical distributions for
the summands Xi require for each summand the existence of a finite second mo-
ment.

As to independence, some weak dependence is allowed. Traditionally the condi-
tions are, again, the usual finite variance 1) V(Xi) ≤ c and some structure on the
covariance matrix, 2) lim

|i−j|→+∞
Cov(Xi , Xj) = 0.

However it turns out 1) can be weakened to
n
∑
i=1

V[Xi] = o(n2), and 2) |Cov(Xi , Xj)|≤

ϕ(|i− j|), where 1
n

n
∑
i=1

ϕ(i)→ 0. See Bernstein [19] and Kozlov [148] (in Russian).2

2 Thanking "romanoved", a mysterious Russian speaking helper on Mathematics Stack Exchange.
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Our Interest Our concern in this chapter and the next one is clearly to look at
the "speed" of such convergence. Note that under the stronger assumption of i.i.d.
we do not need variance to be finite, so we can focus on mean absolute deviation
as a metric for divergence.

7.2 central limit in action
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Figure 7.1: The fastest CLT: the Uniform becomes Gaussian in a few steps. We have, successively, 1,
2, 3, and 4 summands. With 3 summands we see a well formed bell shape.

We will start with a simplification of the generalized central limit theorem (GCLT),
as formulated by Paul Lévy (the traditional approaches to CLT as well as the tech-
nical backbone will be presented later):

7.2.1 The Stable Distribution

Using the same notation as above, let X1, . . . , Xn be independent and identically
distributed random variables. Consider their sum Sn. We have

Sn− an
bn

D→ Xs , (7.1)

where Xs follows a stable distribution S , an and bn are norming constants, and, to

repeat, D→ denotes convergence in distribution (the distribution of X as n → ∞).
The properties of S will be more properly defined and explored in the next chapter.
Take it for now that a random variable Xs follows a stable (or α-stable) distribution,
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Figure 7.2: Paul Lévy, 1886-1971, formulated
the generalized central limit theorem.

symbolically Xs ∼ S(αs , β, µ, σ), if its characteristic function χ(t) = E(eitXs ) is of the
form:

χ(t) = e(iµt−|tσ|αs (1−iβ tan( πα−s
2 )sgn(t))) when αs ,= 1. (7.2)

The constraints are −1 ≤ β ≤ 1 and 0 < αs ≤ 2.3

The designation stable distribution implies that the distribution (or class) is sta-
ble under summation: you sum up random variables following any the various
distributions that are members of the class S explained next chapter (actually the
same distribution with different parametrizations of the characteristic function),
and you stay within the same distribution. Intuitively, χ(t)n is the same form as
χ(t) , with µ → nµ, and σ → n

1
α σ. The well known distributions in the class (or

some people call it a "basin") are: the Gaussian, the Cauchy and the Lévy with
α = 2, 1, and 1

2 , respectively. Other distributions have no closed form density.4

7.2.2 The Law of Large Numbers for the Stable Distribution

Let us return to the law of large numbers.

3 We will try to use αs ∈ (0, 2] to denote the exponent of the limiting and Platonic stable distribution and
αp ∈ (0, ∞) the corresponding Paretian (preasymptotic) equivalent but only in situations where there could
be some ambiguity. Plain α should be understood in context.

4 Actually, there are ways to use special functions; for instance one discovered accidentally by the
author: for the Stable S with standard parameters α = 3

2 , β = 1, µ = 0, σ = 1 , PDF(x) =

−

3√2e
x3
27
(

3√3xAi
(

x2

3 22/3 3√3

)
+3

3√2Ai′
(

x2

3 22/3 3√3

))

3 32/3 used further down in the example on the limit dis-
tribution for Pareto sums.
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Figure 7.3: The law of large
numbers show a tighten-
ing distribution around the
mean leading to degeneracy
converging to a Dirac stick
at the exact mean.

By standard results, we can observe the law of large numbers at work for the
stable distribution, as illustrated in Figure 7.3:

lim
n→+∞

χ

(
t
n

)n
= eiµt , 1 < αs ≤ 2 (7.3)

which is the characteristic functionof a Dirac delta at µ, a degenerate distribution,
since the Fourier transform F (here parametrized to be the inverse of the charac-
teristic function) is:

1√
2π

Ft
(

eiµt
)

(x) = δ(µ + x). (7.4)

Further, we can observe the "real-time" operation for all 1 < n < +∞ in the
following ways, as we will explore in the next sections.

7.3 speed of convergence of clt: visual explorations
We note that if X has a finite variance, the stable-distributed random variable Xs
will be Gaussian. But note that Xs is a limiting construct as n → ∞ and there are
many, many complication with "how fast" we get there. Let us consider 4 cases
that illustrate both the idea of CLT and the speed of it.

7.3.1 Fast Convergence: the Uniform Dist.

Consider a uniform distribution –the simplest of all. If its support is in [0, 1], it
will simply have a density of φ(x1) = 1 for 0 ≤ x1 ≤ 1 and integrates to 1. Now
add another variable, x2, identically distributed and independent. The sum x1 + x2
immediately changed in shape! Look at φ2(.), the density of the sum in Figure
7.1. It is now a triangle. Add one variable and now consider the density φ3 of the
distribution of X1 + X2 + X3. It is already almost bell shaped, with n = 3 summands.
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The uniform sum distribution

φn(x) =
n

∑
k=0

(−1)k
(

n
k

)(
x− L
H − L

− k
)n−1

sgn
(

x− L
H − L

− k
)

for nL ≤ x ≤ nH
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Figure 7.4: The exponential distribution,φ indexed by the number of summands. Slower than the
uniform, but good enough.

7.3.2 Semi-slow convergence: the exponential

Let us consider a sum of exponential random variables.

We have for initial density

φ1(x) = λe−λx, x ≥ 0,
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Figure 7.5: The Pareto distribution. Doesn’t want to lose its skewness, although in this case it should
converge to the Gaussian... eventually.

and for n summands5

φn(x) =
(

1
λ

)−n xn−1e−λx

Γ(n)
.

We have, replacing x by n/λ (and later in the illustrations in Fig. 7.4

λ = 1), (
1
λ

)−n
xn−1eλ(−x)

Γ(n)
→

n→∞

λe−
λ2(x− n

λ )
2

2n
√

2π
√

n
,

which is the density of the normal distribution with mean n
λ and variance n

λ2 .

We can see how we get more slowly to the Gaussian, as shown in Figure 7.4,
mostly on account of its skewness. Getting to the Gaussian requires symmetry.

7.3.3 The slow Pareto

Consider the simplest Pareto distribution on [1, ∞):

φ1(x) = 2x−3

5 We derive the density of sums either by convolving, easy in this case, or as we will see with the Pareto,
via characteristic functions.
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Figure 7.6: The Pareto dis-
tribution, φ100 and φ1000,
not much improvement to-
wards Gaussianity, but an
α = 2 will eventually get
you there if you are patient
and have a long, very long,
life.

and inverting the characteristic function,

φn(x) =
1

2π

∫ ∞

−∞
exp(−itx)(2E3(−it))n dt, x ≥ n

Where E(.)(.) is the exponential integral En(z) =
∫ ∞

1
dtet(−z)

tn . Clearly, the integration
is done numerically (so far nobody has managed to pull out the distribution of a
Pareto sum). It can be exponentially slow (up to 24 hours for n = 50 vs. 45 seconds
for n = 2), so we have used Monte Carlo simulations for Figs. 7.3.1.

Recall from Eq. 7.1 that the convergence requires norming constants an and bn.
From Uchaikin and Zolotarev [257], we have (narrowing the situation for 1 < αp ≤
2):

P(X > x) = cx−αp

as x → ∞ (assume here that c is a constant we will present more formally the
"slowly varying function" in the next chapter, and

P(X < x) = d|x|−αp
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as x → ∞. The norming constants become an = n E(X) for αp > 1 (for other cases,
consult [257] as these are not likely to occur in practice), and

bn =





πn1/αp

(
2 sin

(
παp

2

)
Γ(αp)

)− 1
αp (c + d)1/αp for 1 < αp < 2

√
c + d

√
n log(n) for αp = 2

. (7.5)

And the symmetry parameter β = c−d
c+d . Clearly, the situation where the Paretian

parameter αp is greater than 2 leads to the Gaussian.

7.3.4 The half-cubic Pareto and its basin of convergence

Of interest is the case of α = 3
2 . Unlike the situations where as in Figure 7.3.1, the

distribution ends up slowly being symmetric. But, as we will cover in the next
chapter, it is erroneous to conflate its properties with those of a stable. It is, in a
sense, more fat-tailed.

25000 30000 35000 40000 45000
x

ϕ10000

Figure 7.7: The half-cubic
Pareto distribution never be-
comes symmetric in real life.
Here n = 104

7.4 cumulants and convergence
Since the Gaussian (as a basin of convergence) has skewness of 0 and (raw) kurtosis
of 3, we can heuristically examine the convergence of these moments to establish
the speed of the workings under CLT.

Definition 7.1 (Excess p-cumulants)
Let χ(ω) be characteristic function of a given distribution, n the number of summands
(for independent random variables), p the order of the moment. We define the ratio of
cumulants for the corresponding pth moment:

Kp
k ! (−i)p∂p log(χ(ω)n)

(−∂2 log(χ(ω)n))2
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Figure 7.8: Behavior of the 4th moment under aggregation for a few financial securities deemed to
converge to the Gaussian but in fact do not converge (backup data for [228]). There is no conceivable
way to claim convergence to Gaussian for data sampled at a lower frequency.

K(n) is a metric of excess pth moment over that of a Gaussian, p > 2; in other words,
K4

n = 0 denotes Gaussianity for n independent summands.

Remark 6

We note that
lim

n→∞
Kp

N = 0

for all probability distributions outside the Power Law class.

We also note that limp→∞ Kp
n is finite for the thin-tailed class. In other words, we

face a clear-cut basin of converging vs. diverging moments.

For distributions outside the Power Law basin, ∀p ∈ N>2, Kp
n decays at a rate

Np−2.

A sketch of the proof can be done using the stable distribution as the limiting
basin and the nonderivability at order p greater than its tail index, using Eq. 8.4.

Table 7.1 shows what happens to the cumulants K(.) for n-summed variables.

We would expect a drop at a rate 1
N2 for stochastic volatility (gamma variance

wlog). However, figure 10.2 shows the drop does not take place at any such speed.
Visibly we are not in the basin. As seen in [228] there is an absence of convergence
of kurtosis under summation across economic variables.
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Table 7.1: Table of Normalized Cumulants For Thin Tailed Distributions Speed of Convergence for N
Independent Summands
-

Distr. Poisson Expon. Gamma Symmetric 2-state vol Γ-Variance
(λ) (λ) (a,b) (σ1, σ2) (a, b)

K(2) 1 1 1 1 1
K(3) 1

nλ
2λ
n

2
a b n 0 0

K(4) 1
nλ2

3!λ2

n
3!

a2 b2 n
3(1−p)p

n × (σ2
1−σ2

2 )
2

(pσ2
1−(p−1)σ2

2 )
3

3b
n

7.5 technical refresher: traditional versions of clt
This is a refresher of the various approaches bundled under the designation CLT.

The Standard (Lindeberg-Lévy) version of CLT Suppose as before a sequence of
i.i.d. random variables with E(Xi) = µ and V(Xi) = σ2 < +∞, and Xn the sample
average for n. Then as n approaches infinity, the sum of the random variables√

n(Xnµ) converges in distribution to a Gaussian [20] [21]:

√
n
(
Xn − µ

) d−→ N
(

0, σ2
)

.

Convergence in distribution means that the CDF (cumulative distribution function)
of
√

n converges pointwise to the CDF of N (0, σ) for every real z,

lim
n→∞

P
(√

n(Xn − µ) ≤ z
)

= lim
n→∞

P

[√
n(Xn − µ)

σ
≤ z

σ

]
= Φ

( z
σ

)
, σ > 0

where Φ(z) is the standard normal cdf evaluated ar z. Note that the convergence
is uniform in z in the sense that

lim
n→∞

sup
z∈R

∣∣∣P
(√

n(Xn − µ) ≤ z
)
−Φ

( z
σ

)∣∣∣ = 0,

where sup denotes the least upper bound, that is, the supremum of the set.

Lyapunov’s CLT In Lyapunov’s derivation, summands have to be independent,
but not necessarily identically distributed. The theorem also requires that random
variables |′Xi| have moments of some order (2 + δ, and that the rate of growth of
these moments is limited by the Lyapunov condition given below.

The condition is as follows. Define

s2
n =

n

∑
i=1

σ2
i
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If for some δ > 0,

lim
n→∞

1
s2+δ

n

n

∑
i=1

E
(
|Xi − µi|2+δ

)
= 0,

then a sum of Xi−µi
si

converges in distribution to a standard normal random vari-
able, as n goes to infinity:

1
sn

n

∑
i=1

(Xi − µi)
D−→ N(0, 1).

If a sequence of random variables satisfies Lyapunov’s condition, then it also sat-
isfies Lindeberg’s condition that we cover next. The converse implication, however,
does not hold.

Lindeberg’s condition Lindeberg allows to reach CLT under weaker assump-
tions. With the same notations as earlier:

lim
n→∞

1
s2

n

n

∑
i=1

E
(

(Xi − µi)2 · 1{|Xi−µi |>εsn}
)

= 0

for all ε > 0 , where 1 indicator function, then the random variable Zn = ∑n
i=1(Xi−µi)

sn
converges in distribution] to a Gaussian as n→ ∞.

Lindeberg’s condition is sufficient, but not in general necessary except if the
sequence under consideration satisfies:

max
1≤k≤n

σ2
i

s2
n
→ 0, as n→ ∞,

then Lindeberg’s condition is both sufficient and necessary, i.e. it holds if and only
if the result of central limit theorem holds.

7.6 the law of large numbers for higher moments

7.6.1 Higher Moments

A test of fat tailedness can be seen by applying the law of large number to higher
moments and see how they converge. A visual examination of the behavior of
the cumulative mean of the moment can be done in a similar way to the standard
visual tests of LLN we saw in Chapter 3– except that it applies to Xp (raw or
centered) rather than X. We check the functioning of the law of large numbers by
seeing if adding observations causes a reduction of the variability of the average
(or its variance if it exists). Moments that do not exist will show occasional jumps –
or, equivalently, large subsamples will produce different averages. When moments
exist, adding observations eventually prevents further jumps.
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Another visual technique is to consider the contribution of the maximum obser-
vation to the total, and see how it behaves as n grows larger. It is called the MS
plot [115], "maximum to sum", and shown in Figure 7.9.

Table 7.2: Kurtosis K(t) for t daily, 10-day, and 66-day windows for the random variables

K(1) K(10) K(66) Max
Quartic Years

Australian Dollar/USD 6.3 3.8 2.9 0.12 22.
Australia TB 10y 7.5 6.2 3.5 0.08 25.
Australia TB 3y 7.5 5.4 4.2 0.06 21.
BeanOil 5.5 7.0 4.9 0.11 47.
Bonds 30Y 5.6 4.7 3.9 0.02 32.
Bovespa 24.9 5.0 2.3 0.27 16.
British Pound/USD 6.9 7.4 5.3 0.05 38.
CAC40 6.5 4.7 3.6 0.05 20.
Canadian Dollar 7.4 4.1 3.9 0.06 38.
Cocoa NY 4.9 4.0 5.2 0.04 47.
Coffee NY 10.7 5.2 5.3 0.13 37.
Copper 6.4 5.5 4.5 0.05 48.
Corn 9.4 8.0 5.0 0.18 49.
Crude Oil 29.0 4.7 5.1 0.79 26.
CT 7.8 4.8 3.7 0.25 48.
DAX 8.0 6.5 3.7 0.20 18.
Euro Bund 4.9 3.2 3.3 0.06 18.
Euro Currency/DEM
previously 5.5 3.8 2.8 0.06 38.

Eurodollar Depo 1M 41.5 28.0 6.0 0.31 19.
Eurodollar Depo 3M 21.1 8.1 7.0 0.25 28.
FTSE 15.2 27.4 6.5 0.54 25.
Gold 11.9 14.5 16.6 0.04 35.
Heating Oil 20.0 4.1 4.4 0.74 31.
Hogs 4.5 4.6 4.8 0.05 43.
Jakarta Stock Index 40.5 6.2 4.2 0.19 16.
Japanese Gov Bonds 17.2 16.9 4.3 0.48 24.
Live Cattle 4.2 4.9 5.6 0.04 44.
Nasdaq Index 11.4 9.3 5.0 0.13 21.
Natural Gas 6.0 3.9 3.8 0.06 19.
Nikkei 52.6 4.0 2.9 0.72 23.
Notes 5Y 5.1 3.2 2.5 0.06 21.
Russia RTSI 13.3 6.0 7.3 0.13 17.
Short Sterling 851.8 93.0 3.0 0.75 17.
Silver 160.3 22.6 10.2 0.94 46.
Smallcap 6.1 5.7 6.8 0.06 17.
SoyBeans 7.1 8.8 6.7 0.17 47.
SoyMeal 8.9 9.8 8.5 0.09 48.
Sp500 38.2 7.7 5.1 0.79 56.
Sugar #11 9.4 6.4 3.8 0.30 48.
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Table 7.2: (continued from previous page)

K(1) K(10) K(66) Max
Quartic Years

SwissFranc 5.1 3.8 2.6 0.05 38.
TY10Y Notes 5.9 5.5 4.9 0.10 27.
Wheat 5.6 6.0 6.9 0.02 49.
Yen/USD 9.7 6.1 2.5 0.27 38.
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Figure 7.9: MS Plot show-
ing the behavior of cumula-
tive moments p = 1, 2, 3, 4
for the SP500 over the 60
years ending in 2018. The
MS plot (Maximum to sum)
will be presented in 10.2.6.
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Figure 7.10: Gaussian Con-
trol for the data in Figure
7.9.



7.7 mean deviation for a stable distributions 141

7.7 mean deviation for a stable distributions

Let us prepare a result for the next chapter using the norm L1 for situations of finite
mean but infinite variance.6 Clearly we have no way to measure the compression
of the distribution around the mean within the norm L2.

The error of a sum in the norm L1 is as follows. Let θ(x) be the Heaviside function
(whose value is zero for negative arguments and one for positive arguments). Since
sgn(x) = 2θ(x)− 1, its characteristic function will be:

χsgn(x)(t) =
2i
t

. (7.6)

Let χd(.) be the characteristic function of any nondegenerate distribution. Convo-
luting χsgn(x) ∗ (χd)n, we obtain the characteristic functionfor the positive variations
for n independent summands

χm =
∫ ∞

−∞
χsgn(x)(t)χd(u− t)ndt.

In our case of mean absolute deviation being twice that of the positive values of
X:

χ(|Sn|) = (2i)
∫ ∞

−∞

χ(t− u)n

t
du,

which is the Hilbert transform of χ when
∫

is taken in the p.v. sense (Pinelis,
2015)[193]. In our situation, given that all independents summands are copies
from the same distribution, we can replace the product χ(t)n with χs(t) which is
the same characteristic function with σs = n1/ασ, β remaining the same:

(7.7)E(|X|) = 2i
∂

∂u
p.v.

∫ ∞

−∞

χs(t − u)
t

dt|t=0.

Now, [193] the Hilbert transform H,

(H f )(t) =
2

πi

∫ ∞−

0
χs(u + t)− χs(u− t) dt

can be rewritten as

(7.8)(H f )(t) =−i
∂

∂u

(
1+ χs(u)+

1
πi

∫ ∞−

0
χs(u + t)−χs(u− t)−χs(t)+ χs(−t)

dt
t

)
.

Consider the stable distribution defined in 7.2.1.

Deriving first inside the integral and using a change of variable, z = log(t),

E|X|(α̃s ,β,σs ,0) =
∫ ∞

−∞
2iαse−(σsez)αs−z (σsez)αs

(
β tan

(παs
2

)
sin
(

β tan
(παs

2

) (
σsez)αs

)

+ cos
(

β tan
(παs

2

) (
σsez)αs

))
dz

6 We say, again by convention, infinite for the situation where the random variable, say X2 (or the variance of
any random variable), is one-tailed –bounded on one side– and undefined in situations where the variable
is two-tailed, e.g. the infamous Cauchy.
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which then integrates nicely to:

(7.9)E|X|(α̃s ,β,σs ,0) =
σs
2π

Γ
(

αs − 1
αs

)((
1 + iβ tan

(παs
2

))1/αs
+
(

1− iβ tan
(παs

2

))1/αs
)

.

next
The next chapter presents a central concept: how to work with the law of middle
numbers? How can we translate between distributions?



8 H O W M U C H DATA D O YO U N E E D ? A N
O P E R AT I O N A L M E T R I C F O R
FAT-TA I L E D N E S S ‡

I
n this (research) chapter we discuss the laws of medium num-

bers. We present an operational metric for univariate uni-
modal probability distributions with finite first moment, in
[0, 1] where 0 is maximally thin-tailed (Gaussian) and 1 is max-
imally fat-tailed. It is based on "how much data one needs to

make meaningful statements about a given dataset?"

Applications: Among others, it

• helps assess the sample size n needed for statistical significance outside
the Gaussian,

• helps measure the speed of convergence to the Gaussian (or stable
basin),

• allows practical comparisons across classes of fat-tailed distributions,

• allows the assessment of the number of securities needed in portfolio
construction to achieve a certain level of stability from diversification,

• helps understand some inconsistent attributes of the lognormal, pend-
ing on the parametrization of its variance.

The literature is rich for what concerns asymptotic behavior, but there is a
large void for finite values of n, those needed for operational purposes.

Background : Conventional measures of fat-tailedness, namely 1) the tail index
for the Power Law class, and 2) Kurtosis for finite moment distributions fail to
apply to some distributions, and do not allow comparisons across classes and

Research chapter.
The author owes the most to the focused comments by Michail Loulakis who, in addition, provided the

rigorous derivations for the limits of the κ for the Student T and lognormal distributions, as well as to
the patience and wisdom of Spyros Makridakis. The paper was initially presented at Extremes and Risks in
Higher Dimensions, Sept 12-16 2016, at the Lorentz Center, Leiden and at Jim Gatheral’s Festschrift at the
Courant Institute, in October 2017. The author thanks Jean-Philippe Bouchaud, John Einmahl, Pasquale
Cirillo, and others. Laurens de Haan suggested changing the name of the metric from "gamma" to "kappa"
to avoid confusion. Additional thanks to Colman Humphrey, Michael Lawler, Daniel Dufresne and others
for discussions and insights with derivations.
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parametrization, that is between power laws outside the Levy-Stable basin, or
power laws to distributions in other classes, or power laws for different number
of summands. How can one compare a sum of 100 Student T distributed random
variables with 3 degrees of freedom to one in a Levy-Stable or a Lognormal class?
How can one compare a sum of 100 Student T with 3 degrees of freedom to a
single Student T with 2 degrees of freedom?

We propose an operational and heuristic metric that allows us to compare n-
summed independent variables under all distributions with finite first moment.
The method is based on the rate of convergence of the law of large numbers for
finite sums, n-summands specifically.

We get either explicit expressions or simulation results and bounds for the log-
normal, exponential, Pareto, and the Student T distributions in their various cali-
brations –in addition to the general Pearson classes.

Cauchy (�=1)
Pareto 1.14

Cubic Student T

Gaussian (�=0) Degrees of
Fat Tailedness

2 4 6 8 10
n

2

4

6

8

10

�|Sn=X1+X2+...+Xn |

Figure 8.1: The intuition of
what κ is measuring: how
the mean deviation of the
sum of identical copies of
a r.v. Sn = X1 + X2 +
. . . Xn grows as the sam-
ple increases and how we
can compare preasymptoti-
cally distributions from dif-
ferent classes.

8.1 introduction and definitions
How can one compare a Pareto distribution with tail α = 2.1 that is, with finite
variance, to a Gaussian? Asymptotically, these distributions in the regular vari-
ation class with finite second moment, under summation, become Gaussian, but
pre-asymptotically, we have no standard way of comparing them given that met-
rics that depend on higher moments, such as kurtosis, cannot be of help. Nor can
we easily compare an infinite variance Pareto distribution to its limiting α-Stable
distribution (when both have the same tail index or tail exponent ). Likewise, how
can one compare the "fat-tailedness" of, say a Student T with 3 degrees of freedom
to that of a Levy-Stable with tail exponent of 1.95? Both distributions have a finite
mean; of the two, only the first has a finite variance but, for a small number of
summands, behaves more "fat-tailed" according to some operational criteria.

Criterion for "fat-tailedness" There are various ways to "define" Fat Tails and
rank distributions according to each definition. In the narrow class of distributions
having all moments finite, it is the kurtosis, which allows simple comparisons and
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Figure 8.2: Watching the ef-
fect of the Generalized Cen-
tral Limit Theorem: Pareto
and Student T Distribution,
in the P class, with α ex-
ponent, κ converge to 2 −
(1α<2α +1α≥22), or the Sta-
ble S class. We observe
how slow the convergence,
even after 1000 summands.
This discounts Mandelbrot’s
assertion that an infinite
variance Pareto can be sub-
sumed into a stable distribu-
tion.

measure departures from the Gaussian, which is used as a norm. For the Power
Law class, it can be the tail exponent . One can also use extremal values, taking
the probability of exceeding a maximum value, adjusted by the scale (as practiced
in extreme value theory). For operational uses, practitioners’ fat-tailedness is a
degree of concentration, such as "how much of the statistical properties will be
attributable to a single observation?", or, appropriately adjusted by the scale (or
the mean dispersion), "how much is the total wealth of a country in the hands of
the richest individual?"

Here we use the following criterion for our purpose, which maps to the measure
of concentration in the past paragraph: "How much will additional data (under
such a probability distribution) help increase the stability of the observed mean".
The purpose is not entirely statistical: it can equally mean: "How much will adding
an additional security into my portfolio allocation (i.e., keeping the total constant)
increase its stability?"

Our metric differs from the asymptotic measures (particularly ones used in ex-
treme value theory) in the fact that it is fundamentally preasymptotic.

Real life, and real world realizations, are outside the asymptote.
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What does the metric do? The metric we propose, κ does the following:

• Allows comparison of n-summed variables of different distributions for a
given number of summands , or same distribution for different n, and assess
the preasymptotic properties of a given distributions.

• Provides a measure of the distance from the limiting distribution, namely the
Lévy α-Stable basin (of which the Gaussian is a special case).

• For statistical inference, allows assessing the "speed" of the law of large num-
bers, expressed in change of the mean absolute error around the average
thanks to the increase of sample size n.

• Allows comparative assessment of the "fat-tailedness" of two different uni-
variate distributions, when both have finite first moment.

• Allows us to know ahead of time how many runs we need for a Monte Carlo
simulation.

The state of statistical inference The last point, the "speed", appears to have
been ignored (see earlier comments in Chapter 3 about the 9,400 pages of the
Encyclopedia of Statistical Science [147]). It is very rare to find a discussion about
how long it takes to reach the asymptote, or how to deal with n summands that
are large but perhaps not sufficiently so for the so-called "normal approximation".

To repeat our motto, "statistics is never standard". This metric aims at showing
how standard is standard, and measure the exact departure from the standard from
the standpoint of statistical significance.

8.2 the metric

Student T (3)
or
Stable �=1.7

Stable �=1.2

� Gaussian

0.5 1.0 1.5 2.0 2.5 3.0
�

0.2

0.4

0.6

0.8

1.0

�1

Figure 8.3: The lognormal distribu-
tion behaves like a Gaussian for low
values of σ, but becomes rapidly equiv-
alent to a power law. This illustrates
why, operationally, the debate on
whether the distribution of wealth was
lognormal (Gibrat) or Pareto (Zipf)
doesn’t carry much operational signifi-
cance.

Definition 8.1 (the κ metric)
Let X1, . . . , Xn be i.i.d. random variables with finite mean, that is E(X) < +∞. Let
Sn = X1 + X2 + . . . + Xn be a partial sum. Let M(n) = E(|Sn −E(Sn)|) be the expected
mean absolute deviation from the mean for n summands. Define the "rate" of convergence
for n additional summands starting with n0:
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Table 8.1: Kappa for 2 summands, κ1.
Distribution κ1

Student T
(α)
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Table 8.2: Summary of main results

Distribution κn

Exponential/Gamma Explicit

Lognormal (µ, σ) No explicit κn but explicit
lower and higher bounds
(low or high σ or n). Approx-
imated with Pearson IV for
σ in between.

Pareto (α) (Constant) Explicit for κ2 (lower bound
for all α).

Student T(α) (slowly varying func-
tion)

Explicit for κ1 , α = 3.

κn0,n = min

{
κn0,n :

M(n)
M(n0)

=
(

n
n0

) 1
2−κn0,n

, n0 = 1, 2, ...

}
,
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Table 8.3: Comparing Pareto to Student T (Same tail exponent α)
α Pareto Pareto Pareto Student Student Student

κ1 κ1,30 κ1,100 κ1 κ1,30 κ1,100
1.25 0.829 0.787 0.771 0.792 0.765 0.756
1.5 0.724 0.65 0.631 0.647 0.609 0.587
1.75 0.65 0.556 0.53 0.543 0.483 0.451
2. 0.594 0.484 0.449 0.465 0.387 0.352
2.25 0.551 0.431 0.388 0.406 0.316 0.282
2.5 0.517 0.386 0.341 0.359 0.256 0.227
2.75 0.488 0.356 0.307 0.321 0.224 0.189
3. 0.465 0.3246 0.281 0.29 0.191 0.159
3.25 0.445 0.305 0.258 0.265 0.167 0.138
3.5 0.428 0.284 0.235 0.243 0.149 0.121
3.75 0.413 0.263 0.222 0.225 0.13 0.10
4. 0.4 0.2532 0.211 0.209 0.126 0.093

n > n0 ≥ 1, hence

κ(n0, n) = 2− log(n)− log(n0)

log
(

M(n)
M(n0)

) . (8.1)

Further, for the baseline values n = n0 + 1, we use the shorthand κn0 .

We can also decompose κ(n0, n) in term of "local" intermediate ones similar to
"local" interest rates, under the constraint.

κ(n0, n) = 2− log(n)− log(n0)

∑n
i=0

log(i+1)−log(i)
2−κ(i,i+1)

. (8.2)

Use of Mean Deviation Note that we use for measure of dispersion around the
mean the mean absolute deviation, to stay in norm L1 in the absence of finite vari-
ance –actually, even in the presence of finite variance, under Power Law regimes,
distributions deliver an unstable and uninformative second moment. Mean devi-
ation proves far more robust there. (Mean absolute deviation can be shown to be
more "efficient" except in the narrow case of kurtosis equals 3 (the Gaussian), see
a longer discussion in [237]; for other advantages, see [187].)

8.3 stable basin of convergence as benchmark
Definition 8.2 (the class P)
The P class of power laws (regular variation) is defined for r.v. X as follows:

P = {X : P(X > x) ∼ L(x) x−α} (8.3)
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where ∼ means that the limit of the ratio or rhs to lhs goes to 1 as x → ∞. L :
[xmin, +∞)→ (0, +∞) is a slowly varying function function, defined as limx→+∞

L(kx)
L(x) =

1 for any k > 0. The constant α > 0.

Next we define the domain of attraction of the sum of identically distributed
variables, in our case with identical parameters.

Definition 8.3
(stable S class) A random variable X follows a stable (or α-stable) distribution, symboli-
cally X ∼ S(α̃, β, µ, σ), if its characteristic functionχ(t) = E(eitX) is of the form:

χ(t) =






e(iµt−|tσ|α̃(1−iβ tan( πα̃
2 )sgn(t))) α̃ ,= 1

e
it
(

2βσ log(σ)
π +µ

)
−|tσ|

(
1+

2iβsgn(t) log(|tσ|)
π

)

α̃ = 1

, (8.4)

Next, we define the corresponding stable α̃:

α̃ !
{

α1α<2 + 21α≥2 if X is in P

2 otherwise.
(8.5)

Further discussions of the class S are as follows.

8.3.1 Equivalence for Stable distributions

For all n0 and n ≥ 1 in the Stable S class with α̃ ≥ 1:

κ(n0,n) = 2− α̃,

simply from the property that

M(n) = n
1
α M(1) (8.6)

This, simply shows that κn0,n = 0 for the Gaussian.

The problem of the preasymptotics for n summands reduces to:

• What is the property of the distribution for n0 = 1 (or starting from a stan-
dard, off-the shelf distribution)?

• What is the property of the distribution for n0 summands?

• How does κn → 2− α̃ and at what rate?

8.3.2 Practical significance for sample sufficiency
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Confidence intervals: As a simple heuristic, the higher κ, the more dispro-
portionally insufficient the confidence interval. Any value of κ above .15
effectively indicates a high degree of unreliability of the "normal approxima-
tion". One can immediately doubt the results of numerous research papers
in fat-tailed domains.

Computations of the sort done Table 8.2 for instance allows us to compare various
distributions under various parametriazation. (comparing various Pareto distribu-
tions to symmetric Student T and, of course the Gaussian which has a flat kappa
of 0)

As we mentioned in the introduction, required sample size for statistical infer-
ence is driven by n, the number of summands. Yet the law of large numbers is
often invoked in erroneous conditions; we need a rigorous sample size metric.

Many papers, when discussing financial matters, say [99] use finite variance as
a binary classification for fat tailedness: power laws with a tail exponent greater
than 2 are therefore classified as part of the "Gaussian basin", hence allowing the
use of variance and other such metrics for financial applications. A much more
natural boundary is finiteness of expectation for financial applications [229]. Our
metric can thus be useful as follows:

Let Xg,1, Xg,2, . . . , Xg,ng be a sequence of Gaussian variables with mean µ and
scale σ. Let Xν,1, Xν,2, . . . , Xν,nν be a sequence of some other variables scaled to be

of the same M(1), namely Mν(1) = Mg(1) =
√

2
π σ. We would be looking for values

of nν corresponding to a given ng.

κn is indicative of both the rate of convergence under the law of large number,
and for κn → 0, for rate of convergence of summands to the Gaussian under
the central limit, as illustrated in Figure 8.2.

nmin = inf

{
nν : E

(∣∣∣∣∣

nν

∑
i=1

Xν,i −mp

nν

∣∣∣∣∣

)
≤ E

(∣∣∣∣∣

ng

∑
i=1

Xg,i −mg

ng

∣∣∣∣∣

)
, nν > 0

}
(8.7)

which can be computed using κn = 0 for the Gaussian and backing our from κn for
the target distribution with the simple approximation:

nν = n
− 1

κ1,ng−1

g ≈ n
− 1

κ1−1
g , ng > 1 (8.8)

The approximation is owed to the slowness of convergence. So for example, a
Student T with 3 degrees of freedom (α = 3) requires 120 observations to get the
same drop in variance from averaging (hence confidence level) as the Gaussian
with 30, that is 4 times as much. The one-tailed Pareto with the same tail exponent
α = 3 requires 543 observations to match a Gaussian sample of 30, 4.5 times more
than the Student, which shows 1) finiteness of variance is not an indication of fat
tailedness (in our statistical sense), 2) neither are tail exponent s good indicators 3)
how the symmetric Student and the Pareto distribution are not equivalent because
of the "bell-shapedness" of the Student (from the slowly varying function) that
dampens variations in the center of the distribution.
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We can also elicit quite counterintuitive results. From Eq. 8.8, the "Pareto 80/20"
in the popular mind, which maps to a tail exponent around α ≈ 1.14, requires
> 109 more observations than the Gaussian.

8.4 technical consequences

8.4.1 Some Oddities With Asymmetric Distributions

The stable distribution, when skewed, has the same κ index as a symmetric one (in
other words, κ is invariant to the β parameter in Eq. 8.4, which conserves under
summation). But a one-tailed simple Pareto distribution is fatter tailed (for our
purpose here) than an equivalent symmetric one.

This is relevant because the stable is never really observed in practice and used
as some limiting mathematical object, while the Pareto is more commonly seen.
The point is not well grasped in the literature. Consider the following use of the
substitution of a stable for a Pareto. In Uchaikin and Zolotarev [257]:

Mandelbrot called attention to the fact that the use of the extremal stable distri-
butions (corresponding to β = 1) to describe empirical principles was preferable
to the use of the Zipf-Pareto distributions for a number of reasons. It can be seen
from many publications, both theoretical and applied, that Mandelbrot’s ideas
receive more and more wide recognition of experts. In this way, the hope arises
to confirm empirically established principles in the framework of mathematical
models and, at the same time, to clear up the mechanism of the formation of
these principles.

These are not the same animals, even for large number of summands.

8.4.2 Rate of Convergence of a Student T Distribution to the Gaussian Basin

We show in the appendix –thanks to the explicit derivation of κ for the sum of
students with α = 3, the "cubic" commonly noticed in finance –that the rate of
convergence of κ to 0 under summation is 1

log(n) . This (and the semi-closed form for
the density of an n-summed cubic Student) complements the result in Bouchaud
and Potters [28] (see also [214]), which is as follows. Their approach is to separate
the "Gaussian zone" where the density is approximated by that of a Gaussian, and
a "Power Law zone" in the tails which retains the original distribution with Power
Law decline. The "crossover" between the two moves right and left of the center
at a rate of

√
n log(n) standard deviations) which is excruciatingly slow. Indeed,

one can note that more summands fall at the center of the distribution, and fewer
outside of it, hence the speed of convergence according to the central limit theorem
will differ according to whether the density concerns the center or the tails.

Further investigations would concern the convergence of the Pareto to a Levy-
Stable, which so far we only got numerically.
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8.4.3 The Lognormal is Neither Thin Nor Fat Tailed

Naively, as we can see in Figure 8.2, at low values of the parameter σ, the log-
normal behaves like a Gaussian, and, at high σ, it appears to have the behavior
of a Cauchy of sorts (a one-tailed Cauchy, rather a stable distribution with α = 1,
β = 1), as κ gets closer and closer to 1. This gives us an idea about some aspects
of the debates as to whether some variable is Pareto or lognormally distributed,
such as, say, the debates about wealth [162], [53], [54]. Indeed, such debates can
be irrelevant to the real world. As P. Cirillo [44] observed, many cases of Paretian-
ity are effectively lognormal situations with high variance; the practical statistical
consequences, however, are smaller than imagined.

8.4.4 Can Kappa Be Negative?

Just as kurtosis for a mixed Gaussian (i.e., with stochastic mean, rather than
stochastic volatility ) can dip below 3 (or become "negative" when one uses the con-
vention of measuring kurtosis as excess over the Gaussian by adding 3 to the mea-
sure), the kappa metric can become negative when kurtosis is "negative". These
situations require bimodality (i.e., a switching process between means under fixed
variance, with modes far apart in terms of standard deviation). They do not appear
to occur with unimodal distributions.

Details and derivations are presented in the appendix.

8.5 conclusion and consequences
To summarize, while the limit theorems (the law of large numbers and the central
limit) are concerned with the behavior as n → +∞, we are interested in finite and
exact n both small and large.

We may draw a few operational consequences:
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Figure 8.4: In short, why
the 1/n heuristic works: it
takes many, many more se-
curities to get the same risk
reduction as via portfolio
allocation according to the
Markowitz. We assume to
simplify that the securities
are independent, which they
are not, something that com-
pounds the effect.
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8.5.1 Portfolio Pseudo-Stabilization

Our method can also naturally and immediately apply to portfolio construction
and the effect of diversification since adding a security to a portfolio has the same
"stabilizing" effect as adding an additional observation for the purpose of statistical
significance. "How much data do you need?" translates into "How many securities
do you need?". Clearly, the Markowicz allocation method in modern finance [166]
(which seems to not be used by Markowitz himself for his own portfolio [178])
applies only for κ near 0; people use convex heuristics, otherwise they will un-
derestimate tail risks and "blow up" the way the famed portfolio-theory oriented
hedge fund Long Term Management did in 1998 [236] [250].)

We mentioned earlier that a Pareto distribution close to the "80/20" requires up to
109 more observations than a Gaussian; consider that the risk of a portfolio under
such a distribution would be underestimated by at least 8 orders of magnitudes if
one uses modern portfolio criteria. Following such a reasoning, one simply needs
broader portfolios.

It has also been noted that there is practically no financial security that is not
fatter tailed than the Gaussian, from the simple criterion of kurtosis [228], meaning
Markowitz portfolio allocation is never the best solution. It happens that agents
wisely apply a noisy approximation to the 1

n heuristic which has been classified
as one of those biases by behavioral scientists but has in fact been debunked as
false (a false bias is one in which, while the observed phenomenon is there, it does
not constitute a "bias" in the bad sense of the word; rather it is the researcher who
is mistaken owing to using the wrong tools instead of the decision-maker). This
tendency to "overdiversify" has been deemed a departure from optimal investment
behavior by Benartzi and Thaler [18], explained in [16] "when faced with n options,
divide assets evenly across the options. We have dubbed this heuristic the "1/n
rule."" However, broadening one’s diversification is effectively as least as optimal
as standard allocation(see critique by Windcliff and Boyle [265] and [62]). In short,
an equally weighted portfolio outperforms the SP500 across a broad range range
of metrics. But even the latter two papers didn’t conceive of the full effect and
properties of fat tails, which we can see here with some precision. Fig. 8.5 shows
the effect for securities compared to Markowitz.

This false bias is one in many examples of policy makers "nudging" people into
the wrong rationality [236] and driving them to increase their portfolio risk many
folds.

A few more comments on financial portfolio risks. The SP500 has a κ of around
.2, but one needs to take into account that it is itself a basket of n = 500 securi-
ties, albeit unweighted and consisting of correlated members, overweighing stable
stocks. Single stocks have kappas between .3 and .7, meaning a policy of "overdi-
versification" is a must.

Likewise the metric gives us some guidance in the treatment of data for forecast-
ing, by establishing sample sufficiency, to state such matters as how many years
of data do we need before stating whether climate conditions "have changed", see
[160].
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8.5.2 Other Aspects of Statistical Inference

So far we considered only univariate distributions. For higher dimensions, a po-
tential area of investigation is an equivalent approach to the multivariate distribu-
tion of extreme fat tailed variables, the sampling of which is not captured by the
Marchenko-Pastur (or Wishhart) distributions. As in our situation, adding vari-
ables doesn’t easily remove noise from random matrices.

8.5.3 Final comment

As we keep saying, "statistics is never standard"; however there are heuristics meth-
ods to figure out where and by how much we depart from the standard.

8.6 appendix , derivations , and proofs
We show here some derivations

8.6.1 Cubic Student T (Gaussian Basin)

The Student T with 3 degrees of freedom is of special interest in the literature
owing to its prevalence in finance [99]. It is often mistakenly approximated to
be Gaussian owing to the finiteness of its variance. Asymptotically, we end up
with a Gaussian, but this doesn’t tell us anything about the rate of convergence.
Mandelbrot and Taleb [165] remarks that the cubic acts more like a power law in
the distribution of the extremes, which we will elaborate here thanks to an explicit
PDF for the sum.

Let X be a random variable distributed with density p(x):

p(x) =
6
√

3

π (x2 + 3)2 , x ∈ (−∞, ∞) (8.9)

Proposition 8.1
Let Y be a sum of X1, . . . , Xn, n identical copies of X. Let M(n) be the mean absolute devia-
tion from the mean for n summands. The "rate" of convergence κ1,n =

{
κ : M(n)

M(1) = n
1

2−κ

}

is:
κ1,n = 2− log(n)

log (enn−nΓ(n + 1, n)− 1)
(8.10)

where Γ(., .) is the incomplete gamma function Γ(a, z) =
∫ ∞

z dtta−1e−t.

Since the mean deviation M(n):

M(n) =

{
2
√

3
π for n = 1

2
√

3
π

(
enn−nΓ(n + 1, n)− 1

)
for n > 1

(8.11)
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The derivations are as follows. For the pdf and the MAD we followed different
routes.

We have the characteristic functionfor n summands:

ϕ(ω) = (1 +
√

3|ω|)n e−n
√

3 |ω|

The pdf of Y is given by:

p(y) =
1
π

∫ ∞

0
(1 +
√

3 ω)n e−n
√

3 ω cos(ωy) dω

After arduous integration we get the result in 8.11. Further, since the following
result does not appear to be found in the literature, we have a side useful result:
the PDF of Y can be written as

p(y) =
en− iy√

3

(
e

2iy√
3 E−n

(
n + iy√

3

)
+ E−n

(
n− iy√

3

))

2
√

3π
(8.12)

where E(.)(.) is the exponential integral Enz =
∫ ∞

1
et(−z)

tn dt.

Note the following identities (from the updating of Abramowitz and Stegun) [69]

n−n−1Γ(n + 1, n) = E−n(n) = e−n (n− 1)!
nn

n

∑
m=0

nm

m!

As to the asymptotics, we have the following result (proposed by Michail Loulakis):
Reexpressing Eq. 8.11:

M(n) =
2
√

3n!
πnn

n−1

∑
m=0

nm

m!

Further,

e−n
n−1

∑
m=0

nm

m!
=

1
2

+ O
(

1√
n

)

(From the behavior of the sum of Poisson variables as they converge to a Gaussian
by the central limit theorem: e−n ∑n−1

m=0
nm

m! = P(Xn < n) where Xn is a Poisson ran-
dom variable with parameter n. Since the sum of n independent Poisson random
variables with parameter 1 is Poisson with parameter n, the Central Limit Theo-
rem says the probability distribution of Zn = (Xn − n)/

√
n approaches a standard

normal distribution. Thus P(Xn < n) = P(Zn < 0)→ 1/2 as n → ∞.5 For another
approach, see [179] for proof that 1 + n

1! + n2

2! + · · · + nn−1

(n−1)! ∼
en

2 .)

Using the property that lim
n→∞

n!exp(n)
nn
√

n =
√

2π, we get the following exact asymp-
totics:

lim
n→∞

log(n)κ1,n =
π2

4
5 Robert Israel on Math Stack Exchange
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thus κ goes to 0 (i.e, the average becomes Gaussian) at speed 1
log(n) , which is excru-

ciatingly slow. In other words, even with 106 summands, the behavior cannot be
summarized as that of a Gaussian, an intuition often expressed by B. Mandelbrot
[165].

8.6.2 Lognormal Sums

From the behavior of its cumulants for n summands, we can observe that a sum
behaves likes a Gaussian when σ is low, and as a lognormal when σ is high –and
in both cases we know explicitly κn.

The lognormal (parametrized with µ and σ) doesn’t have an explicit characteristic
function. But we can get cumulants Ki of all orders i by recursion and for our case
of summed identical copies of r.v. Xi, Kn

i = Ki(∑n Xi) = nKi(X1).

Cumulants:
Kn

1 = neµ+ σ2
2

Kn
2 = n

(
eσ2 − 1

)
e2µ+σ2

Kn
3 = n

(
eσ2 − 1

)2 (
eσ2

+ 2
)

e3µ+ 3σ2
2

Kn
4 = . . .

Which allow us to compute: Skewness =

√
eσ2−1

(
eσ2 +2

)
e

1
2 (2µ+σ2)−µ− σ2

2
√

n and Kurtosis =

3 +
e2σ2

(
eσ2
(

eσ2 +2
)

+3
)
−6

n

We can immediately prove from the cumulants/moments that:

lim
n→+∞

κ1,n = 0, lim
σ→0

κ1,n = 0

and our bound on κ becomes explicit:

Let κ∗1,n be the situation under which the sums of lognormal conserve the lognor-
mal density, with the same first two moments. We have

0 ≤ κ∗1,n ≤ 1,

κ∗1,n = 2− log(n)
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Heuristic attempt Among other heuristic approaches, we can see in two steps
how 1) under high values of σ, κ1,n → κ∗1,n, since the law of large numbers slows

down, and 2) κ∗1,n
σ→∞→ 1.

Loulakis’ Proof Proving the upper bound, that for high variance κ1,n approaches
1 has been shown formally my Michail Loulakis6 which we summarize as follows.
We start with the identify E (|X−m|) = 2

∫ ∞
m (x−m) f (x)dx = 2

∫ ∞
m F̄X(t)dt, where

f (.) is the density, m is the mean, and F̄X(.) is the survival function. Further, M(n) =
2
∫ ∞

nm F̄(x)dx. Assume µ = 1
2 σ2, or X = exp

(
σZ− σ2

2

)
where Z is a standard normal

variate. Let Sn be the sum X1 + . . . + Xn; we get M(n) = 2
∫ ∞

n P(Sn > t)dt. Using
the property of subexponentiality ([196]), P(Sn > t) ≥ P(max0<i≤n(Xi) > t) ≥
nP(X1 > t)− (n

2)P (X1 > t)2. Now P (X1 > t) σ→∞→ 1 and the second term to 0
(using Hölder’s inequality).

Skipping steps, we get lim inf
σ→∞

M(n)
M(1) ≥ n, while at the same time we need to satisfy

the bound M(n)
M(1) ≤ n. So for σ→ ∞ ,M(n)

M(1) = n, hence κ1,n
σ→∞→ 1.

Pearson Family Approach for Computation For computational purposes, for
the σ parameter not too large (below ≈ .3, we can use the Pearson family for com-
putational convenience –although the lognormal does not belong to the Pearson
class (the normal does, but we are close enough for computation). Intuitively, at
low σ, the first four moments can be sufficient because of the absence of large de-
viations; not at higher σ for which conserving the lognormal would be the right
method.

The use of Pearson class is practiced in some fields such as information/communication
theory, where there is a rich literature: for summation of lognormal variates see
Nie and Chen, [180], and for Pearson IV, [41], [65].

The Pearson family is defined for an appropriately scaled density f satisfying the
following differential equation.

f ′(x) = − (a0 + a1x)
b0 + b1x + b2x2 f (x) (8.13)

We note that our parametrization of a0, b2, etc. determine the distribution within
the Pearson class –which appears to be the Pearson IV. Finally we get an expression
of mean deviation as a function of n, σ, and µ.

Let m be the mean. Diaconis et al [67] from an old trick by De Moivre, Suzuki
[221] show that we can get explicit mean absolute deviation. Using, again, the
identity E(|X−m|) = 2

∫ ∞
m (x−m) f (x)dx and integrating by parts,

E(|X−m|) =
2
(
b0 + b1m + b2m2)

a1 − 2b2
f (m) (8.14)

6 Review of the paper version; Loulakis proposed a formal proof in place of the heuristic derivation.
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We use cumulants of the n-summed lognormal to match the parameters. Setting
a1 = 1, and m = b1−a0

1−2b2
, we get






a0 =
eµ+ σ2

2
(
−12n2+(3−10n)e4σ2 +6(n−1)eσ2 +12(n−1)e2σ2−(8n+1)e3σ2 +3e5σ2 +e6σ2 +12

)

2(6(n−1)+e2σ2 (eσ2 (5eσ2 +4)−3))

b2 =
e2σ2

(
eσ2−1

)(
2eσ2 +3

)

2(6(n−1)+e2σ2 (eσ2 (5eσ2 +4)−3))

b1 =

(
eσ2−1

)
eµ+ σ2

2
(

eσ2
(

eσ2
(

eσ2
(
−4n+eσ2

(
eσ2 +4

)
+7
)
−6n+6

)
+6(n−1)

)
+12(n−1)

)

2(6(n−1)+e2σ2 (eσ2 (5eσ2 +4)−3))

b0 = −
n
(

eσ2−1
)

e2(µ+σ2)
(

eσ2
(
−2(n−1)eσ2−3n+e3σ2 +3

)
+6(n−1)

)

2(6(n−1)+e2σ2 (eσ2 (5eσ2 +4)−3))

Polynomial Expansions Other methods, such as Gram-Charlier expansions, such
as Schleher [210], Beaulieu,[14], proved less helpful to obtain κn. At high values
of σ, the approximations become unstable as we include higher order Lhermite
polynomials. See review in Dufresne [70] and [71].

8.6.3 Exponential

The exponential is the "entry level" fat tails, just at the border.

f (x) = λe−λx , x ≥ 0.

By convolution the sum Z = X1, X2, . . . Xn we get, by recursion, since f (y) =∫ y
0 f (x) f (y− x) dx = λ2ye−λy:

fn(z) =
λnzn−1e−λz

(n− 1)!
(8.15)

which is the gamma distribution; we get the mean deviation for n summands:

M(n) =
2e−nnn

λΓ(n)
, (8.16)

hence:
κ1,n = 2− log(n)

n log(n)− n− log(Γ(n)) + 1
(8.17)

We can see the asymptotic behavior is equally slow (similar to the student) al-
though the exponential distribution is sitting at the cusp of subexponentiality:

lim
n→∞

log(n)κ1,n = 4− 2 log(2π)
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Figure 8.5: Negative kurtosis from A.3 and corresponding kappa.

8.6.4 Negative Kappa, Negative Kurtosis

Consider the simple case of a Gaussian with switching means and variance: with
probability 1

2 , X ∼ N (µ1, σ1) and with probability 1
2 , X ∼ N (µ2, σ2).

These situations with thinner tails than the Gaussian are encountered with bi-
modal situations where µ1 and µ2 are separated; the effect becomes acute when
they are separated by several standard deviations. Let d= µ1 − µ2 and σ = σ1 = σ2
(to achieve minimum kurtosis),

κ1 =
log(4)

log(π)− 2 log




√

πde
d2

4σ2 erf( d
2σ )+2

√
σ2e

d2
4σ2 +2σ

de
d2

4σ2 erf
(

d
2
√

2σ

)
+2
√

2
π σe

d2
8σ2





+ 2 (8.18)

which we see is negative for wide values of µ1 − µ2.

next
Next we consider some simple diagnostics for power laws with application to the
SP500 . We show the differences between naive methods and those based on ML
estimators that allow extrapolation into the tails.





9 E X T R E M E VA LU E S A N D H I D D E N TA I L S
∗,†

W
hen the data is thick tailed, there is a hidden part of the distri-

bution, not shown in past samples. Past extrema (maximum
or minimum) is not a good predictor of future extrema – vis-
ibly records take place and past higher water mark is a naive
estimation, what is referred to in Chapter 3 as the Lucretius

fallacy, which as we saw can be paraphrased as: the fool believes that the tallest
river and tallest mountain there is equals the tallest ones he has personally seen.

This chapter, after a brief introduction to extreme value theory, focuses
on its application to thick tails. When the data is power law distributed,
the maximum of n observations follows a distribution easy to build from
scratch. We show practically how the Fréchet distribution is, asymptotically,
the maximum domain of attraction MDA of power law distributed variables.

More generally extreme value theory allows a rigorous approach to deal
with extremes and the extrapolation past the sample maximum. We present
some results on the "hidden mean", as it relates to a variety of fallacies in the
risk management literature.

9.1 preliminary introduction to evt
Let X1, . . . Xn be independent and distributed Pareto random variables with CDF
F(.)

Exposition chapter with somme research.

Lucretius in De Rerum Natura:
Scilicet et fluvius qui visus maximus ei,
Qui non ante aliquem majorem vidit; et ingens
Arbor, homoque videtur, et omnia de genere omni
Maxima quae vidit quisque, haec ingentia fingit.

161
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Figure 9.1: The Roman philosophical
poet Lucretius.

We can get an exact distribution of the max (or minimum). The CDF of the
maximum of the n variables will be

P (Xmax ≤ x) =P (X1 ≤ x, . . . , Xn ≤ x) = P (X1 ≤ x)
· · ·P (Xn ≤ x) = F(x)n (9.1)

that is, the probability that all values of x falling at or below Xmax. The PDF is the
first derivative : ψ(x) = ∂F(x)n

∂x .

The extreme value distribution concerns that of the maximum r.v., when x → x∗,
where x∗ = sup{x : F(x) < 1} (the right "endpoint" of the distribution) is in the
maximum domain of attraction, MDA [116]. In other words,

max(X1, . . . Xn) P→ x∗ ,

where P→ denotes convergence in probability. The central question becomes: what
is the distribution of x∗? We said that we have the exact distribution, so as engi-
neers we could be satisfied with the PDF from Eq. 9.1. As a matter of fact, we
could get all test statistics from there, provided we have patience, computer power,
and the will to investigate –it is the only way to deal with preasymptotics, that is
"what happens when n is small enough so x is not quite x∗.

But it is quite useful for general statistical work to understand the general asymp-
totic structure.

The Fisher-Tippett-Gnedenko theorem (Embrech et al. [82], de Haan and Ferreira
[116]) states the following. If there exist sequences of "norming" constants an > 0
and bn ∈ R such that

P

(
Mn − bn

an
≤ x

)
→

n→∞
G(x), (9.2)

then

G(x) ∝ exp
(
−(1 + ξx)−1/ξ

)
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where ξ is the extreme value index, and governs the tail behavior of the distri-
bution. G is called the (generalized) extreme value distribution, GED . The sub-
families defined by ξ = 0, ξ > 0 and ξ < 0 correspond, respectively, to the Gumbel,
Fréchet and Weibull families:

Gumbel distribution (Type 1) Here ξ = 0; rather lim
ξ→0

exp
(
−(ξx + 1)−

1
ξ

)
:

G(x) = exp
(
− exp

(
−
(

x− bn
an

)))
for x ∈ R.

when the distribution of Mn has an exponential tail.

Fréchet distribution(Type 2) Here ξ = 1
α :

G(x) =






0 x ≤ bn

exp
(
−
(

x−bn
an

)−α
)

x > bn .

when the distribution of Mn has power law right tail, as we saw earlier. Note that
α > 0.

Weibull distribution (Type 3) Here ξ = − 1
α

G(x) =





exp

(
−
(
−
(

x−bn
an

))α)
x < bn

1 x ≥ b

when the distribution of Mn has a finite support on the right (i.e., bounded maxi-
mum). Note here again that α > 0.

9.1.1 How Any Power Law Tail Leads to Fréchet

10 20 30 40 50
x0.0

0.2

0.4

0.6

0.8

1.0

Ratio

n=100
n=1000

Maximum Domain of Attraction for a Fréchet
Figure 9.2: Shows the ra-
tion of distributions of the
CDF of the exact distribu-
tion over that of a Fréchet.
We can visualize the accept-
able level of approximation
and see how x reaches the
Maximum Domain of At-
traction, MDA. Here α =
2, L = 1. We note that
the ratio for the PDF shows
the same picture, unlike the
Gaussian, as we will see fur-
ther down.
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Let us proceed now like engineers rather than mathematicians, and consider two
existing distributions, the Pareto and the Fréchet, and see how one can me made
to converge to the other, in other words rederive the Fréchet from the asymptotic
properties of power laws.

The reasoning we will follow next can be generalized to any Pareto-tailed variable
considered above the point where slowly varying function satisfactorily approxi-
mates a constant –the "Karamata point".

The CDF of the Pareto with minimum value (and scale) L and tail exponent α:

F(x) = 1−
(

L
x

)α

,

so the PDF of the maximum of n observations:

ψ(x) =
αn
(

L
x

)α (
1−

(
L
x

)α)n−1

x
. (9.3)

The PDF of the Frechét:

ϕ(x) = αβαx−α−1eβα(−x−α) . (9.4)

Let us now look for x "very large" where the two functions equate, or ψ(x∗) →
ϕ(x∗).

lim
x→∞

ψ(x)
ϕ(x)

= n
(

1
β

)α

Lα . (9.5)

Accordingly, for x deemed "large", we can use β = Ln1/α. Equation 9.5 shows us
how the tail α conserves across transformations of distribution:

Property 4

The tail exponent of the maximum of i.i.d random variables is the same as that of the
random variables themselves.

Now, in practice, "where" do we approximate is shown in figure 9.2.

Property 5

We get an exact asymptotic fitting for power law extrema.

9.1.2 Gaussian Case

The Fréchet case is quite simple –power laws are usually simpler analytically, and
we can get limiting parametrizations. For the Gaussian and other distributions,
more involved derivations and approximations are required to fit the norming
constants an and bn, usually entailing quantile functions. The seminal paper by



9.1 preliminary introduction to evt 165

Fisher and Tippet [94] warns us that "from the normal distribution, the limiting
distribution is approached with extreme slowness" ( cited by Gasull et al. [101]).

In what follows we look for norming constants for a Gaussian, based on [120]
and later developments.

ratio=1

n=102

n=103

n=104

1 2 3 4 5
x

0.2

0.4

0.6

0.8

1.0

Ratio CDF
Maximum Domain of Attraction for a Gaussian

Figure 9.3: The behavior of
the Gaussian; it is hard to
get a good parametrization,
unlike with power laws. The
y axis shows the ratio for
the CDF of thee exact max-
imum distribution for n
variables over that of the
parametrized EVT.
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n=104

1 2 3 4 5
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2.5

Ratio PDF
Maximum Domain of Attraction for a Gaussian

Figure 9.4: The same as fig-
ure 9.3 but using PDF. It is
not possible to obtain a good
approximation in the tails.

Consider Mn = anx + bn in Eq. 9.2. We assume then that Mn follows the Extreme
Value Distribution EVT (the CDF is e−ex

, the mirror distribution of the Gumbel for
minima, obtained by transforming the distribution of −Mn where Mn−bn

an
follows

a Gumbel with CDF 1− e−ex
.) 3 The parametrized CDF for Mn is e−e−

x−bn
an .

An easy shortcut comes from the following approximation4: an = bn
b2

n+1 and

3 The convention we follow considers the Gumbel for minima only, with the properly parametrized EVT for
the maxima.

4 Embrechts et al [82] proposes an = 1√
2 log(n)

, bn =
√

2 log(n)− log(log(n))+log(4π)
2
√

2 log(n)
, the second term for bn only

needed for large values of n. The approximation is of order
√

log(n).
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bn = −
√

2erfc−1
(

2
(

1− 1
n

))
, where erfc−1 is the inverse complementary error

function.

Figure 9.5: The high watermark: the level of
flooding in Paris in 1910 as a maxima. Clearly
one has to consider that such record will be
topped some day in the future and proper risk
management consists in "how much" more than
such a level one should seek protection. We have
been repeating the Lucretius fallacy forever.

Property 6

For tail risk and properties, it is vastly preferable to work with the exact distribu-
tion for the Gaussian, namely for n variables, we have the exact distribution of the
maximum from the CDF of the Standard Gaussian F(g):

∂F(g)(K)
∂K

=
e−

K2
2 2

1
2−nn erfc

(
− K√

2

)n−1

√
π

, (9.6)

where erfc is the complementary error function.

9.1.3 The Picklands-Balkema-de Haan Theorem

The conditional excess distribution function is the equivalent in density to the
"Lindy" conditional expectation of excess deviation [116, 190], –we will make use
of it in Chapter 16.

Consider an unknown distribution function F of a random variable X; we are
interested in estimating the conditional distribution function Fu of the variable X
above a certain threshold u, defined as

Fu(y) = P(X− u ≤ y|X > u) =
F(u + y)− F(u)

1− F(u)
(9.7)
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for 0 ≤ y ≤ x∗ − u, where x∗ is the finite or infinite right endpoint of the underly-
ing distribution F. Then there exists a measurable function σ(u) such that

lim
u→x∗

sup
0≤x<x∗−u

∣∣Fu(x)− Gξ,σ(u)(x)
∣∣ = 0 (9.8)

and vice versa where Gξ,σ(u)(x) is the generalized Pareto distribution (GPD) :

Gξ,σ(x) =
{

1− (1 + ξx/σ)−1/ξ if ξ ,= 0
1− exp(−x/σ) if ξ = 0

(9.9)

If ξ > 0, G.,. is a Pareto distribution. If ξ = 0, G.,. (as we saw above) is a an
exponential distribution. If ξ = −1, G.,. is uniform.

The theorem allows us to do some data inference by isolating exceedances. More
on it in our discussion of wars and trends of violence in Chapter 16.

9.2 the invisible tail for a power law
Consider Kn the maximum of a sample of n independent identically distributed
variables in the power law class; Kn = max (X1, X2, . . . , Xn). Let φ(.) be the density
of the underlying distribution. We can decompose the moments in two parts, with
the "hidden" moment above K0, as shown in Fig 9.6:

μK,p =
K

∞
xp ϕ(x)ⅆx

K

2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

Figure 9.6: The pth mo-
ment above K

E(Xp) =
∫ Kn

L
xpφ(x) dx

︸ ︷︷ ︸
µ0,p

+
∫ ∞

Kn
xpφ(x) dx

︸ ︷︷ ︸
µK,p

where µ0 is the visible part of the distribution and µn the hidden one.

We can also consider using φe as the empirical distribution by normalizing. Since:
(∫ Kn

L
φe(x)dx−

∫ ∞

Kn
φ(x) dx

)

︸ ︷︷ ︸
Corrected

+
∫ ∞

Kn
φ(x) dx = 1, (9.10)
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we can use the Radon-Nikodym derivative

E(Xp) =
∫ Kn

L
xp ∂µ(x)

∂µe(x)
φe(x)dx +

∫ ∞

Kn
xpφ(x) dx. (9.11)
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Figure 9.7: Proportion of
the hidden mean in relation
to the total mean, for differ-
ent parametrizations of the
tail exponent α.
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Figure 9.8: Proportion of
the hidden mean in relation
to the total mean, for differ-
ent sample sizes n.

Proposition 9.1
Let K∗ be point where the survival function of the random variable X can be satisfactorily
approximated by a constant, that is P(X > x) ≈ L−αx−α.

Under the assumptions that K > K∗ , the distribution for the hidden moment, µK,p, for
n observation has for density g(.,.,.)(.):

(9.12)gn,p,α(z) = nL
αp

p−α

(
z − pz

α

) p
α−p exp

(
n
(
−L

αp
p−α

) (
z − pz

α

)− α
p−α

)

for z ≥ 0, p > α, and L > 0.
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The expectation of the pth moment above K, with K > L > 0 can be derived
as

E(µK,p) =
α
(

Lp − LαKp−α
)

α− p
. (9.13)

We note that the distribution of the sample survival function (that is, p = 0) is an
exponential distribution with PDF:

gn,0,α(z) = ne−nz (9.14)

which we can see depends only on n. Exceedance probability for an empirical
distribution does not depend on the fatness of the tails.

To get the mean, we just need to get the integral with a stochastic lower bound
K > Kmin:

∫ ∞

Kmin





∫ ∞

Kn
xpφ(x) dx

︸ ︷︷ ︸
µK,p




fK(K)dK.

For the full distribution gn,p,α(z), let us decompose the mean of a Pareto with
scale L, so Kmin = L.

By standard transformation, a change of variable, K ∼ F (α, Ln
1
α ) a Fréchet distri-

bution with PDF: fK(K) = αnK−α−1Lαen(−( L
K )

α
), we get the required result.
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Figure 9.9: Proportion of
the hidden mean in relation
to the standard deviation,
for different values of n.
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9.2.1 Comparison with the Normal Distribution

For a Gaussian with PDF φ(g)(.) indexed by (g), µ
(g)
K =

∫ ∞
K φ(g)(x)dx =

2
p
2 −1Γ

(
p+1

2 , K2
2

)

√
π

.
As we saw earlier, without going through the Gumbel (rather EVT or "mirror-
Gumbel"), it is preferable to the exact distribution of the maximum from the CDF
of the Standard Gaussian F(g):

∂F(g)(K)
∂K

=
e−

K2
2 2

1
2−nn erfc

(
− K√

2

)n−1

√
π

,

where ertc is the complementary error function

For p = 0, the expectation of the "invisible tail" ≈ 1
n .

∫ ∞

0

e−
K2
2 2−n− 1

2 nΓ
(

1
2 , K2

2

) (
erf
(

K√
2

)
+ 1
)n−1

π
dK =

1− 2−n

n + 1
.

9.3 appendix: the empirical distribution is not empirical

Figure 9.10: The base
rate fallacy, revisited —or,
rather in the other direction.
The "base rate" is an
empirical evaluation that
bases itself on the worst
past observations, an error
identified in [227] as the
fallacy identified by the
Roman poet Lucrecius
in De rerum natura of
thinking the tallest future
mountain equals the tallest
on has previously seen.
Quoted without permission
after warning the author.

There is a prevalent confusion about the nonparametric empirical distribution
based on the following powerful property: as n grows, the errors around the em-
pirical histogram for cumulative frequencies are Gaussian regardless of the base dis-
tribution, even if the true distribution is fat-tailed (assuming infinite support). For
the CDF (or survival functions) are both uniform on [0, 1], and, further, by the
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Donsker theorem, the sequence
√

n (Fn(x)− F(x)) (Fn is the observed CDF or sur-
vival function for n summands, F the true CDF or survival function) converges
in distribution to a Normal Distribution with mean 0 and variance F(x) (1− F(x))
(one may find even stronger forms of convergence via the Glivenko– Cantelli theo-
rem).

Owing to this remarkable property, one may mistakenly assume that the effect of
tails of the distribution converge in the same manner independently of the distribu-
tion. Further, and what contributes to the confusion, the variance, F(x) (1− F(x))
for both empirical CDF and survival function, drops at the extremes –though not
its corresponding payoff.

In truth, and that is a property of extremes, the error effectively increases in the
tails if one multiplies by the deviation that corresponds to the probability.

For the U.S. stock market indices, while the first method is deemed to be ludi-
crous, using the second method leads to an underestimation of the payoff in the
tails of between 5 and 70 times, as can be shown in Figure 9.11. The topic is revis-
ited again in Chapter 11 with our discussion of the difference between binary and
continuous payoffs, and the conflation between probability and real world payoffs
when said payoffs are from a fat tailed distribution.
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Figure 9.11: This figure
shows the relative value
of tail CVar-style measure
compared to that from the
(smoothed) empirical distri-
bution. The deep tail is un-
derestimated up to 70 times
by current methods, even
those deemed "empirical".





B G R O W T H R AT E A N D O U TC O M E A R E
N OT I N T H E S A M E D I ST R I B U T I O N
C L A S S

T
he author and Pasquale Cirillo showed that fatalities from pan-

demics follow power laws with a tail exponent patently lower
than 1. This means that all the information resides in the tail.
So unless one has some real reason to ignore general and un-
conditional statistics (of the style "this one is different"), one

should not base risk management decisions on the behavior of the expected
average or some point estimate.

The following paradox arose: Xt the number of fatalities between period t0
and t is Paretian with undefined mean. However its exponential growth rate
is not! It is going to be thin tailed, exponentially distributed or so.

Cirillo and Taleb (2020) [48] (CT) showed via extreme value theory that Pandemics
have a tail α < 1 when seem in XT , the number of fatalities at some date T in the
future, with survival function P(X > x) = L(x)x−α. Assume to simplify that, with
a minimum value L, L(x) ∼ L so we get the survival function

P(X > x) = Lx−α . (B.1)

b.1 the puzzle
Consider the usual model,

Xt = X0er(t−t0), (B.2)

where
r =

1
(t− t0)

∫ t

t0

rsds (B.3)

and rs is the instantaneous rate. Normalize the distribution to L = 1. We can thus
prove the following (under the assumption above that Xt has survival function in
Eq. 13.13):
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Figure B.1: Above, a histogram of 106 realisations of r, from an exponential distribution with param-
eter λ = 1

2 . Below, the histogram of X = er. We can see the difference between the two distributions.
The sample kurtosis are 9 and 106 respectively (in fact it is theoretically infinite for the second); all
values for the latter are dominated by a single large deviation.

Theorem 1

If r has support in (−∞, ∞), then its PDF ϕ for the scaled rate ρ = r(t− t0) can be
parametrized as

ϕ(ρ) =






e−
ρ
b

2b ρ ≥ 0
e−
−ρ
b

2b otherwise

where b = 1
α .

If r has support in (0, ∞), then its PDF ϕ

ϕ(ρ) =

{
αeα(−ρ) ρ ≥ 0
0 otherwise

What we have here is versions of the exponential or double exponential distribu-
tion (Laplace).
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Figure B.2: We take the 60 largest pandemics and randomly subselect half. We normalize the data by
today’s population. The Paretian properties (and parametrization) are robust to these perturbations.
EVT provides slighly higher tail exponent, but firmly below one. This about the lowest tail exponent
the authors have ever seen in their careers.

Remark 7

Implication: One cannot naively translate properties between the rate of growth
r and XT because errors in r could be small (but nonzero) for r but explosive in
translation owing to the exponentiation.

The reverse is also true: if r follows an exponential distribution then XT must be
Pareto distributed as in Eq. 13.13.

The sketch of the derivation is as follows, via change of variables. Let r follow a
distribution with density φ, with support (a, b); under some standard conditions,
u = g(r) follows a new distribution with density

ψ(u) =
φ
(

g(−1)(u)
)

g′
(

g(−1)(u)
) ,

and support [g(a), g(b)].
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b.2 pandemics are really fat tailed
Figure B.2 shows how we get a power law with a low α no matter what random
subsample from the data we select. We used in [48] extreme value theory but the
graphs show the preliminary analysis (not in paper). This is the lowest tail expo-
nent we have ever seen anywhere. The implication is that epidemiology studies
need to be used for research but policy making must be done using EVT or simply
relying on precautionary principles –that is, to cut the cancer when it is cheap to
do so.1

1 A gross error is the reliance on single point forecast for policy –in fact as we show in chapter 11, it is
always wrong to use the forecast of the survival function –to gauge forecasting ability thinking it "how
science is done" –outside binary bets.



C T H E L A R G E D E V I AT I O N P R I N C I P L E ,
I N B R I E F

L
et us return to the Cramer bound with a rapid exposition of

the surrounding literature. The idea behind the tall vs. rich
outliers in 3.1 is that under some conditions, their tail prob-
abilities decay exponentially. Such a property that is central
in risk management –as we mentioned earlier, the catastrophe

principle explains that for diversification to be effective, such exponential
decay is necessary.

The large deviation principle helps us understand such a tail behavior.It also
helps us figure out why things do not blow-up under thin-tailedness –but, more
significantly, why they could under fat tails, or where the Cramèr condition is not
satisfied [118].

Let MN be the mean of a sequence of realizations (identically distributed) of N
random variables. For large N, consider the tail probability:

P(MN > x) ≈ e−NI(x),

where I(.) is the Cramer (or rate) function (Varadhan [260], Denbo and Zeitouni
[59]). If we know the distribution of X, then, by Legendre transformation, I(x) =
supθ>0 (θx− λ(θ)), where λ(θ) = logE

(
eθ(X)

)
is the cumulant generating func-

tion.

The behavior of the function θ(x) informs us on the contribution of a single event
to the overall payoff. (It connects us to the Cramer condition which requires exis-
tence of exponential moments).

A special case for Bernoulli variables is the Chernoff Bound, which provides tight
bounds for that class of discrete variables.
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178 the large deviation principle , in brief

simple case: chernoff bound
A binary payoff is subjected to very tight bounds. Let ( Xi)1<i≤n be a sequence of
independent Bernouilli trials taking values in {0, 1}, with P(X = 1) = p and P(X =
0) = 1− p. Consider the sum Sn = ∑1<i≤n Xi. with expectation E(Sn)= np = µ.
Taking δ as a "distance from the mean", the Chernoff bounds gives:
For any δ > 0

P (S ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

and for 0 < δ ≤ 1

P (S ≥ (1 + δ)µ) ≤ 2e−
µδ2

3

Let us compute the probability of coin flips n of having 50% higher than the true

mean, with p= 1
2 and µ = n

2 : P
(

S ≥
(

3
2

)
n
2

)
≤ 2e−

µδ2
3 = e−n/24, which for n = 1000

happens every 1 in 1.24× 1018.

Proof The Markov bound gives: P(X ≥ c) ≤ E(X)
c , but allows us to substitute

X with a positive function g(x), hence P(g(x) ≥ g(c)) ≤ E(g(X))
g(c) . We will use this

property in what follows, with g(X) = eωX .

Now consider (1 + δ), with δ > 0, as a "distance from the mean", hence, with
ω > 0,

P (Sn ≥ (1 + δ)µ) = P
(

eωSn ≥ eω(1+δ)µ
)
≤ e−ω(1+δ)µE(eωSn ) (C.1)

Now E(eωSn ) = E(eω ∑(Xi)) = E(eωXi )n, by independence of the stopping time,
becomes

(
E(eωX)

)n.

We have E(eωX) = 1− p + peω . Since 1 + x ≤ ex,

E(eωSn ) ≤ eµ(eωa−1)

Substituting in C.1, we get:

P
(

eωSn ≥ eω(1+δ)µ
)
≤ e−ω(1+δ)µeµ(eω−1) (C.2)

We tighten the bounds by playing with values of ω that minimize the right side.

ω∗ =
{

ω : ∂eµ(eω−1)−(δ+1)µω

∂ω = 0
}

yields ω∗ = log(1 + δ).

Which recovers the bound: eδµ(δ + 1)(−δ−1)µ.
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An extension of Chernoff bounds was made by Hoeffding [130] who broadened
it to bounded independent random variables, but not necessarily Bernouilli..





D C A L I B R AT I N G U N D E R PA R E T I A N I TY

Figure D.1: The great Benoit Mandelbrot linked fractal geometry to statistical distributions via self-
affinity at all scales. When asked to explain his work, he said: "rugosité", meaning"roughness" –it
took him fifty years to realize that was his specialty. (Seahorse Created by Wolfgang Beyer, Wikipedia
Commons.)

We start with a refresher:

Definition D.1 (Power Law Class P)
The r.v. X ∈ R belongs to P, the class of slowly varying functions (a.k.a. Paretiantail or
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182 calibrating under paretianity

power law-tailed) if its survival function (for the variable taken in absolute value) decays
asymptotically at a fixed exponent α, or α′, that is

P(X > x) = L(x) x−α (D.1)

(right tail) or
P(−X > x) = L(x) x−α′ (D.2)

(left tail)
where α, α′ > 0 and L : (0, ∞)→ (0, ∞) is a slowly varying function,defined as

lim
x→∞

L(kx)
L(x)

= 1

for all k > 0.

The happy result is that the parameter α obeys an inverse gamma distribution
that converges rapidly to a Gaussian and does not require a large n to get a good
estimate. This is illustrated in Figure D.2, where we can see the difference in fit.

n=100

5 10 15 20
0.0

0.1

0.2

0.3

0.4

n=1000

5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

n Figure D.2: Monte Carlo
Simulation (105) of a com-
parison of sample mean
(Methods 1 and 2) vs max-
imum likelihood mean es-
timations (Method 3) for
a Pareto Distribution with
α = 1.2 (yellow and
blue respectively), for n =
100, 1000. We can see how
the MLE tracks the distri-
bution more reliably. We
can also observe the bias as
Methods 1 and 2 underes-
timate the sample mean in
the presence of skewness in
the data. We need 107 more
data in order to get the same
error rate.

As we saw, there is a problem with the so-called finite variance power laws:
finiteness of variance doesn’t help as we saw in Chapter 8.
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d.1 distribution of the sample tail exponent
Consider the standard Pareto distribution for a random variable X with PDF:

φX(x) = αLαx−α−1 , x > L (D.3)

Assume L = 1 by scaling.

The likelihood function is L = ∏n
i=1 αx−α−1

i . Maximizing the Log of the likelihood
function (assuming we set the minimum value) log(L) = n(log(α) + α log(L))− (α +
1) ∑n

i=1 log (xi) yields: α̂ = n
∑n

i=1 log(xi)
. Now consider l = −∑n

i=1 log Xi
n . Using the

characteristic function to get the distribution of the average logarithm yield:

ψ(t)n =
(∫ ∞

1
f (x) exp

(
it log(x)

n

)
dx
)n

=
(

αn
αn− it

)n

which is the characteristic function of the gamma distribution (n, 1
αn ). A standard

result is that α̂′ ! 1
l will follow the inverse gamma distribution with density:

φα̂(a) =
e−

αn
α̂
( αn

α̂

)n

α̂Γ(n)
, a > 0

.

Debiasing Since E(α̂) = n
n−1 α we elect another –unbiased– random variable α̂′ =

n−1
n α̂ which, after scaling, will have for distribution φα̂′ (a) = e α−αn

a ( α(n−1)
a )

n+1

αΓ(n+1) .

Truncating for α > 1 Given that values of α ≤ 1 lead to absence of mean we
restrict the distribution to values greater than 1 + ε, ε > 0. Our sampling now
applies to lower-truncated values of the estimator, those strictly greater than 1,
with a cut point ε > 0, that is, ∑ n−1

log(xi)
> 1 + ε, or E(α̂|α̂>1+ε): φα̂′′ (a) = φ

α̂′ (a)∫ ∞
1+ε φ

α̂′ (a) da ,

hence the distribution of the values of the exponent conditional of it being greater
than 1 becomes:

φα̂′′ (a) =
e

αn2
a−an

(
αn2

a(n−1)

)n

a
(

Γ(n)− Γ
(

n, n2α
(n−1)(ε+1)

)) , a ≥ 1 + ε (D.4)

So as we can see in Figure D.2, the "plug-in" mean via the tail α might be a good
approach under one-tailed Paretianity.





10 "I T I S W H AT I T I S ": D I A G N O S I N G
T H E S P 5 0 0 †

T
his is a diagnostics tour of the properties of the SP500 in-

dex in its history. We engage in a battery of tests and check
what statistical picture emerges. Clearly, its returns are power
law distributed (with some added complications, such as an
asymmetry between upside and downside) which, again, in-

validates common methods of analysis. We look, among other things to:

• The behavior of Kurtosis under aggregation (as we lengthen the obser-
vation window )

• The behavior of the conditional expectation E(X|X>K) for various val-
ues of K.

• The maximum-to-sum plot(MS Plot).

• Drawdowns (that is, maximum excursions over a time window)

• Extremes and records to see if extremes are independent.

These diagnostics allow us to confirm that an entire class of analyses in L2 such as
modern portfolio theory, factor analysis, GARCH, conditional variance, or stochas-
tic volatility are methodologically (and practically) invalid.

10.1 paretianity and moments
The problem As we said in the Prologue, switching from thin-tailed to fat-tailed
is not just changing the color of the dress. The finance and economic rent seekers hold
the message "we know it is fat tailed" but then fail to grasp the consequences on
many things such as the slowness of the law of large numbers and the failure of
sample means or higher moments to be sufficient statistic ( as well as the ergodicity

This is largely a graphical chapter made to be read from the figures more than from the text as the
arguments largely repose on the absence of convergence in the graphs.

185
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effect, among others). Likewise it leads to a bevy of uninformative analytics in the
investment industry.

Paretianity is clearly defined by the absence of some higher moment, exhibited
by lack of convergence under LLN.

1987

0.01 0.02 0.05 0.10 0.20
|X}

0.001

0.010

0.100

1

P> X

Figure 10.1: Visual Identi-
fication of Paretianity on a
standard log-log plot with
(absolute) returns on the
horizontal axis and the sur-
vival function on the verti-
cal one. If one removes the
data point corresponding to
the crash of 1987, a lognor-
mal would perhaps work, or
some fat tailed mixed dis-
tribution outside the power
law class. For we can see
the survival function becom-
ing vertical, indicative of an
infinite asymptotic tail ex-
ponent. But as the saying
goes, all one needs is a sin-
gle event...

Remark 8

Given that:

1) the regularly varying class has no higher moments than α, more precisely,

• if p > α, E(Xp) = ∞ if p is even or the distribution has one-tailed support
and

• E(Xp) is undefined if p is odd and the distribution has two-tailed support,

and

2) distributions outside the regularly varying class have all moments ∀p ∈ N+,
E(Xp) < ∞.

∃p ∈ N+ s.t. E(Xp) is either undefined or infinite⇔ X ∈ P.

Next we examine ways to detect "infinite" moments. Much confusion attends
the notion of infinite moments and its identification since by definition sample
moments are finite and measurable under the counting measure. We will rely on
the nonconvergence of moments. Let ‖X‖p be the weighted p-norm

‖X‖p !
(

1
n

n

∑
i=1

|xi|p
)1/p

,

we have the property of power laws:

E(Xp) ≮ ∞ ⇔ ‖x‖p is not convergent.
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Question How does belonging to the class of Power Law tails (with α ≤ 4) cancel
much of the methods in L2?

Section 5.10 shows the distribution of the mean deviation of the second moment
for a finite variance power law. Simply, even if the fourth moment does not exist,
under infinite higher moments, the second moment of the variance has itself in-
finite variance, and we fall in the sampling problems seen before: just as with a
power law of α close to 1 (though slightly above it), the mean exists but will never
be observed, in a situation of infinite third moment, the observed second moment
will fail to be informative as it will almost never converge to its value.

10.2 convergence tests
Convergence laws can help us exclude some classes of probability distributions.

SP500Reshuffled
SP500

0 20 40 60 80 100
lag

5

10

15

20

Kurtosis Figure 10.2: Visual convergence diag-
nostics for the kurtosis of the SP500
over the past 17000 observations. We
compute the kurtosis at different lags
for the raw SP500 and reshuffled data.
While the 4th norm is not convergent
for raw data, it is clearly so for the
reshuffled series. We can thus as-
sume that the "fat tailedness" is at-
tributable to the temporal structure of
the data, particularly the clustering of
its volatility. See Table 7.1 for the
expected drop at speed 1/n for thin-
tailed distributions.

10.2.1 Test 1: Kurtosis under Aggregation

If Kurtosis existed, it would end up converging to that of a Gaussian as one length-
ens the time window. So we test for the computations of returns over longer and
longer lags, as we can see in Fig 10.2.

Result The verdict as shown in Figure 10.2 is that the one-month kurtosis is not
lower than the daily kurtosis and, as we add data, no drop in kurtosis is observed.
Further we would expect a drop ∼ n−1. This allows us to safely eliminate numer-
ous classes, which includes stochastic volatility in its simple formulations such as
gamma variance. Next we will get into the technicals of the point and the strength
of the evidence.

A typical misunderstanding is as follows. In a note "What can Taleb learn from
Markowitz" [255], Jack L. Treynor, one of the founders of portfolio theory, de-
fended the field with the argument that the data may be fat tailed "short term" but
in something called the "long term" things become Gaussian. Sorry, it is not so.
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Figure 10.3: MS Plot (or "law of large numbers for p moments") for p = 4 for the SP500 compared
to p = 4 for a Gaussian and stochastic volatility for a matching Kurtosis ( 30) over the entire period.
Convergence, if any, does not take place in any reasonable time. MS Plot for moment p = 3 for the
SP500 compared to p = 4 for a Gaussian. We can safely say that the 4th moment is infinite and the
3rd one is indeterminate

(We add the ergodic problem that blurs, if not eliminate, the distinction between
long term and short term).

The reason is that, simply we cannot possibly talk about "Gaussian" if kurtosis is
infinite, even when lower moments exist. Further, for α ≈ 3, Central limit operates
very slowly, requires n of the order of 106 to become acceptable, not what we have
in the history of markets. [27]

10.2.2 Maximum Drawdowns

For a time series for asset S taken over (t0, t0 + ∆t, t0 + n∆t), we are interested in the
behavior of

δ (t0, t, ∆t) = Min
(

Si∆t+t0 −
(

MinSj∆t+t0

)n

j=i+1

)n

i=0
(10.1)

We can consider the relative drawdown by using the log of that minimum, as we
do with returns. The window for the drawdown can be n = 5, 100, 252 days. As
seen in Figure 10.10, drawdowns are Paretian.
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Figure 10.4: The "Lindy
test" or Condexp, using the
conditional expectation be-
low K as K varies as test of
scalability. As we move K,
the measure should drop.
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Figure 10.5: The empirical
distribution could conceiv-
ably fit a Lévy stable distri-
bution with αl = 1.62.
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Figure 10.6: The tails can
even possibly fit an infi-
nite mean stable distribu-
tion with αl = 1.

10.2.3 Empirical Kappa

From our kappa equation in Chapter 8:

κ(n0, n) = 2− log(n)− log(n0)

log
(

M(n)
M(n0)

) . (10.2)
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Figure 10.7: SP500 squared
returns for 16500 observa-
tions. No GARCH(1,1) can
produce such jaggedness or
what the great Benoit Man-
delbrot called "rugosité".
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Figure 10.8: kappa-n esti-
mated empirically.

with shortcut κn = κ(1, n). We estimate empirically via bootstrapping and can
effectively see how it maps to that of a power law – with α < 3 for the negative
returns.

10.2.4 Test 2: Excess Conditional Expectation

Result: The verdict from this test is that, as we can see in Figure 10.4, that
the conditional expectation of X (and −X), conditional on X is greater than
some arbitrary value K, remains proportional to K.

Definition 10.1
Let K be in R+, the relative excess conditional expectation:

ϕ+
K ! E(X)|X>K

K
,

ϕ−K ! E(−X)|X>K
K

.
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Figure 10.9: Drawdowns for windows n = 5, 30, 100, and 252 days, respectively. Maximum draw-
downs are excursions mapped in Eq. 10.1. We use here the log of the minimum of S over a window of
n days following a given S.
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Figure 10.10: Paretianity of
Drawdowns and Scale

We have
lim

K→∞
ϕK = 0,

for distributions outside the power law basin, and

lim
K→∞

ϕK/K =
α

1− α

for distribution satisfying Definition 1. Note the van der Wijk’s law [44], [228].

Figure 10.4 shows the following: the conditional expectation does not drop for
large values, which is incompatible with non-Paretian distributions.
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Figure 10.11: Fitting a Sta-
ble Distribution to draw-
downs
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Figure 10.12: Correcting
the empirical distribution
function with a Frechet for
the SP500

10.2.5 Test 3- Instability of 4th moment

A main argument in [228] is that in 50 years of SP500 observations, a single one
represents >80 % of the Kurtosis. Similar effect are seen with other socioeconomic
variables, such as gold, oil, silver other stock markets, soft commodities. Such
sample dependence of the kurtosis means that the fourth moment does not have
the stability, that is, does not exist.

10.2.6 Test 4: MS Plot

An additional approach to detect if E(Xp) exists consists in examining convergence
according to the law of large numbers (or, rather, absence of), by looking the be-
havior of higher moments in a given sample. One convenient approach is the
Maximum-to-Sum plot, or MS plot as shown in Figure 10.3. The MS Plot relies on
a consequence of the law of large numbers [184] when it comes to the maximum
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of a variable. For a sequence X1, X2, ..., Xn of nonnegative i.i.d. random variables,
if for p = 1, 2, 3, . . . , E[Xp] < ∞, then

Rp
n = Mp

n/Sp
n →a.s. 0

as n → ∞, where Sp
n =

n

∑
i=1

Xp
i is the partial sum, and Mp

n = max(Xp
1 , ..., Xp

n) the

partial maximum. (Note that we can have X the absolute value of the random
variable in case the r.v. can be negative to allow the approach to apply to odd
moments.)

We show by comparison the MS plot for a Gaussian and that for a Student T with
a tail exponent of 3. We observe that the SP500 show the typical characteristics of
a steep power law, as in 16,000 observations (50 years) it does not appear to drop
to the point of allowing the functioning of the law of large numbers.
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Figure 10.13: We separate positive and negative logarithmic returns and use overlapping cumula-
tive returns from 1 up to 15. Clearly the negative returns appear to follow a Power Law while the
Paretianity of the right one is more questionable.
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Figure 10.14: QQ Plot com-
paring the Student T to the
empirical distribution of the
SP500: the left tail fits, not
the right tail.

10.2.7 Records and Extrema

The Gumbel record methods is as follows (Embrechts et al [82]). Let X1, X2, . . . be
a discrete time series, with a maximum at period t ≥ 2, Mt = max(X1, X2, . . . , Xt),
we have the record counter N1,t for n data points.

N1,t = 1 +
t

∑
k=2

1Xt>Mt−1 . (10.3)

Regardless of the underlying distribution, the expectation E(Nt) is the Harmonic
Number Ht, and the variance Ht − H2

t , where Ht = ∑t
i=1

1
ir . We note that the

harmonic number is concave and very slow in growth, logarithmic, as it can be
approximated with log(n) + γ, where γ is the Euler Mascheroni constant. The
approximation is such that 1

2(t+1) ≤ Ht − log(t)− γ ≤ 1
2t (Wolfram Mathworld [263]).

Gains
Losses

0 5000 10000 15000
time

5

10

15

# records Figure 10.15: The record
test shows independence for
extremes of negative re-
turns, dependence for posi-
tive ones. The number of
records for independent ob-
servations grows over time
at the harmonic number
H(t) (dashed line), ≈ loga-
rithmic but here appears to
grow > 2.5 standard devi-
ations faster for positive re-
turns, hence we cannot as-
sume independence for ex-
tremal gains. The test does
not make claims about de-
pendence outside extremes.
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Figure 10.16: Running shorter period, t = 1000 days of overlapping observations for the records of
maxima(top) and minima (bottom), compared to the expected Harmonic number H(1000).

Remark 9

The Gumbel test of independence above is sufficient condition for the convergence of
extreme negative values of the log-returns of the SP500 to the Maximum Domain of
Attraction (MDA) of the extreme value distribution.

Entire series We reshuffled the SP500 (i.e. bootstrapped without replacement,
using a sample size equal to the original ≈ 17000 points, with 103 repeats) and
ran records across all of them. As shown in Figures 10.18 and 10.17, the mean
was 10.4 (approximated by the harmonic number, with a corresponding standard
deviation.) The survival function S(.) of N1.7×104 = 16, S(16) = 1

40 which allows us
to consider the independence of positive extrema implausible.
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On the other hand the negative extrema (9 counts) show realizations close to
what is expected (10.3), diverting by 1

2 a s.t.d. from expected, enough to justify a
failure to reject independence.

Subrecords If instead of taking the data as one block over the entire period, we
broke the period into sub-periods, we get (because of the concavity of the measure
and Jensen’s inequality), Nt1+δ,t1+∆+δ, we obtain T/δ observations. We took ∆ = 103

and δ = 102, thus getting 170 subperiods for the T ≈ 17× 103 days. The picture
as shown in Figure 10.16 cannot reject independence for both positive and reject
observations.

SP500
1950-2017
���maxima

Mean records
for maxima of
reshuffled
returns

5 10 15 20
t

0.2

0.4

0.6

0.8

1.0

Nt

Figure 10.17: The survival function of the records of positive maxima for the resampled SP500 (103

times) by keeping all returns but reshuffling them, thus removing the temporal structure. The mass
above 16 (observed number of maxima records for SP500 over the period) is 1

40 .

Figure 10.18: The CDF of the records of negative extrema for the resampled SP500 (103 times) reshuf-
fled as above. The mass above 9 (observed number of minima records for SP500 over the period) is
2
5 .
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Conclusion for subrecords We can at least apply EVT methods for negative
observations.

10.2.8 Asymmetry right-left tail

We note an asymmetry as seen in Figure 10.13, with the left tail considerably
thicker than the right one. It may be a nightmare for modelers looking for some
precise process, but not necessarily to people interested in risk, and option trading.

10.3 conclusion: it is what it is
This chapter allowed us to explore a simple topic: returns on the SP500 index
(which represents the bulk of the U.S. stock market capitalization) are, simply
power law distributed –by Wittgenstein’s ruler, it is irresponsible to model them in
any other manner. Standard methods such as Modern Portfolio Theory (MPT) or
"base rate crash" verbalisms (claims that people overestimate the probabilities of
tail events) are totally bogus –we are talking of > 70, 000 papers and entire cohorts
of research, not counting about 106 papers in general economics with results de-
pending on "variance" and "correlation". You need to live with the fact that these
metrics are bogus. As the ancients used to say, dura lex sed lex, or in more modern
mafia terms:

It is what it is.





E T H E P R O B L E M W I T H E C O N O M E T R I C S

T
here is something wrong with econometrics, as almost all pa-
pers don’t replicate in the real world. Two reliability tests in
Chapter 10, one about parametric methods the other about
robust statistics, show that there must be something rotten
in econometric methods, fundamentally wrong, and that the

methods are not dependable enough to be of use in anything remotely re-
lated to risky decisions. Practitioners keep spinning inconsistent ad hoc state-
ments to explain failures. This is a brief nontechnical exposition from the
results in [228].

With economic variables one single observation in 10,000, that is, one single day
in 40 years, can explain the bulk of the "kurtosis", the finite-moment standard
measure of "fat tails", that is, both a measure how much the distribution under
consideration departs from the standard Gaussian, or the role of remote events in
determining the total properties. For the U.S. stock market, a single day, the crash
of 1987, determined 80% of the kurtosis for the period between 1952 and 2008. The
same problem is found with interest and exchange rates, commodities, and other
variables. Redoing the study at different periods with different variables shows a
total instability to the kurtosis. The problem is not just that the data had "fat tails",
something people knew but sort of wanted to forget; it was that we would never
be able to determine "how fat" the tails were within standard methods. Never.1

1 Macroeconomic variables, such as U.S. weekly jobless claims have traditionally appeared to be tractable
inside the (ugly and drab) buildings housing economic departments. They ended up breaking the models
with a bang. Jobless claims experienced "unexpected" jumps with Covid 19 (the coronavirus) described of
"thirty standard deviations": the kurtosis (of the log changes) rose from 8 to > 550 after a single observation
in April 2020. Almost all in-sample higher moments are attributable to a one data point, and the higher
the moment the higher such an effect –hence one must accept that there are no higher moments, and no
informative lower moment, and the variable must be power law distributed.

Such a role for the tail cancels the entire history of macroeconomic modeling, as well as policies based on
the conclusion of economists using Mediocristan-derived metrics. While economists in the citation-rings
may not be aware of their fraudulent behavior, others are not missing the point. At the time of writing
people are starting to realize that the fatter the tails, the more policies should be based on the expected
extrema, using extreme value theory (EVT), and the differences between Gaussian and power law models
are even starker for the extremes.
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Figure E.1: Credit: Stefan Gasic

The implication is that those tools used in economics that are based on squaring
variables (more technically, the L2 norm), such as standard deviation, variance,
correlation, regression, the kind of stuff you find in textbooks, are not valid scien-
tifically (except in some rare cases where the variable is bounded). The so-called "p
values" you find in studies have no meaning with economic and financial variables.
Even the more sophisticated techniques of stochastic calculus used in mathemati-
cal finance do not work in economics except in selected pockets.

e.1 performance of standard parametric risk estimators
The results of most papers in economics based on these standard statistical meth-
ods are thus not expected to replicate, and they effectively don’t. Further, these
tools invite foolish risk taking. Neither do alternative techniques yield reliable
measures of rare events, except that we can tell if a remote event is underpriced,
without assigning an exact value.

From [228]), using log returns, Xt ! log
(

P(t)
P(t−i∆t)

)
. Consider the n-sample max-

imum quartic observation Max(Xt−i∆t
4)n

i=0. Let Q(n) be the contribution of the
maximum quartic variations over n samples and frequency ∆t.

Q(n) :=
Max

(
X4

t−i∆t)
n
i=0

∑n
i=0 X4

t−i∆t
.

Note that for our purposes, where we use central or noncentral kurtosis makes no
difference –results are nearly identical.

For a Gaussian (i.e., the distribution of the square of a Chi-square distributed
variable) show Q

(
104) the maximum contribution should be around .008 ± .0028.

Visibly we can see that the observed distribution of the 4th moment has the prop-
erty

P
(

X > max(x4
i )i≤2≤n

)
≈ P

(
X >

n

∑
i=1

x4
i

)
.
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Table E.1: Maximum contribution to the fourth moment from a single daily observation

Security Max Q Years.

Silver 0.94 46.
SP500 0.79 56.
CrudeOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar #11 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CT 0.25 48.
DAX 0.2 18.

Recall that, naively, the fourth moment expresses the stability of the second mo-
ment. And the second moment expresses the stability of the measure across sam-
ples.

Note that taking the snapshot at a different period would show extremes coming
from other variables while these variables showing high maximma for the kurtosis,
would drop, a mere result of the instability of the measure across series and time.

Description of the dataset All tradable macro markets data available as of Au-
gust 2008, with "tradable" meaning actual closing prices corresponding to transac-
tions (stemming from markets not bureaucratic evaluations, includes interest rates,
currencies, equity indices).
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Figure E.2: Max quartic
across securities in Table
E.1.



202 the problem with econometrics

0

10

20

30

40

EuroDepo 3M: Annual Kurt 1981!2008

Figure E.3: Kurtosis across
nonoverlapping periods for
Eurodeposits.
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Figure E.4: Monthly deliv-
ered volatility in the SP500
(as measured by standard de-
viations). The only struc-
ture it seems to have comes
from the fact that it is
bounded at 0. This is stan-
dard.
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Figure E.5: Montly volatil-
ity of volatility from the
same dataset in Table E.1,
predictably unstable.

e.2 performance of standard nonparametric risk estimators
Does the past resemble the future in the tails? The following tests are nonparamet-
ric, that is entirely based on empirical probability distributions.
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Figure E.6: Comparing one
absolute deviation M[t] and
the subsequent one M[t+1]
over a certain threshold
(here 4% in stocks); il-
lustrated how large devia-
tions have no (or few) pre-
decessors, and no (or few)
successors– over the past 50
years of data.
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Figure E.7: The "regular"
is predictive of the regu-
lar, that is mean devia-
tion. Comparing one abso-
lute deviation M[t] and the
subsequent one M[t+1] for
macroeconomic data.

So far we stayed in dimension 1. When we look at higher dimensional properties,
such as covariance matrices, things get worse. We will return to the point with the
treatment of model error in mean-variance optimization.

When xt are now in RN , the problems of sensitivity to changes in the covari-
ance matrix makes the empirically observed moments and conditional moments
extremely unstable. Tail events for a vector are vastly more difficult to calibrate,
and increase in dimensions.

The Responses so far by members of the economics/econometrics establishment
No answer as to why they still use STD, regressions, GARCH , value-at-risk and
similar methods.

Peso problem Benoit Mandelbrot used to insist that one can fit anything with
Poisson jumps. This is similar to the idea that one can always perfectly fit n data
points with a polynomial with n − 1 parameters. If you need to change your
parameters, it’s not a power law.
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Figure E.8: Correlations are also problematic, which flows from the instability of single variances and
the effect of multiplication of the values of random variables. Under such stochasticity of correlations
it makes no sense, no sense whatsoever, to use covariance-based methods such as portfolio theory.

Many researchers invoke "outliers" or "peso problem"2 as acknowledging fat tails
(or the role of the tails for the distribution), yet ignore them analytically (outside of
Poisson models that are not possible to calibrate except after the fact: conventional
Poisson jumps are thin-tailed). Our approach here is exactly the opposite: do not
push outliers under the rug, rather build everything around them. In other words,
just like the FAA and the FDA who deal with safety by focusing on catastrophe
avoidance, we will throw away the ordinary under the rug and retain extremes
as the sole sound approach to risk management. And this extends beyond safety
since much of the analytics and policies that can be destroyed by tail events are
inapplicable.

Peso problem confusion about the Black Swan problem :

"(...) "Black Swans" (Taleb, 2007). These cultural icons refer to disasters that oc-
cur so infrequently that they are virtually impossible to analyze using standard
statistical inference. However, we find this perspective less than helpful because
it suggests a state of hopeless ignorance in which we resign ourselves to being
buffeted and battered by the unknowable."

Andrew Lo, who obviously did not bother to read the book he was citing.

Lack of skin in the game. Indeed one wonders why econometric methods keep
being used while being wrong, so shockingly wrong, how "University" researchers
(adults) can partake of such acts of artistry. Basically these capture the ordinary
and mask higher order effects. Since blowups are not frequent, these events do not
show in data and the researcher looks smart most of the time while being funda-

2 The peso problem is a discovery of an outlier in money supply, became a name for outliers and unex-
plained behavior in econometrics.
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mentally wrong. At the source, researchers, "quant" risk manager, and academic
economist do not have skin in the game so they are not hurt by wrong risk mea-
sures: other people are hurt by them. And the artistry should continue perpetually
so long as people are allowed to harm others with impunity. (More in Taleb and
Sandis [246], Taleb [236] ).





F M A C H I N E L E A R N I N G C O N S I D E R AT I O N S

W
e have learned from option trading that you can express any

one-dimensional function as a weighted linear combination of
call or put options –smoothed by adding time value to the
option. An option becomes a building block. A payoff con-
structed via option is more precisely as follows S = ∑n

i ωi
C(Ki , ti), i = 1, 2, . . . , n, where C is the call price (or, rather, valuation), ω
is a weight K is the strike price, and t the time to expiration of the option. A
European call C delivers max(S− K, 0) at expiration t. a

Neural networks and nonlinear regression, the predecessors of machine
learning, on the other hand, focused on the Heaviside step function, again
smoothed to produce a sigmoid type "S" curve. A collection of different
sigmoids would fit in sample.

a This appears to be an independent discovery by traders of the universal approximation theorem,
initially for sigmoid functions, which are discussed further down (Cybenko [52]).

x

f(x)

Figure F.1: The heav-
iside θ function: note
that it is the payoff of
the "binary option" and
can be decomposed as
lim∆K→0

C(K)−C(K+∆K)
δK .

So this discussion is about ...fattailedness and how the different building blocks
can accommodate them. Statistical machine learning switched to "ReLu" or "ramp"
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functions that act exactly like call options rather than an aggregation of "S" curves.
Researchers then discovered that it allows better handling of out of sample tail
events (since there are by definition no unexpected tail events in sample) owing to
the latter’s extrapolation properties.

What is a sigmoid? Consider a payoff function as shown in F.7 that can be ex-
pressed with formula S : (−∞, ∞) → (0, 1), S(x) = 1

2 tanh
( κx

π

)
+ 1

2

)
, or, more pre-

cisely, a three parameter function Si : (−∞, ∞)→ (0, a1) Si(x) = ai
e(ci−bi x)+1

. It can also
be the cumulative normal distribution, N (µ, σ) where σ controls the smoothness
(it then becomes the Heaviside of Fig. F.7 at the limit of σ → 0). The (bounded)
sigmoid is the smoothing using parameters of the Heaviside function.

Dose (X)
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0.4

0.6

0.8

1.0

Response (F(X))

Figure F.2: The sigmoid
function ; note that it is
bounded to both the left
and right sides owing to
saturation: it looks like a
smoothed Heaviside θ.

We can build composite "S" functions with n summands χn(x) = ∑n
i ωiSi(x) as in

F.3. But:

Remark 10

For χn(x) ∈ [0, ∞)∨ [−∞, 0)∨ (−∞, ∞), we must have n→ ∞.

We need an infinity of summands for an unbounded function. So wherever the
"empirical distribution" will be maxed, the last observation will match the flat part
of the sig. For the definition of an empirical distribution see 3.4.

Now let us consider option payoffs. Fig.F.4 shows the payoff of a regular option at
expiration –the definition of which which matches a Rectifier Linear Unit (ReLu) in
machine learning. Now Fig. F.5 shows the following function: consider a function
ρ : (−∞, ∞)→ [k, ∞), with K ∈ R:

ρ(x, K, p) = k +
log
(

ep(x−K) + 1
)

p
. (F.1)

We can sum the function as ∑i = 1nρ(x, Ki , pi) to fit a nonlinear function, which
in fact replicates what we did with call options –the parameters pi allow to smooth
time value.



machine learning considerations 209
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Figure F.3: A sum of
sigmoids will always be
bounded, so one needs
an infinite sum to repli-
cate an "open" payoff,
one that is not sub-
jected to saturation.
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Figure F.4: An option pay-
off at expiration, open on the
right.

x

f(x)

Figure F.5: ρ function, from
Eq. 11.18 , with k = 0.
We calibrate and smooth the
payoff with different values
of p.

F.0.1 Calibration via Angles

From figure F.6 we can see that, in the equation, S = ∑n
i ωi C(Ki , ti), the ωi corre-

sponds to the arc tangent of the angle made –if positive (as illustrated in figure
F.7), or the negative of the arctan of the supplementary angle.
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Figure F.6: A butterfly
(built via a sum of op-
tions/ReLu, not sigmoids),
with open tails on both
sides and flipping first
and second derivatives.
This example is particu-
larly potent as it has no
verbalistic correspondence
but can be understood by
option traders and machine
learning.
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Figure F.7: How ω =
arctan θ. By fitting angles
we can translate a nonlinear
function into its option sum-
mation.

Summary

We can express all nonlinear univariate functions using a weighted sum of
call options of different strikes, which in machine learning applications maps
to the tails better than a sum of sigmoids (themselves a net of a long and a
short options of neighboring strikes). We can get the weights implicitly using
the angles of the functions relative to Cartesian coordinates.
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11 P R O B A B I L I TY C A L I B R AT I O N U N D E R
FAT TA I L S ‡

W
hat do binary (or probabilistic) forecasting abilities have to do
with performance? We map the difference between (univariate)
binary predictions or "beliefs" (expressed as a specific "event"
will happen/will not happen) and real-world continuous pay-
offs (numerical benefits or harm from an event) and show the

effect of their conflation and mischaracterization in the decision-science liter-
ature.

The effects are:

A) Spuriousness of psychological research particularly those documenting that
humans overestimate tail probabilities and rare events, or that they overreact to
fears of market crashes, ecological calamities, etc. Many perceived "biases" are
just mischaracterizations by psychologists. There is also a misuse of Hayekian
arguments in promoting prediction markets.

B) Being a "good forecaster" in binary space doesn’t lead to having a good
performance, and vice versa, especially under nonlinearities. A binary forecasting
record is likely to be a reverse indicator under some classes of distributions. Deeper
uncertainty or more complicated and realistic probability distribution worsen the
conflation .

C) Machine Learning: Some nonlinear payoff functions, while not lending them-
selves to verbalistic expressions and "forecasts", are well captured by ML or ex-
pressed in option contracts.

D) M Competitions Methods: The score for the M4-M5 competitions appear to
be closer to real world variables than the Brier score.

The appendix shows the mathematical properties and exact distribution of the
various payoffs, along with an exact distribution for the Brier score helpful for
significance testing and sample sufficiency.

Research chapter.
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Figure 11.1: "Typical patterns" as
stated and described in [13], a repre-
sentative claim in psychology of deci-
sion making that people overestimate
small probability events. The central
findings are in 1977 and 1978 [152]
and [153]. We note that to the left,
in the estimation part, 1) events such
as floods, tornados, botulism, mostly
patently thick tailed variables, mat-
ters of severe consequences that agents
might have incorporated in the prob-
ability, 2) these probabilities are sub-
jected to estimation error that, when
endogenised, increase the estimation.

11.1 continuous vs . discrete payoffs: definitions and comments
Example 11.1 ("One does not eat beliefs and (binary) forecasts")
In the first volume of the Incerto ( Fooled by Randomness, 2001 [226]), the narrator, a
trader, is asked by the manager "do you predict that the market is going up or down?"
"Up", he answered, with confidence. Then the boss got angry when, looking at the firm’s
exposures, he discovered that the narrator was short the market, i.e., would benefit from the
market going down.

The trader had difficulties conveying the idea that there was no contradiction, as someone
could hold the (binary) belief that the market had a higher probability of going up than
down, but that, should it go down, there is a very small probability that it could go down
considerably, hence a short position had a positive expected return and the rational response
was to engage in a short exposure. "You do not eat forecasts, but P/L" (or "one does not
monetize forecasts") goes the saying among traders.

If exposures and beliefs do not go in the same direction, it is because beliefs
are verbalistic reductions that contract a higher dimensional object into a single
dimension. To express the manager’s error in terms of decision-making research,
there can be a conflation in something as elementary as the notion of a binary event
(related to the zeroth moment) or the probability of an event and expected payoff from
it (related to the first moment and, when nonlinear, to all higher moments) as the
payoff functions of the two can be similar in some circumstances and different in
others.

Commentary 11.1
In short, probabilistic calibration requires estimations of the zeroth moment while the real
world requires all moments (outside of gambling bets or artificial environments such as
psychological experiments where payoffs are necessarily truncated), and it is a central prop-
erty of thick tails that higher moments are explosive (even "infinite") and count more and
more.
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11.1.1 Away from the Verbalistic

While the trader story is mathematically trivial (though the mistake is committed
a bit too often), more serious gaps are present in decision making and risk man-
agement, particularly when the payoff function is more complicated, or nonlinear
(and related to higher moments). So once we map the contracts or exposures
mathematically, rather than focus on words and verbal descriptions, some serious
distributional issues arise.

Definition 11.1 ( Event)
A (real-valued) random variable X: Ω → R defined on the probability space (Ω,F , P) is
a function X(ω) of the outcome ω ∈ Ω. An event is a measurable subset (countable or
not) of Ω, measurable meaning that it can be defined through the value(s) of one of several
random variable(s).

Definition 11.2 (Binary forecast/payoff)
A binary forecast (belief, or payoff) is a random variable taking two values

X : Ω→ {X1, X2},

with realizations X1, X2 ∈ R.

In other words, it lives in the binary set (say {0, 1}, {−1, 1}, etc.), i.e., the specified
event will or will not take place and, if there is a payoff, such payoff will be mapped
into two finite numbers (a fixed sum if the event happened, another one if it didn’t).
Unless otherwise specified, in this discussion we default to the {0, 1} set.

Example of situations in the real world where the payoff is binary:

• Casino gambling, lotteries , coin flips, "ludic" environments, or binary op-
tions paying a fixed sum if, say, the stock market falls below a certain point
and nothing otherwise –deemed a form of gambling2.

• Elections where the outcome is binary (e.g., referenda, U.S. Presidential Elec-
tions), though not the economic effect of the result of the election.3

• Medical prognoses for a single patient entailing survival or cure over a spec-
ified duration, though not the duration itself as variable, or disease-specific
survival expressed in time, or conditional life expectancy. Also exclude any-
thing related to epidemiology.

• Whether a given person who has an online profile will buy or not a unit or
more of a specific product at a given time (not the quantity or units).

Commentary 11.2 (A binary belief is equivalent to a payoff)
A binary "belief" should map to an economic payoff (under some scaling or normalization

2 Retail binary options are typically used for gambling and have been banned in many jurisdictions, such
as, for instance, by the European Securities and Markets Authority (ESMA), www.esma.europa.eu, as well
as the United States where it is considered another form of internet gambling, triggering a complaint by a
collection of decision scientists, see Arrow et al. [3]. We consider such banning as justified since bets have
practically no economic value, compared to financial markets that are widely open to the public, where
natural exposures can be properly offset.

3 Note the absence of spontaneously forming gambling markets with binary payoffs for continuous vari-
ables. The exception might have been binary options but these did not remain in fashion for very long,
from the experiences of the author, for a period between 1993 and 1998, largely motivated by tax gimmicks.
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necessarily to constitute a probability), an insight owed to De Finetti [57] who held that
a "belief" and a "prediction" (when they are concerned with two distinct outcomes) map
into the equivalent of the expectation of a binary random variable and bets with a payoff in
{0, 1}. An "opinion" becomes a choice price for a gamble, and one at which one is equally
willing to buy or sell. Inconsistent opinions therefore would lead to a violation of arbitrage
rules, such as the "Dutch book", where a combination of mispriced bets can guarantee a
future loss.

Definition 11.3 (Real world open continuous payoff)

X : Ω→ [a, ∞)∨ (−∞, b]∨ (−∞, ∞).

A continuous payoff "lives" in an interval, not a finite set. It corresponds to an unbounded
random variable either doubly unbounded or semi-bounded, with the bound on one side
(one tailed variable).

Caveat We are limiting for the purposes of our study the consideration to binary
vs. continuous and open-ended (i.e., no compact support). Many discrete payoffs
are subsumed into the continuous class using standard arguments of approxima-
tion. We are also omitting triplets, that is, payoffs in, say {−1, 0, 3}, as these
obey the properties of binaries (and can be constructed using a sum of binaries).
Further, many variable with a floor and a remote ceiling (hence, formally with
compact support), such as the number of victims or a catastrophe, are analytically
and practically treated as if they were open-ended [46].

Example of situations in the real world where the payoff is continuous:

• Wars casualties, calamities due to earthquake, medical bills, etc.

• Magnitude of a market crash, severity of a recession, rate of inflation

• Income from a strategy

• Sales and profitability of a new product

• In general, anything covered by an insurance contract

-1 1 2 3 4
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Figure 11.2: Comparing the payoff
of a binary bet (The Heaviside θ(.))
to a continuous open-ended exposure
g(x). Visibly there is no way to match
the (mathematical) derivatives for any
form of hedging.

Most natural and socio-economic variables are continuous and their statistical
distribution does not have a compact support in the sense that we do not have a
handle of an exact upper bound.
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8

Figure 11.3: Conflating probability and expected return is deeply entrenched in psychology and fi-
nance. Credit: Stefan Gasic.

Example 11.2
Predictive analytics in binary space {0, 1} can be successful in forecasting if, from his
online activity, online consumer Iannis Papadopoulos will purchase a certain item, say a
wedding ring, based solely on computation of the probability. But the probability of the
"success" for a potential new product might be –as with the trader’s story– misleading.
Given that company sales are typically thick tailed, a very low probability of success might
still be satisfactory to make a decision. Consider venture capital or option trading –an out
of the money option can often be attractive yet may have less than 1 in 1000 probability of
ever paying off.

More significantly, the tracking error for probability guesses will not map to that of the
performance. λ(M4) would.

This difference is well known by option traders as there are financial derivative
contracts called "binaries" that pay in the binary set {0, 1} (say if the underlying
asset S, say, exceeds a strike price K), while others called "vanilla" that pay in
[0, ∞), i.e. max(S− K, 0) (or, worse, in (−∞, 0) for the seller can now be exposed
to bankruptcy owing to the unbounded exposure). The considerable mathematical
and economic difference between the two has been discussed and is the subject of
Dynamic Hedging: Managing Vanilla and Exotic Options [225]. Given that the former
are bets paying a fixed amount and the latter have full payoff, one cannot be prop-
erly replicated (or hedged) using another, especially under fat tails and parametric
uncertainty –meaning performance in one does not translate to performance into
the other. While this knowledge is well known in mathematical finance it doesn’t
seem to have been passed on to the decision-theory literature.

Commentary 11.3 (Derivatives theory)
Our approach here is inspired from derivatives (or option) theory and practice where there
are different types of derivative contracts, 1) those with binary payoffs (that pay a fixed sum
if an event happens) and 2) "vanilla" ones (standard options with continuous payoffs). It
is practically impossible to hedge one with another [225]. Furthermore a bet with a strike
price K and a call option with same strike K, with K in the tails of the distribution, almost
always have their valuations react in opposite ways when one increases the kurtosis of the
distribution, (while preserving the first three moments) or, in an example further down in
the lognormal environment, when one increases uncertainty via the scale of the distribution.
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Commentary 11.4 (Term sheets)
Note that, thanks to "term sheets" that are necessary both legally and mathematically,
financial derivatives practive provides precise legalistic mapping of payoffs in a way to
make their mathematical, statistical, and economic differences salient.

There has been a tension between prediction markets and real financial markets.
As we can show here, prediction markets may be useful for gamblers, but they
cannot hedge economic exposures.

The mathematics of the difference and the impossibility of hedging can be shown
in the following. Let X be a random variable in R, we have the payoff of the bet or
the prediction θK : R→ {0, 1},

θK(x) =
{

1, x ≥ K
0 otherwise,

(11.1)

and g : R→ R that of the natural exposure. Since ∂
∂x θK(x) is a Dirac delta function

at K, δ(K) and ∂)
∂x gk(x) is at least once differentiable for x ≥ K (or constant in

case the exposure is globally linear or, like an option, piecewise linear above K),
matching derivatives for the purposes of offsetting variations is not a possible
strategy.4 The point is illustrated in Fig 11.2.

11.1.2 There is no defined "collapse", "disaster", or "success" under fat tails

The fact that an "event" has some uncertainty around its magnitude carries some
mathematical consequences. Some verbalistic papers in 2019 still commit the fal-
lacy of binarizing an event in [0, ∞): A recent paper on calibration of beliefs says
"...if a person claims that the United States is on the verge of an economic collapse
or that a climate disaster is imminent..." An economic "collapse" or a climate "dis-
aster" must not be expressed as an event in {0, 1} when in the real world it can
take many values. For that, a characteristic scale is required. In fact under fat tails,
there is no "typical" collapse or disaster, owing to the absence of characteristic scale,
hence verbal binary predictions or beliefs cannot be used as gauges.

We present the difference between thin tailed and fat tailed domains as follows.

Definition 11.4 (Characteristic scale)
Let X be a random variable that lives in either (0, ∞) or (−∞, ∞) and E the expectation
operator under "real world" (physical) distribution. By classical results [82]:

lim
K→∞

1
K
E(X|X>K) = λ, (11.2)

• If λ = 1 , X is said to be in the thin tailed class D1 and has a characteristic scale

• If λ > 1 , X is said to be in the fat tailed regular variation class D2 and has no
characteristic scale

4 To replicate an open-ended continuous payoff with binaries, one needs an infinite series of bets, which
cancels the entire idea of a prediction market by transforming it into a financial market. Distributions
with compact support always have finite moments, not the case of those on the real line.
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• If
lim

K→∞
E(X|X>K)− K = µ

where µ > 0, then X is in the borderline exponential class

The point can be made clear as follows. One cannot have a binary contract that
adequately hedges someone against a "collapse", given that one cannot know in
advance the size of the collapse or how much the face value or such contract needs
to be. On the other hand, an insurance contract or option with continuous payoff
would provide a satisfactory hedge. Another way to view it: reducing these events
to verbalistic "collapse", "disaster" is equivalent to a health insurance payout of a
lump sum if one is "very ill" –regardless of the nature and gravity of the illness –
and 0 otherwise.

And it is highly flawed to separate payoff and probability in the integral of ex-
pected payoff.5 Some experiments of the type shown in Figure 11 ask agents what
is their estimates of deaths from botulism or some such disease: agents are blamed
for misunderstanding the probability. This is rather a problem with the experiment:
people do not necessarily separate probabilities from payoffs.

11.2 spurious overestimation of tail probability in psychology

Definition 11.5 (Substitution of integral)
Let K ∈ R+ be a threshold, f (.) a density function and pK ∈ [0, 1] the probability of
exceeding it, and g(x) an impact function. Let I1 be the expected payoff above K:

I1 =
∫ ∞

K
g(x) f (x) dx,

and Let I2 be the impact at K multiplied by the probability of exceeding K:

I2 = g(K)
∫ ∞

K
f (x) dx = g(K)pK .

The substitution comes from conflating I1 and I2, which becomes an identity if and only
if g(.) is constant above K (say g(x) = θK(x), the Heaviside theta function). For g(.) a
variable function with positive first derivative, I1 can be close to I2 only under thin-tailed
distributions, not under the fat tailed ones.6

For the discussions and examples in this section assume g(x) = x as we will
consider the more advanced nonlinear case in Section 11.5.

5 Practically all economic and informational variables have been shown since the 1960s to belong to the
D2 class, or at least the intermediate subexponential class (which includes the lognormal), [99, 162, 163,
164, 226], along with social variables such as size of cities, words in languages, connections in networks,
size of firms, incomes for firms, macroeconomic data, monetary data, victims from interstate conflicts and
civil wars[46, 199], operational risk, damage from earthquakes, tsunamis, hurricanes and other natural
calamities, income inequality [40], etc. Which leaves us with the more rational question: where are
Gaussian variables? These appear to be at best one order of magnitude fewer in decisions entailing formal
predictions.

6 This can also explain, as we will see in Chapter 11 that binary bets can never represent "skin in the game"
under fat tailed distributions.
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Theorem 2: Convergence of I1
I2

If X is in the thin tailed class D1 as described in 11.2,

lim
K→∞

I1
I2

= 1 (11.3)

If X is in the regular variation class D2,

lim
K→∞

I1
I2

= λ > 1. (11.4)

Proof. From Eq. 11.2. Further comments:

11.2.1 Thin tails

By our very definition of a thin tailed distribution (more generally any distribution
outside the subexponential class, indexed by (g)), where f (g)(.) is the PDF:

lim
K→∞

∫ ∞
K x f (g)(x) dx

K
∫ ∞

K f (g)(x) dx
=

I1
I2

= 1. (11.5)

Special case of a Gaussian: Let g(.) be the PDF of predominantly used Gaussian
distribution (centered and normalized),

∫ ∞

K
xg(x) dx =

e−
K2
2

√
2π

(11.6)

and Kp = 1
2 erfc

(
K√

2

)
, where erfc is the complementary error function, and Kp is

the threshold corresponding to the probability p.

We note that Kp
I1
I2

corresponds to the inverse Mills ratio used in insurance.

11.2.2 Fat tails

For all distributions in the regular variation class, defined by their tail survival
function: for K large,

P(X > K) ≈ LK−α , α > 1,

where L > 0 and f (p) is the PDF of a member of that class:

lim
Kp→∞

∫ ∞
K x f (p)(x) dx

K
∫ ∞

Kp
f (p)(x) dx

=
α

α− 1
> 1. (11.7)
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11.2.3 Conflations

Conflation of I1 and I2 In numerous experiments, which include the prospect
theory paper by Kahneman and Tversky (1978) [139], it has been repeatedly estab-
lished that agents overestimate small probabilities in experiments where the odds
are shown to them, and when the outcome corresponds to a single payoff. The
well known Kahneman-Tversky result proved robust, but interpretations make er-
roneous claims from it. Practically all the subsequent literature, relies on I2 and
conflates it with I1, what this author has called the ludic fallacy in The Black Swan
[226], as games are necessarily truncating a dimension from reality. The psycho-
logical results might be robust, in the sense that they replicate when repeated in
the exact similar conditions, but all the claims outside these conditions and exten-
sions to real risks will be an exceedingly dubious generalization –given that our
exposures in the real world rarely map to I1. Furthermore, one can overestimate
the probability yet underestimate the expected payoff.

Stickiness of the conflation The misinterpretation is still made four decades af-
ter Kahneman-Tversky (1979). In a review of behavioral economics, with emphasis
on miscaculation of probability, Barberis (2003) [12] treats I1 = I2. And Arrow et
al. [3], a long list of decision scientists pleading for deregulation of the betting
markets also misrepresented the fitness of these binary forecasts to the real world
(particularly in the presence of real financial markets).

Another stringent –and dangerous –example is the "default VaR" (Value at risk)
which is explicitly given as I2 , i.e. default probability x(1− expected recovery rate),
which can be quite different from the actual loss expectation in case of default. Fi-
nance presents erroneous approximations of CVaR7, and the approximation is the
risk-management flaw that may have caused the crisis of 2008 [244].

The fallacious argument is that they compute the recovery rate as the expected
value of collateral, without conditioning by the default event. The expected value
of the collateral conditionally to a default is often far less then its unconditional
expectation. In 2007, after a massive series of foreclosures, the value of most collat-
erals dropped to about 1/3 of its expected value!

Misunderstanding of Hayek’s knowledge arguments "Hayekian" arguments for
the consolidation of beliefs via prices does not lead to prediction markets as dis-
cussed in such pieces as [30], or Sunstein’s [220]: prices exist in financial and
commercial markets; prices are not binary bets. For Hayek [127] consolidation of
knowledge is done via prices and arbitrageurs (his words)–and arbitrageurs trade
products, services, and financial securities, not binary bets.

7 The mathematical expression of the Value at Risk, VaR, for a random variable X with distribution function
F and threshold α ∈ [0, 1]

VaRα(X) = − inf {x ∈ R : FX(x) > α},
and the corresponding CVar

ESα(X) = E
(
−X |X≤−VaRα (X)

)
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Table 11.1: Gaussian pseudo-overestimation

p Kp
∫ ∞

Kp
x f (x)dx Kp

∫ ∞
Kp

f (x)dx p∗ p∗
p

1
10 1.28 1.75× 10−1 1.28× 10−1 1.36× 10−1 1.36

1
100 2.32 2.66× 10−2 2.32× 10−2 1.14× 10−2 1.14

1
1000 3.09 3.36× 10−3 3.09× 10−3 1.08× 10−3 1.08

1
10000 3.71 3.95× 10−4 3.71× 10−4 1.06× 10−4 1.06

Definition 11.6 (Corrected probability in binarized experiments)
Let p∗ be the equivalent probability to make I1 = I2 and eliminate the effect of the error, so

p∗ = {p : I1 = I2 = K}

Now let’ s solve for Kp "in the tails", working with a probability p. For the
Gaussian, Kp =

√
2erfc−1(2p); for the Paretian tailed distribution, Kp = p−1/α.

Hence, for a Paretian distribution, the ratio of real continuous probability to the
binary one

p∗

p
=

α

1− α
,

which can allow in absurd cases p∗ to exceed 1 when the distribution is grossly
misspecified.

Tables 11.1 and 11.2 show, for a probability level p, the corresponding tail level
Kp, such as

Kp = {inf K : P(X > K) > p} ,

and the corresponding adjusted probability p∗ that de-binarize the event 89– prob-
abilities here need to be in the bottom half, i.e., p < .5. Note that we are operating
under the mild case of known probability distributions, as it gets worse under
parametric uncertainty.10

The most commonly known distribution among the public, the "Pareto 80/20"
(based on Pareto discovering that 20 percent of the people in Italy owned 80 per-
cent of the land), maps to a tail index α = 1.16, so the adjusted probability is > 7
times the naive one.

Example of probability and expected payoff reacting in opposite direction under
increase in uncertainty An example showing how, under a skewed distribution,
the binary and the expectation reacting in opposite directions is as follows. Con-
sider the risk-neutral lognormal distribution L(X0 − 1

σ2 , σ) with PDF fL(.), mean

8 The analysis is invariant to whether we use the right or left tail .By convention, finance uses negative value
for losses, whereas other areas of risk management express the negative of the random variance, hence
focus on the right tail.

9 Kp is equivalent to the Value at Risk VaRp in finance, where p is the probability of loss.
10 Note the van der Wijk’s law, see Cirillo [44]: I1

I2
is related to what is called in finance the expected shortfall

for Kp .
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X0 and variance
(

eσ2 − 1
)

X2
0. We can increase its uncertainty with the parameter

σ. We have the expectation of a contract above X0, E>X0 :

E>X0 =
∫ ∞

X0

x fL(x) dx =
1
2

X0

(
1 + erf

(
σ

2
√

2

))

and the probability of exceeding X0,

P(X > X0) =
1
2

(
1− erf

(
σ

2
√

2

))
,

where erf is the error function. As σ rises erf
(

σ
2
√

2

)
→ 1, with E>X0 → X0 and

P(X > X0) → 0. This example is well known by option traders (see Dynamic
Hedging [225]) as the binary option struck at X0 goes to 0 while the standard call
of the same strike rises considerably to reach the level of the asset –regardless of
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Table 11.2: Paretian pseudo-overestimation

p Kp
∫ ∞

Kp
x f (x)dx Kp

∫ ∞
Kp

f (x)dx p∗ p∗
p

1
10 8.1 8.92 0.811 1.1 (sic) 11.

1
100 65.7 7.23 0.65 0.11 11.

1
1000 533 5.87 0.53 0.011 11.

1
10000 4328 4.76 0.43 0.0011 11.

strike. This is typically the case with venture capital: the riskier the project, the less
likely it is to succeed but the more rewarding in case of success. So, the expectation
can go to +∞ while to probability of success goes to 0.

11.2.4 Distributional Uncertainty

Remark 11: Distributional uncertainty

Owing to Jensen’s inequality, the discrepancy (I1 − I2) increases under parameter
uncertainty, expressed in higher kurtosis, via stochasticity of σ the scale of the thin-
tailed distribution, or that of α the tail index of the Paretian one.

Proof. First, the Gaussian world. We consider the effect of I1 − I2 =
∫ ∞

K x f (g)(x)−∫ ∞
K f (g)(x) under stochastic volatility, i.e. the parameter from increase of volatility.

Let σ be the scale of the Gaussian, with K constant:

(11.8)
∂2(
∫ ∞

K x f (g)(x)dx)
∂σ2 −

∂2(
∫ ∞

K f (g)(x)dx)
∂σ2 =

e−
K2

2σ2
(
(K − 1)K3 − (K − 2)Kσ2)

√
2πσ5

,

which is positive for all values of K > 0 (given that K4 − K3 − K2 + 2K > 0 for K
positive).

Second, consider the sensitivity of the ratio I1
I2

to parameter uncertainty for α in
the Paretian case (for which we can get a streamlined expression compared to the
difference). For α > 1 (the condition for a finite mean):

(11.9)
∂2
(∫ ∞

K x f (p)(x)dx/
∫ ∞

K f (p)(x)dx
)

∂α2 =
2K

(α − 1)3 ,

which is positive and increases markedly at lower values of α, meaning the fatter
the tails, the worse the uncertainty about the expected payoff and the larger the
difference between I1 and I2.
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11.3 calibration and miscalibration
The psychology literature also examines the "calibration" of probabilistic assess-
ment –an evaluation of how close someone providing odds of events turns out to
be on average (under some operation of the law of large number deemed satisfac-
tory) [152], [143], see Fig. 3.13 (as we saw in Chapter 3). The methods, for the
reasons we have shown here, are highly flawed except in narrow circumstances
of purely binary payoffs (such as those entailing a "win/lose" outcome) –and gen-
eralizing from these payoffs is either not possible or produces misleading results.
Accordingly, Fig. 11 makes little sense empirically.

At the core, calibration metrics such as the Brier score are always thin-tailed,
when the variable under measurement is fat-tailed, which worsens the tractability.

To use again the saying "You do not eat forecasts", most businesses have severely
skewed payoffs, so being calibrated in probability is meaningless.

Remark 12: Distributional differences

Binary forecasts and calibration metrics via the Brier score belong to the thin-tailed
class.

We will show proofs next.

11.4 scoring metrics
This section, summarized in Table 11.3, compares the probability distributions of
the various metrics used to measure performance, either by explicit formulation
or by linking it to a certain probability class. Clearly one may be mismeasuring
performance if the random variable is in the wrong probability class. Different
underlying distributions will require a different number of sample sizes owing
to the differences in the way the law of numbers operates across distributions.
A series of binary forecasts will converge very rapidly to a thin-tailed Gaussian
even if the underlying distribution is fat-tailed, but an economic P/L tracking
performance for someone with a real exposure will require a considerably larger
sample size if, say, the underlying is Pareto distributed [235].

We start by precise expressions for the four possible ones:

1. Real world performance under conditions of survival, or, in other words, P/L
or a quantitative cumulative score.

2. A tally of bets, the naive sum of how often a person’s binary prediction is
correct

3. De Finetti’s Brier score λ(B)n

4. The M4 score λM4
n for n observations used in the M4 competition, and its

prosed sequel M5.
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Table 11.3: Scoring Metrics for Performance Evaluation

Metric Name Fitness to reality

P(r)(T) Cumulative P/L Adapted to real world distributions, partic-
ularly under a survival filter

P(p)(n) Tally of Bets Misrepresents the performance under fat
tails, works only for binary bets and/or
thin tailed domains.

λ(n) Brier Score Misrepresents performance precision un-
der fat tails, ignores higher moments.

λ(M4)
n M4 Score Represents precision not exactly real world

performance but maps to real distribution
of underlying variables.

λ(M5)
n Proposed M5 Score Represents both precision and survival

conditions by predicting extrema of time
series.

g(.) Machine learning
nonlinear payoff
function (not a
metric)

Expresses exposures without verbalism
and reflects true economic or other
P/L. Resembles financial derivatives term
sheets.

P/L in Payoff Space (under survival condition) The "P/L" is short for the natu-
ral profit and loss index, that is, a cumulative account of performance. Let Xi be
realizations of an unidimensional generic random variable X with support in R

and t = 1, 2, . . . n. Real world payoffs Pr(.) are expressed in a simplified way as

Pr(n) = P(0) + ∑
k≤N

g(xt), (11.10)

where gt : R → R is a measurable function representing the payoff; g may be
path dependent (to accommodate a survival condition), that is, it is a function of
the preceding period τ < t or on the cumulative sum ∑τ≤t g(xτ) to introduce an
absorbing barrier, say, bankruptcy avoidance, in which case we write:

P(r)(T) = P(r)(0) + ∑
t≤n

1(∑τ<t g(xτ)>b) g(xt), (11.11)

where b is is any arbitrary number in R that we call the survival mark and 1(.) an
indicator function ∈ {0, 1}.

The last condition from the indicator function in Eq. 11.11 is meant to handle
ergodicity or lack of it [226].

Commentary 11.5
P/L tautologically corresponds to the real world distribution, with an absorbing barrier at
the survival condition.
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Frequency Space, The standard psychology literature has two approaches.

A-When tallying forecasts as a counter

P(p)(n) =
1
n ∑

i≤n
1Xt∈χ , (11.12)

where 1Xt∈χ ∈ {0, 1} is an indicator that the random variable x ∈ χt in in the
"forecast range", and T the total number of such forecasting events. where ft ∈
[0, 1] is the probability announced by the forecaster for event t

B-When dealing with a score (calibration method) in the absence of a visible net
performance, researchers produce some more advanced metric or score to measure
calibration. We select below the gold standard", De Finetti’s Brier score(DeFinetti,
[58]). It is favored since it doesn’t allow arbitrage and requires perfect probabilistic
calibration: someone betting than an event has a probability 1 of occurring will get
a perfect score only if the event occurs all the time.

λ(B)
n =

1
n ∑

t≤n
( ft − 1Xt∈χ)2, (11.13)

which needs to be minimized for a perfect probability assessor.

Applications: M4 and M5 Competitions The M series (Makridakis [159]) eval-
uate forecasters using various methods to predict a point estimate (along with a
range of possible values). The last competition in 2018, M4, largely relied on a
series of scores, λM4j , which works well in situations where one has to forecast the
first moment of the distribution and the dispersion around it.

Definition 11.7 (The M4 first moment forecasting scores)
The M4 competition precision score (Makridakis et al. [159]) judges competitors on the
following metrics indexed by j = 1, 2

λ
(M4)j
n =

1
n

n

∑
i

∣∣∣X fi − Xri

∣∣∣
sj

(11.14)

where s1 = 1
2

(
|X fi |+|Xri |

)
and s2 is (usually) the raw mean absolute deviation for the

observations available up to period i (i.e., the mean absolute error from either "naive"
forecasting or that from in sample tests), X fi is the forecast for variable i as a point estimate,
Xri is the realized variable and n the number of experiments under scrutiny.

In other word, it is an application of the Mean Absolute Scaled Error (MASE)
and the symmetric Mean Absolute Percentage Error (sMAPE) [133].

The suggested M5 score (expected for 2020) adds the forecasts of extrema of
the variables under considerations and repeats the same tests as the one for raw
variables in Definition 11.7.
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11.4.1 Deriving Distributions

Distribution of P(p)(n)

Remark 13

The tally of binary forecast P(p)(n) is asymptotically normal with mean p and stan-

dard deviation
√

1
n (p− p2) regardless of the distribution class of the random vari-

able X.

The results are quite standard, but see appendix for the re-derivations.

Distribution of the Brier Score λn

Theorem 3

Regardless of the distribution of the random variable X, without even assuming
independence of ( f1 − 1A1), . . . , ( fn − 1An), for n < +∞, the score λn has all
moments of order q, E(λq

n) < +∞.

Proof. For all i, ( fi − 1Ai)2 ≤ 1 .

We can get actually closer to a full distribution of the score across independent
betting policies. Assume binary predictions fi are independent and follow a beta
distribution B(a, b) (which approximates or includes all unimodal distributions in
[0, 1] (plus a Bernoulli via two Dirac functions), and let p be the rate of success
p = E (1Ai), the characteristic function of λn for n evaluations of the Brier score is

(11.15)

ϕn(t) = πn/2
(

2−a−b+1Γ(a + b)
(

p 2 F̃2

(
b + 1

2
,

b
2

;
a + b

2
,

1
2

(a + b + 1);
it
n

)

− (p − 1) 2 F̃2

(
a + 1

2
,

a
2

;
a + b

2
,

1
2

(a + b + 1);
it
n

)))
.

Here 2 F̃2 is the generalized hypergeometric function regularized 2 F̃2(., .; ., .; .) =
2 F2(a;b;z)

(Γ(b1)...Γ(bq))
and pFq(a; b; z) has series expansion ∑∞

k=0
(a1)k ...(ap)k
(b1)k ...(bp)k

zk/k!, were (a)(.) is

the Pochhammer symbol.

Hence we can prove the following: under the conditions of independence of the
summands stated above,

λn
D−→ N (µ, σn) (11.16)

where N denotes the Gaussian distribution with for first argument the mean and
for second argument the standard deviation.

The proof and parametrization of µ and σn is in the appendix.
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Distribution of the economic P/L or quantitative measure Pr

Remark 14

Conditional on survival to time T, the distribution of the quantitative measure
P(r)(T) will follow the distribution of the underlying variable g(x).

The discussion is straightforward if there is no absorbing barrier (i.e., no survival
condition).

Distribution of the M4 score The distribution of an absolute deviation is in the
same probability class as the variable itself. Thee Brier score is in the norm L2
and is based on the second moment (which always exists) as De Finetti has shown
that it is more efficient to just a probability in square deviations. However for
nonbinaries, it is vastly more efficient under fat tails to rely on absolute deviations,
even when the second moment exists [239].

11.5 non-verbalistic payoff functions/machine learning
Earlier examples focused on simple payoff functions, with some cases where the
conflation I1 and I2 can be benign (under the condition of being in a thin tailed
environment). However

Inseparability of probability under nonlinear payoff function Now when we
introduce a payoff function g(.) that is nonlinear, that is that the economic or other
quantifiable response to the random variable X varies with the levels of X, the
discrepancy becomes greater and the conflation worse.

Commentary 11.6 (Probability as an integration kernel)
Probability is just a kernel inside an integral or a summation, not a real thing on its own.
The economic world is about quantitative payoffs.
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Remark 15: Inseparability of probability

Let F : A→ [0, 1] be a probability distribution (with derivative f ) and g : R→ R

a measurable function, the "payoff"". Clearly, for A′ a subset of A:
∫

A′
g(x)dF(x) =

∫

A′
f (x)g(x)dx

,=
∫

A′
f (x)dx g

(∫

A′
dx
)

In discrete terms, with π(.) a probability mass function:

(11.17)∑
x ∈A′

π(x)g(x) ,= ∑
x∈A′

π(x) g

(
1
n ∑

x∈A′
x

)

= probability of event × payoff of average event

Proof. Immediate by Jensen’s inequality.

In other words, the probability of an event is an expected payoff only when, as
we saw earlier, g(x) is a Heaviside theta function.

Next we focus on functions tractable mathematically or legally but not reliable
verbalistically via "beliefs" or "predictions".

Misunderstanding g Figure 11.5 showing the mishedging story of Morgan Stan-
ley is illustrative of verbalistic notions such as "collapse" mis-expressed in nonlin-
ear exposures. In 2007 the Wall Street firm Morgan Stanley decided to "hedge"
against a real estate "collapse", before the market in real estate started declining.
The problem is that they didn’t realize that "collapse" could take many values,
some worse than they expected, and set themselves up to benefit if there were
a mild decline, but lose much if there is a larger one. They ended up right in
predicting the crisis, but lose $10 billion from the "hedge".

Figure F.6 shows a more complicated payoff, dubbed a "butterfly"

The function g and machine learning We note that g maps to various machine
learning functions that produce exhaustive nonlinearities via the universal uni-
versal approximation theorem (Cybenko [52]), or the generalized option payoff
decompositions (see Dynamic Hedging [225]).

Consider the function ρ : (−∞, ∞)→ [K, ∞), with K, the r.v. X ∈ R:

ρK,p(x) = k +
log
(

ep(x−K) + 1
)

p
(11.18)
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Benefits from
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Figure 11.5: The Morgan Stanley Story: an example of an elementary nonlinear payoff that cannot
be described verbalistically. This exposure is called in derivatives traders jargon a "Christmas Tree",
achieved by purchasing a put with strike K and selling a put with lower strike K − ∆1 and another
with even lower strike K− ∆2, with ∆2 ≥ ∆1 ≥ 0.

We can express all nonlinear payoff functions g as, with the weighting ωi ∈ R:

g(x) = ∑
i

ωi ρKi ,p(x) (11.19)

by some similarity, ρK,p(x) maps to the value a call price with strike K and time
t to expiration normalized to 1, all rates set at 0, with sole other parameter σ the
standard deviation of the underlying.

We note that the expectation of g(.) is the sum of expectation of the ReLu func-
tions:

E (g(x)) = ∑
i

ωi E
(
ρKi ,p(x)

)
(11.20)

The variance and other higher order statistical measurements are harder to obtain
in closed or simple form.

Commentary 11.7
Risk management is about changing the payoff function g(.) rather than making "good
forecasts".

We note than λ is not a metric but a target to which one can apply various metrics.

Survival

Decision making is sequential. Accordingly, miscalibration may be a good idea if
it reduces the odds of being absorbed. See the appendix of Skin in the Game [226],
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which shows the difference between ensemble probability and time probability.
The expectation of the sum of n gamblers over a given day is different from that of
a single gambler over n days, owing to the conditioning.

In that sense, measuring the performance of an agent who will eventually go
bust (with probability one) is meaningless.11

11.6 conclusion:
Finally, that in the real world, it is the net performance (economic or other) that
counts, and making "calibration" mistakes where it doesn’t matter or can be helpful
should be encouraged, not penalized. The bias variance argument is well known
in machine learning [124] as means to increase performance, in discussions of
rationality (see Skin in the Game [226]) as a necessary mechanism for survival, and a
very helpful psychological adaptation (Brighton and Gigerenzer [33] show a potent
argument that if it is a bias, it is a pretty useful one.) If a mistake doesn’t cost
you anything –or helps you survive or improve your outcomes– it is clearly not a
mistake. And if it costs you something, and has been present in society for a long
time, consider that there may be hidden evolutionary advantages to these types
of mistakes –of the following sort: mistaking a bear for a stone is worse than
mistaking a stone for a bear.

We have shown that, in risk management, one should never operate in probability
space.

11.7 appendix: proofs and derivations

11.7.1 Distribution of Binary Tally P(p)(n)

We are dealing with an average of Bernoulli random variables, with well known
results but worth redoing. The characteristic function of a Bernoulli distribution
with parameter p is ψ(t) = 1− p + e(It) p. We are concerned with the N-summed
cumulant generating function ψ′(ω) = log ψ( ω

N )N . We have κ(p) the cumulant of
order p:

κ(p) = −ip ∂pψ′

∂tp

∣∣∣∣
t→0

So: κ(1) = p, κ(2) = (1−p)p
N , κ(3) = (p−1)p(2p−1)

N2 , κ(4) = (1−p)p(6(p−1)p+1)
N3 , which

proves that P(p)(N) converges by the law of large numbers at speed
√

N, and by
the central limit theorem arrives to the Gaussian at a rate of 1

N , (since from the
cumulants above, its kurtosis = 3− 6(p−1)p+1

n(p−1)p ).

11 The M5 competition is expected to correct for that by making "predictors" predict the minimum (or maxi-
mum) in a time series.
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11.7.2 Distribution of the Brier Score

Base probability f First, we consider the distribution of f the base probability.
We use a beta distribution that covers both the conditional and unconditional case
(it is a matter of parametrization of a and b in Eq. 11.15).

Distribution of the probability Let us refresh a standard result behind nonpara-
metric discussions and tests, dating from Kolmogorov [146] to show the rationale
behind the claim that the probability distribution of probability (sic) is robust –in
other words the distribution of the probability of X doesn’t depend on the distri-
bution of X, ([68] [143]).

The probability integral transform is as follows. Let X have a continuous distri-
bution for which the cumulative distribution function (CDF) is FX . Then –in the
absence of additional information –the random variable U defined as U = FX(X) is
uniform between 0 and 1.The proof is as follows: For t ∈ [0, 1],

P(Y ≤ u) = P(FX(X) ≤ u) = P(X ≤ F−1
X (u)) = FX(F−1

X (u)) = u (11.21)

which is the cumulative distribution function of the uniform. This is the case
regardless of the probability distribution of X.

Clearly we are dealing with 1) f beta distributed (either as a special case the
uniform distribution when purely random, as derived above, or a beta distribution
when one has some accuracy, for which the uniform is a special case), and 2) 1At
a Bernoulli variable with probability p.

Let us consider the general case. Let ga,b be the PDF of the Beta:

ga,b(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1

The results, a bit unwieldy but controllable:

µ =
(
a2(−(p− 1))− ap + a + b(b + 1)p

)
Γ(a + b)

Γ(a + b + 2)

σ2
n =− 1

n(a + b)2(a + b + 1)2

(
a2(p−1) + a(p−1)− b(b + 1)p

)2
+

1
(a + b + 2)(a + b + 3)

(a

+ b)(a + b + 1)(p(a− b)(a + b + 3)(a(a + 3) + (b + 1)(b + 2))− a(a + 1)(a + 2)(a + 3))

We can further verify that the Brier score has thinner tails than the Gaussian as
its kurtosis is lower than 3.

Proof. We start with yj = ( f − 1A j), the difference between a continuous Beta dis-
tributed random variable and a discrete Bernoulli one, both indexed by j. The char-
acteristic function of yj, Ψ(y)

f =
(

1 + p
(
−1 + e−it

))
1F1(a; a + b; it) where 1F1(.; .; .) is

the Kummer confluent hypergeometric function 1F1(a; b; z) = ∑∞
k=0

ak
zk
k !

bk
.
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From here we get the characteristic function for y2
j = ( f j − 1A j)2

(11.22)
Ψ(y2)(t) =

√
π2−a−b+1Γ(a + b)

(
p 2 F̃2

(
b + 1

2
,

b
2

;
a + b

2
,

1
2

(a + b +

1); it
)
− (p − 1) 2 F̃2

(
a + 1

2
,

a
2

;
a + b

2
,

1
2

(a + b + 1); it
))

where 2 F̃2 is the generalized hypergeometric function regularized 2 F̃2(., .; ., .; .) =
2 F2(a;b;z)

(Γ(b1)...Γ(bq))
and pFq(a; b; z) has series expansion ∑∞

k=0
(a1)k ...(ap)k
(b1)k ...(bp)k

zk/k!, were (a)(.) is

the Pochhammer symbol.

We can proceed to prove directly from there the convergence in distribution for
the average 1

n ∑n
i y2

i :

(11.23)
lim

n→∞
Ψy2 (t/n)n

=

exp
(
− it(p(a − b)(a + b + 1)− a(a + 1))

(a + b)(a + b + 1)

)

which is that of a degenerate Gaussian (Dirac) with location parameter p(b−a)+ a(a+1)
a+b+1

a+b .

We can finally assess the speed of convergence, the rate at which higher moments
map to those of a Gaussian distribution: consider the behavior of the 4th cumulant
κ4 = −i ∂4 log Ψ. (.)

∂t4 |t→0:

1) in the maximum entropy case of a = b = 1:

κ4|a=1,b=1= − 6
7n

regardless of p.

2) In the maximum variance case, using l’Hôpital:

lim
a→0
b→0

κ4 = −6(p− 1)p + 1
n(p− 1)p

Se we have κ4
κ2

2
→0

n→∞
at rate n−1.

Further, we can extract its probability density function of the Brier score for N = 1:
for 0 < z < 1,

(11.24)p(z) =
Γ(a + b)

(
(p − 1)za/2 (1−

√
z
)b − p

(
1−
√

z
)a zb/2

)

2
(√

z − 1
)

zΓ(a)Γ(b)
.
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W
e examine the effect of uncertainty on binary outcomes, with

application to elections. A standard result in quantitative fi-
nance is that when the volatility of the underlying security
increases, arbitrage pressures push the corresponding binary
option to trade closer to 50%, and become less variable over

the remaining time to expiration. Counterintuitively, the higher the uncer-
tainty of the underlying security, the lower the volatility of the binary option.
This effect should hold in all domains where a binary price is produced –
yet we observe severe violations of these principles in many areas where bi-
nary forecasts are made, in particular those concerning the U.S. presidential
election of 2016. We observe stark errors among political scientists and fore-
casters, for instance with 1) assessors giving the candidate D. Trump between
0.1% and 3% chances of success , 2) jumps in the revisions of forecasts from
48% to 15%, both made while invoking uncertainty.

Conventionally, the quality of election forecasting has been assessed statically
by De Finetti’s method, which consists in minimizing the Brier score, a metric
of divergence from the final outcome (the standard for tracking the accuracy of
probability assessors across domains, from elections to weather). No intertempo-
ral evaluations of changes in estimates appear to have been imposed outside the

Research chapter.

The author thanks Dhruv Madeka and Raphael Douady for detailed and extensive discussions of the pa-
per as well as thorough auditing of the proofs across the various iterations, and, worse, the numerous
changes of notation. Peter Carr helped with discussions on the properties of a bounded martingale and
the transformations. I thank David Shimko,Andrew Lesniewski, and Andrew Papanicolaou for comments.
I thankArthur Breitman for guidance with the literature for numerical approximations of the various
logistic-normal integrals. I thank participants of the Tandon School of Engineering and Bloomberg Quan-
titative Finance Seminars. I also thank Bruno Dupire, MikeLawler, the Editors-In-Chief of Quantitative
Finance, and various friendly people on social media. DhruvMadeka, then at Bloomberg, while working
on a similar problem, independently came up with the same relationships between the volatility of an
estimate and its bounds and the same arbitrage bounds. All errors are mine.
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quantitative finance practice and literature. Yet De Finetti’s own principle is that a
probability should be treated like a two-way "choice" price, which is thus violated
by conventional practice.
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Figure 12.1: Election arbitrage "estimation" (i.e., valuation) at different expected proportional votes
Y ∈ [0, 1], with s the expected volatility of Y between present and election results. We can see that
under higher uncertainty, the estimation of the result gets closer to 0.5, and becomes insensitive to
estimated electoral margin.

Bt0 � [0,1]

Y � [L,H]

X � (-�,�)

B= �(XT > l)

B= �(YT > S(l))

Y=S(X)

Figure 12.2: X is an open non observable random variable (a shadow variable of sorts) on R, Y, its
mapping into "votes" or "electoral votes" via a sigmoidal function S(.), which maps one-to-one, and
the binary as the expected value of either using the proper corresponding distribution.
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In this chapter we take a dynamic, continuous-time approach based on the prin-
ciples of quantitative finance and argue that a probabilistic estimate of an election
outcome by a given "assessor" needs be treated like a tradable price, that is, as
a binary option value subjected to arbitrage boundaries (particularly since binary
options are actually used in betting markets). Future revised estimates need to be
compatible with martingale pricing, otherwise intertemporal arbitrage is created,
by "buying" and "selling" from the assessor.

A mathematical complication arises as we move to continuous time and apply
the standard martingale approach: namely that as a probability forecast, the un-
derlying security lives in [0, 1]. Our approach is to create a dual (or "shadow")
martingale process Y, in an interval [L, H] from an arithmetic Brownian motion, X
in (−∞, ∞) and price elections accordingly. The dual process Y can for example
represent the numerical votes needed for success. A complication is that, because
of the transformation from X to Y, if Y is a martingale, X cannot be a martingale
(and vice-versa).

The process for Y allows us to build an arbitrage relationship between the volatil-
ity of a probability estimate and that of the underlying variable, e.g. the vote
number. Thus we are able to show that when there is a high uncertainty about the
final outcome, 1) indeed, the arbitrage value of the forecast (as a binary option)
gets closer to 50% and 2) the estimate should not undergo large changes even if
polls or other bases show significant variations.3

The pricing links are between 1) the binary option value (that is, the forecast
probability), 2) the estimation of Y and 3) the volatility of the estimation of Y over
the remaining time to expiration (see Figures 12.1 and 12.2 ).

12.0.1 Main results

For convenience, we start with our notation.

Notation

3 A central property of our model is that it prevents B(.) from varying more than the estimated Y: in a two
candidate contest, it will be capped (floored) at Y if lower (higher) than .5. In practice, we can observe
probabilities of winning of 98% vs. 02% from a narrower spread of estimated votes of 47% vs. 53%;
our approach prevents, under high uncertainty, the probabilities from diverging away from the estimated
votes. But it remains conservative enough to not give a higher proportion.
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Y0 the observed estimated proportion of votes expressed in [0, 1] at
time t0. These can be either popular or electoral votes, so long as
one treats them with consistency.

T period when the irrevocable final election outcome YT is revealed,
or expiration.

t0 present evaluation period, hence T − t0 is the time until the final
election, expressed in years.

s annualized volatility of Y, or uncertainty attending outcomes for
Y in the remaining time until expiration. We assume s is constant
without any loss of generality –but it could be time dependent.

B(.) "forecast probability", or estimated continuous-time arbitrage eval-
uation of the election results, establishing arbitrage bounds be-
tween B(.), Y0 and the volatility s.

Main results

B(Y0, σ, t0, T) =
1
2

erfc

(
l − erf−1(2Y0 − 1)eσ2(T−t0)

√
e2σ2(T−t0) − 1

)
, (12.1)

where

σ ≈

√
log
(

2πs2e2erf−1(2Y0−1)2 + 1
)

√
2
√

T − t0
, (12.2)

l is the threshold needed (defaults to .5), and erfc(.) is the standard complementary
error function, 1-erf(.), with erf(z) = 2√

π

∫ z
0 e−t2 dt.

We find it appropriate here to answer the usual comment by statisticians and
people operating outside of mathematical finance: "why not simply use a Beta-
style distribution for Y?". The answer is that 1) the main purpose of the paper is
establishing (arbitrage-free) time consistency in binary forecasts, and 2) we are not
aware of a continuous time stochastic process that accommodates a beta distribu-
tion or a similarly bounded conventional one.

12.0.2 Organization

The remaining parts of the paper are organized as follows. First, we show the
process for Y and the needed transformations from a specific Brownian motion.
Second, we derive the arbitrage relationship used to obtain equation (12.1). Finally,
we discuss De Finetti’s approach and show how a martingale valuation relates to
minimizing the conventional standard in the forecasting industry, namely the Brier
Score.

A comment on absence of closed form solutions for σ We note that for Y we
lack a closed form solution for the integral reflecting the total variation:
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∫ T
t0

σ√
π

e−erf−1(2ys−1)2 ds, though the corresponding one for X is computable. Ac-
cordingly, we have relied on propagation of uncertainty methods to obtain a closed
form solution for the probability density of Y, though not explicitly its moments
as the logistic normal integral does not lend itself to simple expansions [195].

Time slice distributions for X and Y The time slice distribution is the probabil-
ity density function of Y from time t, that is the one-period representation, starting
at t with y0 = 1

2 + 1
2 erf(x0). Inversely, for X given y0, the corresponding x0, X may

be found to be normally distributed for the period T − t0 with

E(X, T) = X0eσ2(T−t0),

V(X, T) =
e2σ2(T−t0) − 1

2
and a kurtosis of 3. By probability transformation we obtain ϕ, the corresponding
distribution of Y with initial value y0 is given by

(12.3)
ϕ(y; y0, T) =

1√
e2σ2(t−t0) − 1

exp
{

erf−1(2y − 1)2 − 1
2

(
coth

(
σ2t
)

− 1
) (

erf−1(2y − 1)− erf−1(2y0 − 1)eσ2(t−t0)
)2
}

and we have E(Yt) = Y0.

As to the variance, E(Y2), as mentioned above, does not lend itself to a closed-
form solution derived from ϕ(.), nor from the stochastic integral; but it can be easily
estimated from the closed form distribution of X using methods of propagation of
uncertainty for the first two moments (the delta method).

Since the variance of a function f of a finite moment random variable X can be
approximated as V ( f (X)) = f ′ (E(X))2 V(X):

∂S−1(y)
∂y

∣∣∣∣∣
y=Y0

s2 ≈ e2σ2(T−t0) − 1
2

s ≈

√
e−2erf−1(2Y0−1)2 (e2σ2(T−t0) − 1

)

2π
. (12.4)

Likewise for calculations in the opposite direction, we find

σ ≈

√
log
(

2πs2e2erf−1(2Y0−1)2 + 1
)

√
2
√

T − t0
,

which is (12.2) in the presentation of the main result.

Note that expansions including higher moments do not bring a material increase
in precision – although s is highly nonlinear around the center, the range of values
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for the volatility of the total or, say, the electoral college is too low to affect higher
order terms in a significant way, in addition to the boundedness of the sigmoid-
style transformations.
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Figure 12.3: Theoretical approach (top) vs practice (bottom). Shows how the estimation process cannot
be in sync with the volatility of the estimation of (electoral or other) votes as it violates arbitrage
boundaries.

12.0.3 A Discussion on Risk Neutrality

We apply risk neutral valuation, for lack of conviction regarding another way, as
a default option. Although Y may not necessarily be tradable, adding a risk pre-
mium for the process involved in determining the arbitrage valuation would nec-
essarily imply a negative one for the other candidate(s), which is hard to justify.
Further, option values or binary bets, need to satisfy a no Dutch Book argument
(the De Finetti form of no-arbitrage) (see [97]), i.e. properly priced binary options
interpreted as probability forecasts give no betting "edge" in all outcomes without
loss. Finally, any departure from risk neutrality would degrade the Brier score
(about which, below) as it would represent a diversion from the final forecast.

Also note the absence of the assumptions of financing rate usually present in
financial discussions.

12.1 the bachelier-style valuation
Let F(.) be a function of a variable X satisfying

dXt = σ2 Xtdt + σ dWt . (12.5)
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We wish to show that X has a simple Bachelier option price B(.). The idea of no
arbitrage is that a continuously made forecast must itself be a martingale.

Applying Itô’s Lemma to F ! B for X satisfying (12.5) yields

dF =
[

σ2 X
∂F
∂X

+
1
2

σ2 ∂2F
∂X2 +

∂F
∂t

]
dt + σ

F
X

dW

so that, since ∂F
∂t ! 0, F must satisfy the partial differential equation

1
2

σ2 ∂2F
∂X2 + σ2 X

∂F
∂X

+
∂F
∂t

= 0, (12.6)

which is the driftless condition that makes B a martingale.

For a binary (call) option, we have for terminal conditions B(X, t) ! F, FT =
θ(x− l), where θ(.) is the Heaviside theta function and l is the threshold:

θ(x) :=

{
1, x ≥ l
0, x < l

with initial condition x0 at time t0 and terminal condition at T given by:

1
2

erfc

(
x0eσ2t − l√

e2σ2t − 1

)

which is, simply, the survival function of the Normal distribution parametrized
under the process for X.

Likewise we note from the earlier argument of one-to one (one can use Borel set
arguments ) that

θ(y) :=

{
1, y ≥ S(l)
0, y < S(l),

so we can price the alternative process B(Y, t) = P(Y > 1
2 ) (or any other similarly

obtained threshold l, by pricing

B(Y0, t0) = P(x > S−1(l)).

The pricing from the proportion of votes is given by:

B(Y0, σ, t0, T) =
1
2

erfc

(
l − erf−1(2Y0 − 1)eσ2(T−t0)

√
e2σ2(T−t0) − 1

)
,

the main equation (12.1), which can also be expressed less conveniently as

B(y0, σ, t0, T) =
1√

e2σ2t − 1

∫ 1

l
exp

(
erf−1(2y − 1)2

− 1
2

(
coth

(
σ2t
)
− 1
) (

erf−1(2y − 1)− erf−1(2y0 − 1)eσ2t
)2
)

dy
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Figure 12.4: Process and Dual Process

12.2 bounded dual martingale process
YT is the terminal value of a process on election day. It lives in [0, 1] but can
be generalized to the broader [L, H], L, H ∈ [0, ∞). The threshold for a given
candidate to win is fixed at l. Y can correspond to raw votes, electoral votes, or
any other metric. We assume that Yt is an intermediate realization of the process
at t, either produced synthetically from polls (corrected estimates) or other such
systems.

Next, we create, for an unbounded arithmetic stochastic process, a bounded
"dual" stochastic process using a sigmoidal transformation. It can be helpful to
map processes such as a bounded electoral process to a Brownian motion, or to
map a bounded payoff to an unbounded one, see Figure 12.2.

Proposition 12.1
Under sigmoidal style transformations S : x 7→ y,R → [0, 1] of the form a) 1

2 + 1
2 erf(x),

or b) 1
1+exp(−x) , if X is a martingale, Y is only a martingale for Y0 = 1

2 , and if Y is a
martingale, X is only a martingale for X0 = 0 .

Proof. The proof is sketched as follows. From Itô’s lemma, the drift term for dXt be-
comes 1) σ2X(t), or 2) 1

2 σ2Tanh
(

X(t)
2

)
, where σ denotes the volatility, respectively

with transformations of the forms a) of Xt and b) of Xt under a martingale for

Y. The drift for dYt becomes: 1) σ2e−erf−1(2Y−1)2 erf−1
(2Y−1)√

π
or 2) 1

2 σ2Y(Y − 1)(2Y − 1)
under a martingale for X.

We therefore select the case of Y being a martingale and present the details of
the transformation a). The properties of the process have been developed by Carr
[35]. Let X be the arithmetic Brownian motion (12.5), with X-dependent drift and
constant scale σ:

dXt = σ2Xtdt + σdWt , 0 < t < T < +∞.

We note that this has similarities with the Ornstein-Uhlenbeck process normally
written dXt = θ(µ− Xt)dt + σdW, except that we have µ = 0 and violate the rules
by using a negative mean reversion coefficient, rather more adequately described
as "mean repelling", θ = −σ2.
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We map from X ∈ (−∞, ∞) to its dual process Y as follows. With S : R → [0, 1],
Y = S(x),

S(x) =
1
2

+
1
2

erf(x)

the dual process (by unique transformation since S is one to one, becomes, for
y ! S(x), using Itô’s lemma (since S(.) is twice differentiable and ∂S/∂t = 0):

dS =
(

1
2

σ2 ∂2S
∂x2 + Xσ2 ∂S

∂x

)
dt + σ

∂S
∂x

dW

which with zero drift can be written as a process

dYt = s(Y)dWt ,

for all t > τ,E(Yt|Yτ) = Yτ . and scale

s(Y) =
σ√
π

e−erf−1(2y−1)2

which as we can see in Figure 12.5, s(y) can be approximated by the quadratic
function y(1− y) times a constant.

ⅇ-erf
-1 (-1+2 y)2

π 8π
2

3

y (1 - y)

0.2 0.4 0.6 0.8 1.0
Yt

0.05
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0.15
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0.25

s Figure 12.5: The instantaneous
volatility of Y as a function of the
level of Y for two different methods of
transformations of X, which appear
to not be substantially different. We
compare to the quadratic form y− y2

scaled by a constant 1

3

√
8π

2

. The

volatility declines as we move away
from 1

2 and collapses at the edges,
thus maintaining Y in (0, 1). For
simplicity we assumed σ = t = 1.

We can recover equation (12.5) by inverting, namely S−1(y) = erf−1(2y− 1), and
again applying Itô’s Lemma. As a consequence of gauge invariance option prices
are identical whether priced on X or Y, even if one process has a drift while the
other is a martingale. In other words, one may apply one’s estimation to the
electoral threshold, or to the more complicated X with the same results. And,
to summarize our method, pricing an option on X is familiar, as it is exactly a
Bachelier-style option price.

12.3 relation to de finetti ’s probability assessor
This section provides a brief background for the conventional approach to proba-
bility assessment. The great De Finetti [58] has shown that the "assessment" of the
"probability" of the realization of a random variable in {0, 1} requires a nonlinear
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Figure 12.6: Bruno de Finetti (1906-
1985). A probabilist, philosopher, and
insurance mathematician, he formu-
lated the Brier score for probabilistic
assessment which we show is compat-
ible dynamically with a martingale.
Source: DeFinetti.org

loss function – which makes his definition of probabilistic assessment differ from that
of the P/L of a trader engaging in binary bets.

Assume that a betting agent in an n-repeated two period model, t0 and t1, pro-
duces a strategy S of bets b0,i ∈ [0, 1] indexed by i = 1, 2, . . . , n, with the realization
of the binary r.v. 1t1,i. If we take the absolute variation of his P/L over n bets, it
will be

L1(S) =
1
n

n

∑
i=1

∣∣1t1,i − bt0,i
∣∣ .

For example, assume that E(1t1 ) = 1
2 . Betting on the probability, here 1

2 , produces
a loss of 1

2 in expectation, which is the same as betting either 0 or 1 – hence not
favoring the agent to bet on the exact probability.

If we work with the same random variable and non-time-varying probabilities,
the L1 metric would be appropriate:

L1(S) =
1
n

∣∣∣∣∣1t1,i −
n

∑
i=1

bt0,i

∣∣∣∣∣ .

De Finetti proposed a "Brier score" type function, a quadratic loss function in L2:

L2(S) =
1
n

n

∑
i=1

(1t1,i − bt0,i)2,
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the minimum of which is reached for bt0,i = E(1t1 ).

In our world of continuous time derivative valuation, where, in place of a two
period lattice model, we are interested, for the same final outcome at t1, in the
stochastic process bt, t0 ≥ t ≥ t1, the arbitrage "value" of a bet on a binary outcome
needs to match the expectation, hence, again, we map to the Brier score – by an
arbitrage argument. Although there is no quadratic loss function involved, the fact
that the bet is a function of a martingale, which is required to be itself a martingale,
i.e. that the conditional expectation remains invariant to time, does not allow an
arbitrage to take place. A "high" price can be "shorted" by the arbitrageur, a "low"
price can be "bought", and so on repeatedly. The consistency between bets at
period t and other periods t + ∆t enforces the probabilistic discipline. In other
words, someone can "buy" from the forecaster then "sell" back to him, generating a
positive expected "return" if the forecaster is out of line with martingale valuation.

As to the current practice by forecasters, although some election forecasters ap-
pear to be aware of the need to minimize their Brier score, the idea that the re-
visions of estimates should also be subjected to martingale valuation is not well
established.

12.4 conclusion and comments
As can be seen in Figure 12.1, a binary option reveals more about uncertainty than
about the true estimation, a result well known to traders, see [225].

In the presence of more than 2 candidates, the process can be generalized with
the following heuristic approximation. Establish the stochastic process for Y1,t,
and just as Y1,t is a process in [0, 1], Y2,t is a process ∈ (Y1,t , 1], with Y3,t the
residual 1−Y2,t−Y1,t, and more generally Yn−1,t ∈ (Yn2,t , 1] and Yn,t is the residual
Yn = 1−∑n−1

i=1 Yi,t. For n candidates, the nth is the residual.

addendum: all roads lead to quantitative finance
Background Aubrey Clayton sent a letter to the editor complaining about the previous
piece on grounds of "errors" in the above methodology. The author answered, with Dhruv
Madeka, not quite to Clayton, rather to express the usefulness of quantitative finance meth-
ods in life.

We are happy to respond to Clayton’s (non-reviewed) letter, in spite of its con-
fusions, as it will give us the opportunity to address more fundamental misun-
derstandings of the role of quantitative finance in general, and arbitrage pricing
in particular, and proudly show how "all roads lead to quantitative finance", that
is, that arbitrage approaches are universal and applicable to all manner of binary
forecasting. It also allows the second author to comment from his paper, Madeka
(2017)[158], which independently and simultaneously obtained similar results to
Taleb (2018)[234].
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Incorrect claims

Taleb’s criticism of popular forecast probabilities, specifically the election forecasts of FiveThir-
tyEight..." and "He [Taleb] claims this means the FiveThirtyEight forecasts must have
"violate[d] arbitrage boundaries" are factually incorrect.

There is no mention of FiveThirtyEight in [234], and Clayton must be confusing
scientific papers with Twitter debates. The paper is an attempt at addressing elec-
tions in a rigorous manner, not journalistic discussion, and only mentions the 2016
election in one illustrative sentence.4

Let us however continue probing Clayton’s other assertions, in spite of his confu-
sion and the nature of the letter.

Incorrect arbitrage valuation

Clayton’s claims either an error ("First, one of the "standard results" of quantitative
finance that his election forecast assessments rely on is false", he initially writes),
or, as he confusingly retracts, something "only partially true". Again, let us set
aside that Taleb(2018)[234] makes no "assessment" of FiveThirtyEight’s record and
outline his reasoning.

Clayton considers three periods, t0 = 0, an intermediate period t and a terminal
one T, with t0 ≤ t < T. Clayton shows a special case of the distribution of the
forward probability, seen at t0, for time starting at t = T

2 and ending at T. It is a
uniform distribution for that specific time period. In fact under his construction,
using the probability integral transform, one can show that the probabilities follow
what resembles a symmetric beta distribution with parameters a and b, and with
a = b. When t = T

2 , we have a = b = 1 (hence the uniform distribution). Before T/2
it has a ∩ shape, with Dirac at t = t0. Beyond T/2 it has a ∪ shape, ending with
two Dirac sticks at 0 and 1 (like a Bernoulli) when t is close to T (and close to an
arcsine distribution with a = b = 1

2 somewhere in between).

Clayton’s construction is indeed misleading, since he analyzes the distribution
of the price at time t with the filtration at time t0, particularly when discussing
arbitrage pricing and arbitrage pressures. Agents value options between t and T at
time t (not period t0), with an underlying price: under such constraint, the binary
option automatically converges towards 1

2 as σ → ∞, and that for any value of
the underlying price, no matter how far away from the strike price (or threshold).
The σ here is never past realized, only future unrealized volatility. This can be
seen within the framework presented in Taleb (2018) [234] but also by taking any
binary option pricing model. A price is not a probability (less even a probability
distribution), but an expectation. Simply, as arbitrage operators, we look at future
volatility given information about the underlying when pricing a binary option,
not the distribution of probability itself in the unconditional abstract.

At infinite σ, it becomes all noise, and such a level of noise drowns all signals.

4 Incidentally, the problem with FiveThirtyEight isn’t changing probabilities from .55 to .85 within a 5
months period, it is performing abrupt changes within a much shorter timespan –and that was discussed
in Madeka (2017)[158].
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Another way to view the pull of uncertainty towards 1
2 is in using information

theory and the notion of maximum entropy under deep uncertainty : the entropy
(I) of a Bernoulli distribution with probabilities p and (1− p), I = −((1− p) log(1−
p) + p log(p)) is maximal at 1

2 .

To beat a 1
2 pricing one needs to have enough information to beat the noise. As

we will see in the next section, it is not easy.

Arbitrage matters

Another result from quantitative finance that puts bounds on the volatility of fore-
casting is as follows. Since election forecasts can be interpreted as a European bi-
nary option, we can exploit the fact that the price process of this option is bounded
between 0 and 1 to make claims about the volatility of the price itself.

Essentially, if the price of the binary option varies too much, a simple trading
strategy of buying low and selling high is guaranteed to produce a profit5. The
argument can be summed up by noting that if we consider an arithmetic brownian
motion that’s bounded between [L, H]:

dBt = σdWt (12.7)

The stochastic integral 2
∫ T(B0 − Bt)dBt = σ2T − (BT − B0)2 can be replicated at

zero cost, indicating that the value of BT is bounded by the maximum value of the
square difference on the right hand side of the equation. That is, a forecaster who
produces excessively volatile probabilities – if he or she is willing to trade on such a
forecast (i.e. they have skin in the game) – can be arbitraged by following a strategy
that sells (proportionally) when the forecast is too high and buys (proportionally)
when the forecast is too low.

To conclude, any numerical probabilistic forecasting should be treated like a
choice price —De Finetti’s intuition is that forecasts should have skin in the game.
Under these conditions, binary forecasting belongs to the rules of arbitrage and
derivative pricing, well mapped in quantitative finance. Using a quantitative fi-
nance approach to produce binary forecasts does not prevent Bayesian methods
(Taleb(2018) does not say probabilities should be 1

2 , only that there is a headwind
towards that level owing to arbitrage pressures and constraints on how variable
a forecast can be). It is just that there is one price that counts at the end, 1 or 0,
which puts a structure on the updating.6

5 We take this result from Bruno Dupire’s notes for his continuous time finance class at NYU’s Courant
Institute, particularly his final exam for the Spring of 2019.

6 Another way to see it, from outside our quantitative finance models: consider a standard probabilistic
score. Let X1, . . . , Xn be random variables in [0, 1 and a BT a constant BT ∈ {0, 1}, we have the λ score

λn =
1
n

n

∑
i=1

(xi − BT)
2 ,

which needs to be minimized (on a single outcome BT). For any given BT and an average forecast x =
∑n

i=1 xi , the minimum value of λn is reached for x1 = . . . = xn . To beat a Dirac forecast x1 = . . . = xn = 1
2 for

which λ = 1
4 with a high variance strategy, one needs to have 75% accuracy. (Note that a uniform forecast

has a score of 1
3 .) This shows us the trade-off between volatility and signal.
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The reason Clayton might have trouble with quantitative finance could be that
probabilities and underlying polls may not be martingales in real life; traded
probabilities (hence real forecasts) must be martingales. Which is why in Taleb
(2018)[234] the process for the polls (which can be vague and nontradable) needs
to be transformed into a process for probability in [0, 1].
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13 G I N I E ST I M AT I O N U N D E R I N F I N I T E
VA R I A N C E ‡

T
his Chapter is about the problems related to the estimation of

the Gini index in presence of a fat-tailed data generating pro-
cess, i.e. one in the stable distribution class with finite mean
but infinite variance (i.e. with tail index α ∈ (1, 2)). We show
that, in such a case, the Gini coefficient cannot be reliably esti-

mated using conventional nonparametric methods, because of a downward
bias that emerges under fat tails. This has important implications for the
ongoing discussion about economic inequality.

We start by discussing how the nonparametric estimator of the Gini index
undergoes a phase transition in the symmetry structure of its asymptotic
distribution, as the data distribution shifts from the domain of attraction of
a light-tailed distribution to that of a fat-tailed one, especially in the case of
infinite variance. We also show how the nonparametric Gini bias increases
with lower values of α. We then prove that maximum likelihood estimation
outperforms nonparametric methods, requiring a much smaller sample size
to reach efficiency.

Finally, for fat-tailed data, we provide a simple correction mechanism to
the small sample bias of the nonparametric estimator based on the distance
between the mode and the mean of its asymptotic distribution.

13.1 introduction
Wealth inequality studies represent a field of economics, statistics and econophysics
exposed to fat-tailed data generating processes, often with infinite variance [39,
144]. This is not at all surprising if we recall that the prototype of fat-tailed dis-
tributions, the Pareto, has been proposed for the first time to model household in-

Research chapter.
(With A. Fontanari and P. Cirillo), coauthors
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comes [185]. However, the fat-tailedness of data can be problematic in the context
of wealth studies, as the property of efficiency (and, partially, consistency) does
not necessarily hold for many estimators of inequality and concentration [82, 144].

The scope of this work is to show how fat tails affect the estimation of one of
the most celebrated measures of economic inequality, the Gini index [78, 110, 144],
often used (and abused) in the econophysics and economics literature as the main
tool for describing the distribution and the concentration of wealth around the
world [39, 191? ].

The literature concerning the estimation of the Gini index is wide and comprehen-
sive (e.g. [78, 222] for a review), however, strangely enough, almost no attention
has been paid to its behavior in presence of fat tails, and this is curious if we con-
sider that: 1) fat tails are ubiquitous in the empirical distributions of income and
wealth [144, 191], and 2) the Gini index itself can be seen as a measure of variability
and fat-tailedness [76, 79, 80, 95].

The standard method for the estimation of the Gini index is nonparametric: one
computes the index from the empirical distribution of the available data using
Equation (13.5) below. But, as we show in this paper, this estimator suffers from
a downward bias when we deal with fat-tailed observations. Therefore our goal
is to close this gap by deriving the limiting distribution of the nonparametric Gini
estimator in presence of fat tails, and propose possible strategies to reduce the bias.
We show how the maximum likelihood approach, despite the risk of model mis-
specification, needs much fewer observations to reach efficiency when compared
to a nonparametric one.2

Our results are relevant to the discussion about wealth inequality, recently rekin-
dled by Thomas Piketty in [191], as the estimation of the Gini index under fat tails
and infinite variance may cause several economic analyses to be unreliable, if not
markedly wrong. Why should one trust a biased estimator?

Figure 13.1: The Italian statistician
Corrado Gini, 1884-1965. source: Boc-
coni.

2 A similar bias also affects the nonparametric measurement of quantile contributions, i.e. those of the type
“the top 1% owns x% of the total wealth" [242]. This paper extends the problem to the more widespread
Gini coefficient, and goes deeper by making links with the limit theorems.
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By fat-tailed data we indicate those data generated by a positive random variable
X with cumulative distribution function (c.d.f.) F(x), which is regularly-varying of
order α [136], that is, for F̄(x) := 1− F(x), one has

lim
x→∞

xα F̄(x) = L(x), (13.1)

where L(x) is a slowly-varying function such that limx→∞
L(cx)
L(x) = 1 with c > 0, and

where α > 0 is called the tail exponent .

Regularly-varying distributions define a large class of random variables whose
properties have been extensively studied in the context of extreme value theory
[82, 116], when dealing with the probabilistic behavior of maxima and minima. As
pointed out in [44], regularly-varying and fat-tailed are indeed synonyms. It is
known that, if X1, ..., Xn are i.i.d. observations with a c.d.f. F(x) in the regularly-
varying class, as defined in Equation (13.1), then their data generating process falls
into the maximum domain of attraction of a Fréchet distribution with parameter
ρ, in symbols X ∈ MDA(Φ(ρ))[116]. This means that, for the partial maximum
Mn = max(X1, ..., Xn), one has

P
(

a−1
n (Mn − bn) ≤ x

)
d→ Φ(ρ) = e−x−ρ

, ρ > 0, (13.2)

with an > 0 and bn ∈ R two normalizing constants. Clearly, the connection be-
tween the regularly-varying coefficient α and the Fréchet distribution parameter ρ
is given by: α = 1

ρ [82].
The Fréchet distribution is one of the limiting distributions for maxima in extreme
value theory, together with the Gumbel and the Weibull; it represents the fat-tailed
and unbounded limiting case [116]. The relationship between regularly-varying
random variables and the Fréchet class thus allows us to deal with a very large fam-
ily of random variables (and empirical data), and allows us to show how the Gini
index is highly influenced by maxima, i.e. extreme wealth, as clearly suggested
by intuition [95, 144], especially under infinite variance. Again, this recommends
some caution when discussing economic inequality under fat tails.

It is worth remembering that the existence (finiteness) of the moments for a fat-
tailed random variable X depends on the tail exponent α, in fact

E(Xδ) < ∞ if δ ≤ α,

E(Xδ) = ∞ if δ > α. (13.3)

In this work, we restrict our focus on data generating processes with finite mean
and infinite variance, therefore, according to Equation (13.3), on the class of regularly-
varying distributions with tail index α ∈ (1, 2).

Table 13.1 and Figure 13.2 present numerically and graphically our story, already
suggesting its conclusion, on the basis of artificial observations sampled from a
Pareto distribution (Equation (13.13) below) with tail parameter α equal to 1.1.

Table 13.1 compares the nonparametric Gini index of Equation (13.5) with the
maximum likelihood (ML) tail-based one of Section 13.3. For the different sample
sizes in Table 13.1, we have generated 108 samples, averaging the estimators via
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Monte Carlo. As the first column shows, the convergence of the nonparametric
estimator to the true Gini value (g = 0.8333) is extremely slow and monotonically
increasing; this suggests an issue not only in the tail structure of the distribution
of the nonparametric estimator but also in its symmetry.

Figure 13.2 provides some numerical evidence that the limiting distribution of
the nonparametric Gini index loses its properties of normality and symmetry [91],
shifting towards a skewed and fatter-tailed limit, when data are characterized by
an infinite variance. As we prove in Section 13.2, when the data generating process
is in the domain of attraction of a fat-tailed distribution, the asymptotic distribu-
tion of the Gini index becomes a skewed-to-the-right α-stable law. This change of
behavior is responsible of the downward bias of the nonparametric Gini under fat
tails. However, the knowledge of the new limit allows us to propose a correction
for the nonparametric estimator, improving its quality, and thus reducing the risk
of badly estimating wealth inequality, with all the possible consequences in terms
of economic and social policies [144, 191].

Table 13.1: Comparison of the Nonparametric (NonPar) and the Maximum Likelihood (ML) Gini
estimators, using Paretian data with tail α = 1.1 (finite mean, infinite variance) and different sample
sizes. Number of Monte Carlo simulations: 108.

n Nonpar ML Error Ratio3

(number of obs.) Mean Bias Mean Bias
103 0.711 -0.122 0.8333 0 1.4
104 0.750 -0.083 0.8333 0 3
105 0.775 -0.058 0.8333 0 6.6
106 0.790 -0.043 0.8333 0 156
107 0.802 -0.031 0.8333 0 105+

Figure 13.2: Histograms for the
Gini nonparametric estimators
for two Paretian (type I) distri-
butions with different tail indices,
with finite and infinite variance
(plots have been centered to ease
comparison). Sample size: 103.
Number of samples: 102 for each
distribution.

The rest of the paper is organized as follows. In Section 13.2 we derive the asymp-
totic distribution of the sample Gini index when data possess an infinite variance.
In Section 13.3 we deal with the maximum likelihood estimator; in Section 13.4 we
provide an illustration with Paretian observations; in Section 13.5 we propose a
simple correction based on the mode-mean distance of the asymptotic distribution
of the nonparametric estimator, to take care of its small-sample bias. Section 13.6
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closes the paper. A technical Appendix contains the longer proofs of the main
results in the work.

13.2 asymptotics of the nonparametric estimator under infinite
variance

We now derive the asymptotic distribution for the nonparametric estimator of the
Gini index when the data generating process is fat-tailed with finite mean but
infinite variance.

The so-called stochastic representation of the Gini g is

g =
1
2
E (|X′ − X”|)

µ
∈ [0, 1], (13.4)

where X′ and X” are i.i.d. copies of a random variable X with c.d.f. F(x) ∈ [c, ∞),
c > 0, and with finite mean E(X) = µ. The quantity E (|X′ − X”|) is known as the
"Gini Mean Difference" (GMD) [222]. For later convenience we also define g = θ

µ

with θ = E(|X′−X”|)
2 .

The Gini index of a random variable X is thus the mean expected deviation
between any two independent realizations of X, scaled by twice the mean [81].

The most common nonparametric estimator of the Gini index for a sample X1, ..., Xn
is defined as

GNP(Xn) =
∑1≤i<j≤n|Xi − Xj|

(n− 1) ∑n
i=1 Xi

, (13.5)

which can also be expressed as

GNP(Xn) =
∑n

i=1(2( i−1
n−1 − 1)X(i)

∑n
i=1 X(i)

=
1
n ∑n

i=1 Z(i)
1
n ∑n

i=1 Xi
, (13.6)

where X(1), X(2), ..., X(n) are the ordered statistics of X1, ..., Xn, such that: X(1) <

X(2) < ... < X(n) and Z(i) = 2
(

i−1
n−1 − 1

)
X(i). The asymptotic normality of the

estimator in Equation (13.6) under the hypothesis of finite variance for the data
generating process is known [144, 222]. The result directly follows from the prop-
erties of the U-statistics and the L-estimators involved in Equation (13.6)

A standard methodology to prove the limiting distribution of the estimator in
Equation (13.6), and more in general of a linear combination of order statistics, is
to show that, in the limit for n→ ∞, the sequence of order statistics can be approx-
imated by a sequence of i.i.d random variables [56, 151]. However, this usually
requires some sort of L2 integrability of the data generating process, something we
are not assuming here.

Lemma 13.1 (proved in the Appendix) shows how to deal with the case of se-
quences of order statistics generated by fat-tailed L1-only integrable random vari-
ables.
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Lemma 13.1
Consider the following sequence Rn = 1

n ∑n
i=1( i

n −U(i))F−1(U(i)) where U(i) are the order
statistics of a uniformly distributed i.i.d random sample. Assume that F−1(U) ∈ L1. Then
the following results hold:

Rn
L1
−→ 0, (13.7)

and
n

α−1
α

L0(n)
Rn

L1
−→ 0, (13.8)

with α ∈ (1, 2) and L0(n) a slowly-varying function.

13.2.1 A Quick Recap on α-Stable Random Variables

We here introduce some notation for α-stable distributions, as we need them to
study the asymptotic limit of the Gini index.

A random variable X follows an α-stable distribution, in symbols X ∼ S(α, β, γ, δ),
if its characteristic functionis

E(eitX) =

{
e−γα |t|α(1−iβ sign(t)) tan( πα

2 )+iδt α ,= 1
e−γ|t|(1+iβ 2

π sign(t)) ln|t|+iδt α = 1
,

where α ∈ (0, 2) governs the tail, β ∈ [−1, 1] is the skewness, γ ∈ R+ is the scale
parameter, and δ ∈ R is the location one. This is known as the S1 parametrization
of α-stable distributions [181, 209].

Interestingly, there is a correspondence between the α parameter of an α-stable
random variable, and the α of a regularly-varying random variable as per Equation
(13.1): as shown in [91, 181], a regularly-varying random variable of order α is α-
stable, with the same tail coefficient. This is why we do not make any distinction
in the use of the α here. Since we aim at dealing with distributions characterized
by finite mean but infinite variance, we restrict our focus to α ∈ (1, 2), as the two
α’s coincide.

Recall that, for α ∈ (1, 2], the expected value of an α-stable random variable X
is equal to the location parameter δ, i.e. E(X) = δ. For more details, we refer to
[181, 209].

The standardized α-stable random variable is expressed as

Sα,β ∼ S(α, β, 1, 0). (13.9)

We note that α-stable distributions are a subclass of infinitely divisible distribu-
tions. Thanks to their closure under convolution, they can be used to describe the
limiting behavior of (rescaled) partials sums, Sn = ∑n

i=1 Xi, in the General central
limit theorem (GCLT) setting [91]. For α = 2 we obtain the normal distribution
as a special case, which is the limit distribution for the classical CLTs, under the
hypothesis of finite variance.
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In what follows we indicate that a random variable is in the domain of attraction
of an α-stable distribution, by writing X ∈ DA(Sα). Just observe that this condition
for the limit of partial sums is equivalent to the one given in Equation (13.2) for
the limit of partial maxima [82, 91].

13.2.2 The α-Stable Asymptotic Limit of the Gini Index

Consider a sample X1, ..., Xn of i.i.d. observations with a continuous c.d.f. F(x) in
the regularly-varying class, as defined in Equation (13.1), with tail index α ∈ (1, 2).
The data generating process for the sample is in the domain of attraction of a
Fréchet distribution with ρ ∈ ( 1

2 , 1), given that ρ = 1
α .

For the asymptotic distribution of the Gini index estimator, as presented in Equa-
tion (13.6), when the data generating process is characterized by an infinite vari-
ance, we can make use of the following two theorems: Theorem 1 deals with
the limiting distribution of the Gini Mean Difference (the numerator in Equation
(13.6)), while Theorem 2 extends the result to the complete Gini index. Proofs for
both theorems are in the Appendix.

Theorem 1
Consider a sequence (Xi)1≤i≤n of i.i.d random variables from a distribution X on [c, +∞)
with c > 0, such that X is in the domain of attraction of an α-stable random variable,
X ∈ DA(Sα), with α ∈ (1, 2). Then the sample Gini mean deviation (GMD) ∑n

i=1 Z(i)
n

satisfies the following limit in distribution:

n
α−1

α

L0(n)

(
1
n

n

∑
i=1

Z(i) − θ

)
d→ Sα,1, (13.10)

where Zi = (2F(Xi) − 1)Xi, E(Zi) = θ, L0(n) is a slowly-varying function such that
Equation (13.37) holds (see the Appendix), and Sα,1 is a right-skewed standardized α-stable
random variable defined as in Equation (13.9).

Moreover the statistic 1
n ∑n

i=1 Z(i) is an asymptotically consistent estimator for the GMD,

i.e. 1
n ∑n

i=1 Z(i)
P→ θ.

Note that Theorem 1 could be restated in terms of the maximum domain of
attraction MDA(Φ(ρ)) as defined in Equation (13.2).

Theorem 2
Given the same assumptions of Theorem 1, the estimated Gini index GNP(Xn) = ∑n

i=1 Z(i)
∑n

i=1 Xi

satisfies the following limit in distribution

n
α−1

α

L0(n)

(
GNP(Xn)− θ

µ

)
d→ Q, (13.11)

where E(Zi) = θ, E(Xi) = µ, L0(n) is the same slowly-varying function defined in Theorem
1 and Q is a right-skewed α-stable random variable S(α, 1, 1

µ , 0).
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Furthermore the statistic ∑n
i=1 Z(i)

∑n
i=1 Xi

is an asymptotically consistent estimator for the Gini

index, i.e. ∑n
i=1 Z(i)

∑n
i=1 Xi

P→ θ
µ = g.

In the case of fat tails with α ∈ (1, 2), Theorem 2 tells us that the asymptotic dis-
tribution of the Gini estimator is always right-skewed notwithstanding the distri-
bution of the underlying data generating process. Therefore heavily fat-tailed data
not only induce a fatter-tailed limit for the Gini estimator, but they also change
the shape of the limit law, which definitely moves away from the usual symmetric
Gaussian. As a consequence, the Gini estimator, whose asymptotic consistency is
still guaranteed [151], will approach its true value more slowly, and from below.
Some evidence of this was already given in Table 13.1.

13.3 the maximum likelihood estimator
Theorem 2 indicates that the usual nonparametric estimator for the Gini index is
not the best option when dealing with infinite-variance distributions, due to the
skewness and the fatness of its asymptotic limit. The aim is to find estimators that
still preserve their asymptotic normality under fat tails, which is not possible with
nonparametric methods, as they all fall into the α-stable Central Limit Theorem
case [82, 91]. Hence the solution is to use parametric techniques.

Theorem 3 shows how, once a parametric family for the data generating process
has been identified, it is possible to estimate the Gini index via MLE. The resulting
estimator is not just asymptotically normal, but also asymptotically efficient.

In Theorem 3 we deal with random variables X whose distribution belongs to the
large and flexible exponential family [211], i.e. whose density can be represented
as

fθ(x) = h(x)e(η(θ)T(x)−A(θ)) ,

with θ ∈ R, and where T(x), η(θ), h(x), A(θ) are known functions.

Theorem 3
Let X ∼ Fθ such that Fθ is a distribution belonging to the exponential family. Then the
Gini index obtained by plugging-in the maximum likelihood estimator of θ, GML(Xn)θ , is
asymptotically normal and efficient. Namely:

√
n
(

GML (Xn)θ − gθ

)
D→ N

(
0, g′2θ I−1(θ)

)
, (13.12)

where g′θ = dgθ

dθ and I(θ) is the Fisher Information.

√
n
(

GML (Xn)θ − gθ

)
D→ N

(
0, g′2θ I−1(θ)

)
,

Proof. The result follows easily from the asymptotic efficiency of the maximum like-
lihood estimators of the exponential family, and the invariance principle of MLE.
In particular, the validity of the invariance principle for the Gini index is granted
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by the continuity and the monotonicity of gθ with respect to θ. The asymptotic
variance is then obtained by application of the delta-method [211].

13.4 a paretian illustration
We provide an illustration of the obtained results using some artificial fat-tailed
data. We choose a Pareto I [185], with density

f (x) = αcαx−α−1 , x ≥ c. (13.13)

It is easy to verify that the corresponding survival function F̄(x) belongs to the
regularly-varying class with tail parameter α and slowly-varying function L(x) =
cα. We can therefore apply the results of Section 13.2 to obtain the following
corollaries.

Corollary 13.1
Let X1, ..., Xn be a sequence of i.i.d. observations with Pareto distribution with tail param-
eter α ∈ (1, 2). The nonparametric Gini estimator is characterized by the following limit:

DNP
n = GNP(Xn)− g ∼ S



α, 1,
C−

1
α

α

n
α−1

α

(α− 1)
α

, 0



 . (13.14)

Proof. Without loss of generality we can assume c = 1 in Equation (13.13). The
results is a mere application of Theorem 2, remembering that a Pareto distribution
is in the domain of attraction of α-stable random variables with slowly-varying

function L(x) = 1. The sequence cn to satisfy Equation (13.37) becomes cn = n
1
α C−

1
α

α ,

therefore we have L0(n) = C−
1
α

α , which is independent of n. Additionally the mean
of the distribution is also a function of α, that is µ = α

α−1 .

Corollary 13.2
Let the sample X1, ..., Xn be distributed as in Corollary 13.1, let GML

θ be the maximum
likelihood estimator for the Gini index as defined in Theorem 3. Then the MLE Gini
estimator, rescaled by its true mean g, has the following limit:

DML
n = GML

α (Xn)− g ∼ N
(

0,
4α2

n(2α− 1)4

)
, (13.15)

where N indicates a Gaussian.

Proof. The functional form of the maximum likelihood estimator for the Gini index
is known to be GML

θ = 1
2αML−1 [144]. The result then follows from the fact that the

Pareto distribution (with known minimum value xm) belongs to an exponential
family and therefore satisfies the regularity conditions necessary for the asymptotic
normality and efficiency of the maximum likelihood estimator. Also notice that the
Fisher information for a Pareto distribution is 1

α2 .



260 gini estimation under infinite variance ‡

Now that we have worked out both asymptotic distributions, we can compare
the quality of the convergence for both the MLE and the nonparametric case when
dealing with Paretian data, which we use as the prototype for the more general
class of fat-tailed observations.

In particular, we can approximate the distribution of the deviations of the esti-
mator from the true value g of the Gini index for finite sample sizes, by using
Equations (13.14) and (13.15).
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Figure 13.3: Comparisons between the maximum likelihood and the nonparametric asymptotic distri-
butions for different values of the tail index α. The number of observations for MLE is fixed to n = 100.
Note that, even if all distributions have mean zero, the mode of the distributions of the nonparametric
estimator is different from zero, because of the skewness.

Figure 13.3 shows how the deviations around the mean of the two different types
of estimators are distributed and how these distributions change as the number
of observations increases. In particular, to facilitate the comparison between the
maximum likelihood and the nonparametric estimators, we fixed the number of
observation in the MLE case, while letting them vary in the nonparametric one.
We perform this study for different types of tail indices to show how large the
impact is on the consistency of the estimator. It is worth noticing that, as the
tail index decreases towards 1 (the threshold value for a infinite mean), the mode
of the distribution of the nonparametric estimator moves farther away from the
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mean of the distribution (centered on 0 by definition, given that we are dealing
with deviations from the mean). This effect is responsible for the small sample
bias observed in applications. Such a phenomenon is not present in the MLE case,
thanks to the the normality of the limit for every value of the tail parameter.

We can make our argument more rigorous by assessing the number of observa-
tions ñ needed for the nonparametric estimator to be as good as the MLE one,
under different tail scenarios. Let’s consider the likelihood-ratio-type function

r(c, n) =
PS(|DNP

n |> c)
PN(|DML

100 |> c)
, (13.16)

where PS(|DNP
n |> c) and PN(|DML

100 |> c) are the probabilities (α-stable and Gaussian
respectively) of the centered estimators in the nonparametric, and in the MLE
cases, of exceeding the thresholds ±c, as per Equations (13.15) and (13.14). In the
nonparametric case the number of observations n is allowed to change, while in
the MLE case it is fixed to 100. We then look for the value ñ such that r(c, ñ) = 1
for fixed c.

Table 13.2 displays the results for different thresholds c and tail parameters α.
In particular, we can see how the MLE estimator outperforms the nonparametric
one, which requires a much larger number of observations to obtain the same tail
probability of the MLE with n fixed to 100. For example, we need at least 80× 106

observations for the nonparametric estimator to obtain the same probability of
exceeding the ±0.02 threshold of the MLE one, when α = 1.2.

Table 13.2: The number of observations ñ needed for the nonparametric estimator to match the tail
probabilities, for different threshold values c and different values of the tail index α, of the maximum
likelihood estimator with fixed n = 100.

Threshold c as per Equation (13.16):
α 0.005 0.01 0.015 0.02

1.8 27× 103 12× 105 12× 106 63× 105

1.5 21× 104 21× 104 46× 105 81× 107

1.2 33× 108 67× 107 20× 107 80× 106

Interestingly, the number of observations needed to match the tail probabilities
in Equation (13.16) does not vary uniformly with the threshold. This is expected,
since as the threshold goes to infinity or to zero, the tail probabilities remain the
same for every value of n. Therefore, given the unimodality of the limit distri-
butions, we expect that there will be a threshold maximizing the number of ob-
servations needed to match the tail probabilities, while for all the other levels the
number of observations will be smaller.

We conclude that, when in presence of fat-tailed data with infinite variance, a
plug-in MLE based estimator should be preferred over the nonparametric one.
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13.5 small sample correction
Theorem 2 can be also used to provide a correction for the bias of the nonparamet-
ric estimator for small sample sizes. The key idea is to recognize that, for unimodal
distributions, most observations come from around the mode. In symmetric distri-
butions the mode and the mean coincide, thus most observations will be close to
the mean value as well, not so for skewed distributions: for right-skewed contin-
uous unimodal distributions the mode is lower than the mean. Therefore, given
that the asymptotic distribution of the nonparametric Gini index is right-skewed,
we expect that the observed value of the Gini index will be usually lower than the
true one (placed at the mean level). We can quantify this difference (i.e. the bias)
by looking at the distance between the mode and the mean, and once this distance
is known, we can correct our Gini estimate by adding it back4.

Formally, we aim to derive a corrected nonparametric estimator GC(Xn) such that

GC(Xn) = GNP(Xn) + ||m(GNP(Xn))−E(GNP(Xn))||, (13.17)

where ||m(GNP(Xn))−E(GNP(Xn))|| is the distance between the mode m and the
mean of the distribution of the nonparametric Gini estimator GNP(Xn).

Performing the type of correction described in Equation (13.17) is equivalent to
shifting the distribution of GNP(Xn) in order to place its mode on the true value of
the Gini index.

Ideally, we would like to measure this mode-mean distance ||m(GNP(Xn)) −
E(GNP(Xn))|| on the exact distribution of the Gini index to get the most accu-
rate correction. However, the finite distribution is not always easily derivable as
it requires assumptions on the parametric structure of the data generating process
(which, in most cases, is unknown for fat-tailed data [144]). We therefore propose
to use the limiting distribution for the nonparametric Gini obtained in Section
13.2 to approximate the finite sample distribution, and to estimate the mode-mean
distance with it. This procedure allows for more freedom in the modeling assump-
tions and potentially decreases the number of parameters to be estimated, given
that the limiting distribution only depends on the tail index and the mean of the
data, which can be usually assumed to be a function of the tail index itself, as in
the Paretian case where µ = α

α−1 .

By exploiting the location-scale property of α-stable distributions and Equation
(13.11), we approximate the distribution of GNP(Xn) for finite samples by

GNP(Xn) ∼ S (α, 1, γ(n), g) , (13.18)

where γ(n) = 1
n α−1

α

L0(n)
µ is the scale parameter of the limiting distribution.

As a consequence, thanks to the linearity of the mode for α-stable distributions,
we have

||m(GNP(Xn)) − E(GNP(Xn))||≈ ||m(α, γ(n)) + g − g||= ||m(α, γ(n))||,

4 Another idea, which we have tested in writing the paper, is to use the distance between the median and
the mean; the performances are comparable.
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where m(α, γ(n)) is the mode function of an α-stable distribution with zero mean.

The implication is that, in order to obtain the correction term, knowledge of the
true Gini index is not necessary, given that m(α, γ(n)) does not depend on g. We
then estimate the correction term as

m̂(α, γ(n)) = arg max
x

s(x), (13.19)

where s(x) is the numerical density of the associated α-stable distribution in Equa-
tion (13.18), but centered on 0. This comes from the fact that, for α-stable distri-
butions, the mode is not available in closed form, but it can be easily computed
numerically [181], using the unimodality of the law.

The corrected nonparametric estimator is thus

GC(Xn) = GNP(Xn) + m̂(α, γ(n)), (13.20)

whose asymptotic distribution is

GC(Xn) ∼ S (α, 1, γ(n), g + m̂(α, γ(n))) . (13.21)

Note that the correction term m̂ (α, γ(n)) is a function of the tail index α and is
connected to the sample size n by the scale parameter γ(n) of the associated limit-
ing distribution. It is important to point out that m̂(α, γ(n)) is decreasing in n, and
that limn→∞ m̂(α, γ(n))→ 0. This happens because, as n increases, the distribution
described in Equation (13.18) becomes more and more centered around its mean
value, shrinking to zero the distance between the mode and the mean. This ensures
the asymptotic equivalence of the corrected estimator and the nonparametric one.
Just observe that

lim
n→∞

|G(Xn)C − GNP(Xn)| = lim
n→∞

|GNP(Xn) + m̂(α, γ(n))− GNP(Xn)|

= lim
n→∞

|m̂(α, γ(n))|→ 0.

Naturally, thanks to the correction, GC(Xn) will always behave better in small
samples. Consider also that, from Equation (13.21), the distribution of the cor-
rected estimator has now for mean g + m̂(α, γ(n)), which converges to the true Gini
g as n→ ∞.

From a theoretical point of view, the quality of this correction depends on the
distance between the exact distribution of GNP(Xn) and its α-stable limit; the closer
the two are to each other, the better the approximation. However, given that, in
most cases, the exact distribution of GNP(Xn) is unknown, it is not possible to give
more details.

From what we have written so far, it is clear that the correction term depends
on the tail index of the data, and possibly also on their mean. These parameters,
if not assumed to be known a priori, must be estimated. Therefore the additional
uncertainty due to the estimation will reflect also on the quality of the correction.

We conclude this Section with the discussion of the effect of the correction pro-
cedure with a simple example. In a Monte Carlo experiment, we simulate 1000
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Paretian samples of increasing size, from n = 10 to n = 2000, and for each sample
size we compute both the original nonparametric estimator GNP(Xn) and the cor-
rected GC(Xn). We repeat the experiment for different α’s. Figure 13.4 presents the
results.

It is clear that the corrected estimators always perform better than the uncor-
rected ones in terms of absolute deviation from the true Gini value. In particular,
our numerical experiment shows that for small sample sizes with n ≤ 1000 the
gain is quite remarkable for all the different values of α ∈ (1, 2). However, as ex-
pected, the difference between the estimators decreases with the sample size, as
the correction term decreases both in n and in the tail index α. Notice that, when
the tail index equals 2, we obtain the symmetric Gaussian distribution and the
two estimators coincide, given that, thanks to the finiteness of the variance, the
nonparametric estimator is no longer biased.
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Figure 13.4: Comparisons between the corrected nonparametric estimator (in red, the one on top) and
the usual nonparametric estimator (in black, the one below). For small sample sizes the corrected one
clearly improves the quality of the estimation.
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13.6 conclusions
In this chapter we address the issue of the asymptotic behavior of the nonparamet-
ric estimator of the Gini index in presence of a distribution with infinite variance,
an issue that has been curiously ignored by the literature. The central mistake in
the nonparametric methods largely used is to believe that asymptotic consistency
translates into equivalent pre-asymptotic properties.

We show that a parametric approach provides better asymptotic results thanks to
the properties of maximum likelihood estimation. Hence we strongly suggest that,
if the collected data are suspected to be fat-tailed, parametric methods should be
preferred.

In situations where a fully parametric approach cannot be used, we propose a
simple correction mechanism for the nonparametric estimator based on the dis-
tance between the mode and the mean of its asymptotic distribution. Even if the
correction works nicely, we suggest caution in its use owing to additional uncer-
tainty from the estimation of the correction term.

technical appendix

Proof of Lemma 13.1

Let U = F(X) be the standard uniformly distributed integral probability transform
of the random variable X. For the order statistics, we then have [? ]: X(i)

a.s.=
F−1(U(i)). Hence

Rn =
1
n

n

∑
i=1

(i/n−U(i))F−1(U(i)). (13.22)

Now by definition of empirical c.d.f it follows that

Rn =
1
n

n

∑
i=1

(Fn(U(i))−U(i))F−1(U(i)), (13.23)

where Fn(u) = 1
n ∑n

i=1 1Ui≤u is the empirical c.d.f of uniformly distributed random
variables.

To show that Rn
L1
−→ 0, we are going to impose an upper bound that goes to zero.

First we notice that

E|Rn|≤
1
n

n

∑
i=1

E|(Fn(U(i))−U(i))F−1(U(i))|. (13.24)
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To build a bound for the right-hand side (r.h.s) of (13.24), we can exploit the fact
that, while F−1(U(i)) might be just L1-integrable, Fn(U(i))− U(i) is L∞ integrable,
therefore we can use Hölder’s inequality with q = ∞ and p = 1. It follows that

1
n

n

∑
i=1

E|(Fn(U(i))−U(i))F−1(U(i))|≤
1
n

n

∑
i=1

E sup
U(i)

|(Fn(U(i))−U(i))|E|F−1(U(i))|.

(13.25)
Then, thanks to the Cauchy-Schwarz inequality, we get

1
n

n

∑
i=1

E sup
U(i)

|(Fn(U(i))−U(i))|E|F−1(U(i))|

≤
(

1
n

n

∑
i=1

(E sup
U(i)

|(Fn(U(i))−U(i))|)2 1
n

n

∑
i=1

(E(F−1(U(i))))2

) 1
2

. (13.26)

Now, first recall that ∑n
i=1 F−1(U(i))

a.s.= ∑n
i=1 F−1(Ui) with Ui, i = 1, ..., n, being an

i.i.d sequence, then notice that E(F−1(Ui)) = µ, so that the second term of Equation
(13.26) becomes

µ

(
1
n

n

∑
i=1

(E sup
U(i)

|(Fn(U(i))−U(i))|)2

) 1
2

. (13.27)

The final step is to show that Equation (13.27) goes to zero as n→ ∞.

We know that Fn is the empirical c.d.f of uniform random variables. Using the
triangular inequality the inner term of Equation (13.27) can be bounded as

1
n

n

∑
i=1

(E sup
U(i)

|(Fn(U(i))−U(i))|)2 (13.28)

≤ 1
n

n

∑
i=1

(E sup
U(i)

|(Fn(U(i))− F(U(i)))|)2 +
1
n

n

∑
i=1

(E sup
U(i)

|(F(U(i))−U(i))|)2.

Since we are dealing with uniforms, we known that F(U) = u, and the second term
in the r.h.s of (13.28) vanishes.

We can then bound E(supU(i)
|(Fn(U(i)) − F(U(i))|) using the so called Vapnik-

Chervonenkis (VC) inequality, a uniform bound for empirical processes [29, 55,
258], getting

E sup
U(i)

|(Fn(U(i))− F(U(i))|≤
√

log(n + 1) + log(2)
n

. (13.29)

Combining Equation (13.29) with Equation (13.27) we obtain

µ

(
1
n

n

∑
i=1

(E sup
U(i)

|(Fn(U(i))−U(i))|)2

) 1
2

≤ µ

√
log(n + 1) + log(2)

n
, (13.30)

which goes to zero as n→ ∞, thus proving the first claim.
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For the second claim, it is sufficient to observe that the r.h.s of (13.30) still goes to

zero when multiplied by n α−1
α

L0(n) if α ∈ (1, 2).

Proof of Theorem 1

The first part of the proof consists in showing that we can rewrite Equation (13.10)
as a function of i.i.d random variables in place of order statistics, to be able to
apply a Central Limit Theorem (CLT) argument.

Let’s start by considering the sequence

1
n

n

∑
i=1

Z(i) =
1
n

n

∑
i=1

(
2

i− 1
n− 1

− 1
)

F−1(U(i)). (13.31)

Using the integral probability transform X d= F−1(U) with U standard uniform,
and adding and removing 1

n ∑n
i=1
(
2U(i) − 1

)
F−1(U(i)), the r.h.s. in Equation (13.31)

can be rewritten as

1
n

n

∑
i=1

Z(i) =
1
n

n

∑
i=1

(2U(i) − 1)F−1(U(i)) +
1
n

n

∑
i=1

2
(

i− 1
n− 1

−U(i)

)
F−1(U(i)). (13.32)

Then, by using the properties of order statistics [56] we obtain the following
almost sure equivalence

1
n

n

∑
i=1

Z(i)
a.s.=

1
n

n

∑
i=1

(2Ui − 1)F−1(Ui) +
1
n

n

∑
i=1

2
(

i− 1
n− 1

−U(i)

)
F−1(U(i)). (13.33)

Note that the first term in the r.h.s of (13.33) is a function of i.i.d random variables
as desired, while the second term is just a reminder, therefore

1
n

n

∑
i=1

Z(i)
a.s.=

1
n

n

∑
i=1

Zi + Rn ,

with Zi = (2Ui − 1)F−1(Ui) and Rn = 1
n ∑n

i=1(2( i−1
n−1 −U(i)))F−1(U(i)).

Given Equation (13.10) and exploiting the decomposition given in (13.33) we can
rewrite our claim as

n
α−1

α

L0(n)

(
1
n

n

∑
i=1

Z(i) − θ

)
=

n
α−1

α

L0(n)

(
1
n

n

∑
i=1

Zi − θ

)
+

n
α−1

α

L0(n)
Rn . (13.34)

From the second claim of the Lemma 13.1 and Slutsky Theorem, the convergence
in Equation (13.10) can be proven by looking at the behavior of the sequence

n
α−1

α

L0(n)

(
1
n

n

∑
i=1

Zi − θ

)
, (13.35)
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where Zi = (2Ui − 1)F−1(Ui) = (2F(Xi)− 1)Xi. This reduces to proving that Zi is in
the fat tails domain of attraction.

Recall that by assumption X ∈ DA(Sα) with α ∈ (1, 2). This assumption enables
us to use a particular type of CLT argument for the convergence of the sum of
fat-tailed random variables. However, we first need to prove that Z ∈ DA(Sα) as
well, that is P(|Z|> z) ∼ L(z)z−α, with α ∈ (1, 2) and L(z) slowly-varying.

Notice that
P(|Z̃|> z) ≤ P(|Z|> z) ≤ P(2X > z),

where Z̃ = (2U − 1)X and U ⊥ X. The first bound holds because of the positive
dependence between X and F(X) and it can be proven rigorously by noting that
2UX ≤ 2F(X)X by the so-called re-arrangement inequality [122]. The upper bound
conversely is trivial.

Using the properties of slowly-varying functions, we have P(2X > z) ∼ 2αL(z)z−α.
To show that Z̃ ∈ DA(Sα), we use the Breiman’s Theorem, which ensure the sta-
bility of the α-stable class under product, as long as the second random variable is
not too fat-tailed [267].

To apply the Theorem we re-write P(|Z̃|> z) as

P(|Z̃|> z) = P(Z̃ > z) + P(−Z̃ > z) = P(ŨX > z) + P(−ŨX > z),

where Ũ is a standard uniform with Ũ ⊥ X.

We focus on P(ŨX > z) since the procedure is the same for P(−ŨX > z). We
have

P(ŨX > z) = P(ŨX > z|Ũ > 0)P(Ũ > 0) + P(ŨX > z|Ũ ≤ 0)P(Ũ ≤ 0),

for z→ +∞.

Now, we have that P(ŨX > z|Ũ ≤ 0) → 0, while, by applying Breiman’s Theo-
rem, P(ŨX > z|Ũ > 0) becomes

P(ŨX > z|Ũ > 0)→ E(Ũα|U > 0)P(X > z)P(U > 0).

Therefore

P(|Z̃|> z) → 1
2

E(Ũα|U > 0)P(X > z) +
1
2

E((−Ũ)α|U ≤ 0)P(X > z).

From this

P(|Z̃|> z) → 1
2

P(X > z)[E(Ũ)α|U > 0) + E((−Ũα|U ≤ 0)]

=
2α

1− α
P(X > z) ∼ 2α

1− α
L(z)z−α .

We can then conclude that, by the squeezing Theorem [91],

P(|Z|> z) ∼ L(z)z−α ,
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as z→ ∞. Therefore Z ∈ DA(Sα).

We are now ready to invoke the Generalized Central Limit Theorem (GCLT) [82]
for the sequence Zi, i.e.

nc−1
n

(
1
n

n

∑
i=1

Zi −E(Zi)

)
d→ Sα,β . (13.36)

with E(Zi) = θ, Sα,β a standardized α-stable random variable, and where cn is a
sequence which must satisfy

lim
n→∞

nL(cn)
cα

n
=

Γ(2− α)|cos( πα
2 )|

α− 1
= Cα . (13.37)

Notice that cn can be represented as cn = n
1
α L0(n), where L0(n) is another slowly-

varying function possibly different from L(n).

The skewness parameter β is such that

P(Z > z)
P(|Z|> z)

→ 1 + β

2
.

Recalling that, by construction, Z ∈ [−c, +∞), the above expression reduces to

P(Z > z)
P(Z > z) + P(−Z > z)

→ P(Z > z)
P(Z > z)

= 1→ 1 + β

2
, (13.38)

therefore β = 1. This, combined with Equation (13.34), the result for the reminder
Rn of Lemma 13.1 and Slutsky Theorem, allows us to conclude that the same weak
limits holds for the ordered sequence of Z(i) in Equation (13.10) as well.

Proof of Theorem 2

The first step of the proof is to show that the ordered sequence ∑n
i=1 Z(i)

∑n
i=1 Xi

, character-

izing the Gini index, is equivalent in distribution to the i.i.d sequence ∑n
i=1 Zi

∑n
i=1 Xi

. In
order to prove this, it is sufficient to apply the factorization in Equation (13.33) to
Equation (13.11), getting

n
α−1

α

L0(n)

(
∑n

i=1 Zi

∑n
i=1 Xi

− θ

µ

)
+

n
α−1

α

L0(n)
Rn

n
∑n

i=1 Xi
. (13.39)

By Lemma 13.1 and the application of the continuous mapping and Slutsky The-
orems, the second term in Equation (13.39) goes to zero at least in probability.
Therefore to prove the claim it is sufficient to derive a weak limit for the following
sequence

n
α−1

α
1

L0(n)

(
∑n

i=1 Zi

∑n
i=1 Xi

− θ

µ

)
. (13.40)
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Expanding Equation (13.40) and recalling that Zi = (2F(Xi)− 1)Xi, we get

n
α−1

α

L0(n)
n

∑n
i=1 Xi

(
1
n

n

∑
i=1

Xi

(
2F(Xi)− 1− θ

µ

))
. (13.41)

The term n
∑n

i=1 Xi
in Equation (13.41) converges in probability to 1

µ by an application
of the continuous mapping Theorem, and the fact that we are dealing with positive
random variables X. Hence it will contribute to the final limit via Slutsky Theorem.

We first start by focusing on the study of the limit law of the term

n
α−1

α

L0(n)
1
n

n

∑
i=1

Xi

(
2F(Xi)− 1− θ

µ

)
. (13.42)

Set Ẑi = Xi(2F(Xi)− 1− θ
µ ) and note that E(Ẑi) = 0, since E(Zi) = θ and E(Xi) = µ.

In order to apply a GCLT argument to characterize the limit distribution of the

sequence n α−1
α

L0(n)
1
n ∑n

i=1 Ẑi we need to prove that Ẑ ∈ DA(Sα). If so then we can apply
GCLT to

n
α−1

α

L0(n)

(
∑n

i=1 Ẑi
n

−E(Ẑi)

)
. (13.43)

Note that, since E(Ẑi) = 0, Equation (13.43) equals Equation (13.42).

To prove that Ẑ ∈ DA(Sα), remember that Ẑi = Xi(2F(Xi)− 1− θ
µ ) is just Zi =

Xi(2F(Xi)− 1) shifted by θ
µ . Therefore the same argument used in Theorem 1 for

Z applies here to show that Ẑ ∈ DA(Sα). In particular we can point out that Ẑ and
Z (therefore also X) share the same α and slowly-varying function L(n).

Notice that by assumption X ∈ [c, ∞) with c > 0 and we are dealing with contin-
uous distributions, therefore Ẑ ∈ [−c(1 + θ

µ ), ∞). As a consequence the left tail of
Ẑ does not contribute to changing the limit skewness parameter β, which remains
equal to 1 (as for Z) by an application of Equation (13.38).

Therefore, by applying the GCLT we finally get

n
α−1

α
1

L0(n)
( ∑n

i=1 Zi

∑n
i=1 Xi

− θ

µ
) d−→ 1

µ
S(α, 1, 1, 0). (13.44)

We conclude the proof by noting that, as proven in Equation (13.39), the weak
limit of the Gini index is characterized by the i.i.d sequence of ∑n

i=1 Zi
∑n

i=1 Xi
rather than

the ordered one, and that an α-stable random variable is closed under scaling by a
constant [209].



14 O N T H E S U P E R - A D D I T I V I TY A N D
E ST I M AT I O N B I A S E S O F Q UA N T I L E
C O N T R I B U T I O N S ‡

S
ample measuresa of top centile contributions to the total (con-

centration) are downward biased, unstable estimators, extremely
sensitive to sample size and concave in accounting for large
deviations. It makes them particularly unfit in domains with
Power Law tails, especially for low values of the exponent.

These estimators can vary over time and increase with the population size,
as shown in this article, thus providing the illusion of structural changes in
concentration. They are also inconsistent under aggregation and mixing dis-
tributions, as the weighted average of concentration measures for A and B
will tend to be lower than that from A ∪ B. In addition, it can be shown that
under such thick tails, increases in the total sum need to be accompanied by
increased sample size of the concentration measurement. We examine the
estimation superadditivity and bias under homogeneous and mixed distribu-
tions.

a With R. Douady

14.1 introduction
Vilfredo Pareto noticed that 80% of the land in Italy belonged to 20% of the popula-
tion, and vice-versa, thus both giving birth to the power law class of distributions
and the popular saying 80/20. The self-similarity at the core of the property of
power laws [162] and [163] allows us to recurse and reapply the 80/20 to the re-
maining 20%, and so forth until one obtains the result that the top percent of the
population will own about 53% of the total wealth.

It looks like such a measure of concentration can be seriously biased, depending
on how it is measured, so it is very likely that the true ratio of concentration of

Research chapter.
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Figure 14.1: The young Vil-
fredo Pareto, before he dis-
covered power laws.

what Pareto observed, that is, the share of the top percentile, was closer to 70%,
hence changes year-on-year would drift higher to converge to such a level from
larger sample. In fact, as we will show in this discussion, for, say wealth, more
complete samples resulting from technological progress, and also larger popula-
tion and economic growth will make such a measure converge by increasing over
time, for no other reason than expansion in sample space or aggregate value.

The core of the problem is that, for the class one-tailed fat-tailed random vari-
ables, that is, bounded on the left and unbounded on the right, where the random
variable X ∈ [xmin, ∞), the in-sample quantile contribution is a biased estimator of
the true value of the actual quantile contribution.

Let us define the quantile contribution

κq = q
E[X|X > h(q)]

E[X]

where h(q) = inf{h ∈ [xmin , +∞) ,P(X > h) ≤ q} is the exceedance threshold for
the probability q.
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For a given sample (Xk)1≤k≤n, its "natural" estimator κ̂q ≡
qthpercentile

total , used in
most academic studies, can be expressed, as

κ̂q ≡
∑n

i=1 1Xi>ĥ(q)Xi

∑n
i=1 Xi

where ĥ(q) is the estimated exceedance threshold for the probability q :

ĥ(q) = inf{h :
1
n

n

∑
i=1

1x>h ≤ q}

We shall see that the observed variable κ̂q is a downward biased estimator of the
true ratio κq, the one that would hold out of sample, and such bias is in proportion
to the fatness of tails and, for very thick tailed distributions, remains significant,
even for very large samples.

14.2 estimation for unmixed pareto-tailed distributions
Let X be a random variable belonging to the class of distributions with a "power
law" right tail, that is:

P(X > x) = L(x) x−α (14.1)

where L : [xmin, +∞)→ (0, +∞) is a slowly varying function, defined as limx→+∞
L(kx)
L(x) =

1 for any k > 0.

There is little difference for small exceedance quantiles (<50%) between the var-
ious possible distributions such as Student’s t, Lévy α-stable, Dagum,[53],[54]
Singh-Maddala distribution [213], or straight Pareto.

For exponents 1 ≤ α ≤ 2, as observed in [235] (Chapter 8 in this book), the law
of large numbers operates, though extremely slowly. The problem is acute for α
around, but strictly above 1 and severe, as it diverges, for α = 1.

14.2.1 Bias and Convergence

Simple Pareto Distribution Let us first consider φα(x) the density of a α-Pareto
distribution bounded from below by xmin > 0, in other words: φα(x) = αxα

minx−α−11x≥xmin ,
and P(X > x) =

( xmin
x
)

α. Under these assumptions, the cutpoint of exceedance is
h(q) = xmin q−1/α and we have:

κq =

∫ ∞
h(q) x φ(x)dx
∫ ∞

xmin
x φ(x)dx

=
(

h(q)
xmin

)
1−α = q

α−1
α (14.2)
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If the distribution of X is α-Pareto only beyond a cut-point xcut, which we assume
to be below h(q), so that we have P(X > x) =

(
λ
x

)
α for some λ > 0, then we still

have h(q) = λq−1/α and

κq =
α

α− 1
λ

E [X]
q

α−1
α

The estimation of κq hence requires that of the exponent α as well as that of the
scaling parameter λ, or at least its ratio to the expectation of X.

Table 14.1 shows the bias of κ̂q as an estimator of κq in the case of an α-Pareto
distribution for α = 1.1, a value chosen to be compatible with practical economic
measures, such as the wealth distribution in the world or in a particular country,
including developped ones.2 In such a case, the estimator is extemely sensitive to
"small" samples, "small" meaning in practice 108. We ran up to a trillion simula-
tions across varieties of sample sizes. While κ0.01 ≈ 0.657933, even a sample size
of 100 million remains severely biased as seen in the table.

Naturally the bias is rapidly (and nonlinearly) reduced for α further away from
1, and becomes weak in the neighborhood of 2 for a constant α, though not under
a mixture distribution for α, as we shall se later. It is also weaker outside the top
1% centile, hence this discussion focuses on the famed "one percent" and on low
values of the α exponent.

Table 14.1: Biases of Estimator of κ = 0.657933 From 1012 Monte Carlo Realizations
κ̂(n) Mean Median STD

across MC runs
κ̂(103) 0.405235 0.367698 0.160244
κ̂(104) 0.485916 0.458449 0.117917
κ̂(105) 0.539028 0.516415 0.0931362
κ̂(106) 0.581384 0.555997 0.0853593
κ̂(107) 0.591506 0.575262 0.0601528
κ̂(108) 0.606513 0.593667 0.0461397

In view of these results and of a number of tests we have performed around them,
we can conjecture that the bias κq− κ̂q(n) is "of the order of" c(α, q)n−b(q)(α−1) where
constants b(q) and c(α, q) need to be evaluated. Simulations suggest that b(q) = 1,
whatever the value of α and q, but the rather slow convergence of the estimator
and of its standard deviation to 0 makes precise estimation difficult.

General Case In the general case, let us fix the threshold h and define:

κh = P(X > h)
E[X|X > h]

E[X]
=

E[X1X>h]
E[X]

2 This value, which is lower than the estimated exponents one can find in the literature – around 2 – is,
following [86], a lower estimate which cannot be excluded from the observations.
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so that we have κq = κh(q). We also define the n-sample estimator:

κ̂h ≡
∑n

i=1 1Xi>hXi

∑n
i=1 Xi

where Xi are n independent copies of X. The intuition behind the estimation bias
of κq by κ̂q lies in a difference of concavity of the concentration measure with
respect to an innovation (a new sample value), whether it falls below or above the

threshold. Let Ah(n) = ∑n
i=1 1Xi>hXi and S(n) = ∑n

i=1 Xi , so that κ̂h(n) =
Ah(n)
S(n)

and

assume a frozen threshold h. If a new sample value Xn+1 < h then the new value

is κ̂h(n + 1) =
Ah(n)

S(n) + Xn+1
. The value is convex in Xn+1 so that uncertainty on Xn+1

increases its expectation. At variance, if the new sample value Xn+1 > h, the new
value κ̂h(n + 1) ≈ Ah(n)+Xn+1−h

S(n)+Xn+1−h = 1− S(n)−Ah(n)
S(n)+Xn+1−h , which is now concave in Xn+1,

so that uncertainty on Xn+1 reduces its value. The competition between these two
opposite effects is in favor of the latter, because of a higher concavity with respect
to the variable, and also of a higher variability (whatever its measurement) of the
variable conditionally to being above the threshold than to being below. The fatter
the right tail of the distribution, the stronger the effect. Overall, we find that

E [κ̂h(n)] ≤ E [Ah(n)]
E [S(n)]

= κh (note that unfreezing the threshold ĥ(q) also tends to

reduce the concentration measure estimate, adding to the effect, when introducing
one extra sample because of a slight increase in the expected value of the estimator
ĥ(q), although this effect is rather negligible). We have in fact the following:

Proposition 14.1
Let X = (X)n

i=1 a random sample of size n > 1
q , Y = Xn+1 an extra single random

observation, and define: κ̂h(X <Y) =
∑n

i=1 1Xi>hXi + 1Y>hY
∑n

i=1 Xi + Y
. We remark that, whenever

Y > h, one has:
∂2κ̂h(X <Y)

∂Y2 ≤ 0.

This inequality is still valid with κ̂q as the value ĥ(q, X < Y) doesn’t depend on the partic-
ular value of Y > ĥ(q, X).

We face a different situation from the common small sample effect resulting from
high impact from the rare observation in the tails that are less likely to show up in
small samples, a bias which goes away by repetition of sample runs. The concavity
of the estimator constitutes a upper bound for the measurement in finite n, clipping
large deviations, which leads to problems of aggregation as we will state below in
Theorem 1.

In practice, even in very large sample, the contribution of very large rare events
to κq slows down the convergence of the sample estimator to the true value. For a
better, unbiased estimate, one would need to use a different path: first estimating
the distribution parameters

(
α̂, λ̂

)
and only then, estimating the theoretical tail

contribution κq(α̂, λ̂). Falk [86] observes that, even with a proper estimator of α

and λ, the convergence is extremely slow, namely of the order of n−δ/ln n, where
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Figure 14.2: Effect of addi-
tional observations on κ
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Figure 14.3: Effect of addi-
tional observations on κ, we
can see convexity on both
sides of h except for values
of no effect to the left of h,
an area of order 1/n

the exponent δ depends on α and on the tolerance of the actual distribution vs.
a theoretical Pareto, measured by the Hellinger distance. In particular, δ → 0 as
α→ 1, making the convergence really slow for low values of α.

14.3 an inequality about aggregating inequality

For the estimation of the mean of a fat-tailed r.v. (X)j
i , in m sub-samples of size ni

each for a total of n = ∑m
i=1 ni, the allocation of the total number of observations

n between i and j does not matter so long as the total n is unchanged. Here
the allocation of n samples between m sub-samples does matter because of the
concavity of κ.3 Next we prove that global concentration as measured by κ̂q on
a broad set of data will appear higher than local concentration, so aggregating
European data, for instance, would give a κ̂q higher than the average measure of
concentration across countries – an "inequality about inequality". In other words, we
claim that the estimation bias when using κ̂q(n) is even increased when dividing

3 The same concavity – and general bias – applies when the distribution is lognormal, and is exacerbated
by high variance.
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the sample into sub-samples and taking the weighted average of the measured
values κ̂q(ni).

Theorem 4

Partition the n data into m sub-samples N = N1 ∪ . . . ∪ Nm of respective sizes
n1, . . . , nm, with ∑m

i=1 ni = n, and let S1, . . . , Sm be the sum of variables over each
sub-sample, and S = ∑m

i=1 Si be that over the whole sample. Then we have:

E
[
κ̂q(N)

]
≥

m

∑
i=1

E

[
Si
S

]
E
[
κ̂q(Ni)

]

If we further assume that the distribution of variables Xj is the same in all the
sub-samples. Then we have:

E
[
κ̂q(N)

]
≥

m

∑
i=1

ni
n
E
[
κ̂q(Ni)

]

In other words, averaging concentration measures of subsamples, weighted by
the total sum of each subsample, produces a downward biased estimate of the
concentration measure of the full sample.

Proof. An elementary induction reduces the question to the case of two sub-samples.
Let q ∈ (0, 1) and (X1, . . . , Xm) and

(
X′1, . . . , X′n

)
be two samples of positive i.i.d.

random variables, the Xi’s having distributions p(dx) and the X′j’s having distribu-
tion p′(dx′). For simplicity, we assume that both qm and qn are integers. We set

S =
m

∑
i=1

Xi and S′ =
n

∑
i=1

X′i . We define A =
mq

∑
i=1

X[i] where X[i] is the i-th largest value of

(X1, . . . , Xm), and A′ =
mq

∑
i=1

X′[i] where X′[i] is the i-th largest value of
(
X′1, . . . , X′n

)
.

We also set S′′ = S + S′ and A” =
(m+n)q

∑
i=1

X′′[i] where X′′[i] is the i-th largest value of

the joint sample (X1, . . . , Xm , X′1, . . . , X′n).

The q-concentration measure for the samples X = (X1, ..., Xm), X ′ = (X′1, ..., X′n)
and X ′′ = (X1, . . . , Xm , X′1, . . . , X′n) are:

κ =
A
S

κ′ =
A′

S′
κ′′ =

A′′

S′′

We must prove that he following inequality holds for expected concentration mea-
sures:

E
[
κ′′
]
≥ E

[
S

S′′

]
E [κ] + E

[
S′

S′′

]
E
[
κ′
]

We observe that:
A = max

J⊂{1,...,m}
|J|=θm

∑
i∈J

Xi
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and, similarly A′ = maxJ′⊂{1,...,n},|J′ |=qn ∑i∈J′ X′i and A′′ = maxJ′′⊂{1,...,m+n},|J′′ |=q(m+n) ∑i∈J′′ Xi ,
where we have denoted Xm+i = X′i for i = 1 . . . n. If J ⊂ {1, ..., m} , |J| = θm
and J′ ⊂ {m + 1, ..., m + n} , |J′| = qn, then J′′ = J ∪ J′ has cardinal m + n, hence
A + A′ = ∑i∈J′′ Xi ≤ A′′ , whatever the particular sample. Therefore κ′′ ≥ S

S′′ κ + S′
S′′ κ
′

and we have:

E
[
κ′′
]
≥ E

[
S

S′′
κ

]
+ E

[
S′

S′′
κ′
]

Let us now show that:

E

[
S

S′′
κ

]
= E

[
A
S′′

]
≥ E

[
S

S′′

]
E

[
A
S

]

If this is the case, then we identically get for κ′ :

E

[
S′

S′′
κ′
]

= E

[
A′

S′′

]
≥ E

[
S′

S′′

]
E

[
A′

S′

]

hence we will have:

E
[
κ′′
]
≥ E

[
S

S′′

]
E [κ] + E

[
S′

S′′

]
E
[
κ′
]

Let T = X[mq] be the cut-off point (where [mq] is the integer part of mq), so that

A =
m

∑
i=1

Xi1Xi≥T and let B = S− A =
m

∑
i=1

Xi1Xi<T . Conditionally to T, A and B are

independent: A is a sum if mθ samples constarined to being above T, while B is
the sum of m(1− θ) independent samples constrained to being below T. They are
also independent of S′ . Let pA(t, da) and pB(t, db) be the distribution of A and B
respectively, given T = t. We recall that p′(ds′) is the distribution of S′ and denote
q(dt) that of T. We have:

E

[
S

S′′
κ

]
=

! a + b
a + b + s′

a
a + b

pA(t, da) pB(t, db) q(dt) p′(ds′)

For given b, t and s′, a → a+b
a+b+s′ and a → a

a+b are two increasing functions of the
same variable a, hence conditionally to T, B and S′, we have:

E

[
S

S′′
κ

∣∣∣∣ T, B, S′
]

= E

[
A

A + B + S′

∣∣∣∣ T, B, S′
]

≥ E

[
A + B

A + B + S′

∣∣∣∣ T, B, S′
]
E

[
A

A + B

∣∣∣∣ T, B, S′
]

This inequality being valid for any values of T, B and S′, it is valid for the uncon-
ditional expectation, and we have:

E

[
S

S′′
κ

]
≥ E

[
S

S′′

]
E

[
A
S

]
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If the two samples have the same distribution, then we have:

E
[
κ′′
]
≥ m

m + n
E [κ] +

n
m + n

E
[
κ′
]

Indeed, in this case, we observe that E
[

S
S′′
]

= m
m+n . Indeed S = ∑m

i=1 Xi and the Xi

are identically distributed, hence E
[

S
S′′
]

= mE
[

X
S′′
]

. But we also have E
[

S′′
S′′
]

=

1 = (m + n)E
[

X
S′′
]

therefore E
[

X
S′′
]

= 1
m+n . Similarly, E

[
S′
S′′
]

= n
m+n , yielding the

result.

This ends the proof of the theorem.

Let X be a positive random variable and h ∈ (0, 1). We remind the theoretical
h-concentration measure, defined as:

κh =
P(X > h)E [X |X > h ]

E [X]

whereas the n-sample θ-concentration measure is κ̂h(n) = A(n)
S(n) , where A(n) and

S(n) are defined as above for an n-sample X = (X1, . . . , Xn) of i.i.d. variables with
the same distribution as X.

Theorem 5

For any n ∈ N, we have:
E [κ̂h(n)] < κh

and
lim

n→+∞
κ̂h(n) = κh a.s. and in probability

Proof. The above corrolary shows that the sequence nE [κ̂h(n)] is super-additive,
hence E [κ̂h(n)] is an increasing sequence. Moreover, thanks to the law of large
numbers, 1

n S(n) converges almost surely and in probability to E [X] and 1
n A(n)

converges almost surely and in probability to E [X1X>h] = P(X > h)E [X |X > h ],
hence their ratio also converges almost surely to κh. On the other hand, this ratio is
bounded by 1. Lebesgue dominated convergence theorem concludes the argument
about the convergence in probability.

14.4 mixed distributions for the tail exponent
Consider now a random variable X, the distribution of which p(dx) is a mix-
ture of parametric distributions with different values of the parameter: p(dx) =
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Figure 14.4:
Pierre Simon,
Marquis de
Laplace. He got
his name on a
distribution and
a few results, but
was behind both
the Cauchy and
the Gaussian
distributions (see
the Stigler law of
eponymy [218]).
Posthumous
portrait by Jean-
Baptiste Paulin
Guérin, 1838.

∑m
i=1 ωi pαi (dx). A typical n-sample of X can be made of ni = ωin samples of Xαi

with distribution pαi . The above theorem shows that, in this case, we have:

E
[
κ̂q(n, X)

]
≥

m

∑
i=1

E

[
S(ωin, Xαi )

S(n, X)

]
E
[
κ̂q(ωin, Xαi )

]

When n → +∞, each ratio
S(ωin, Xαi )

S(n, X)
converges almost surely to ωi respectively,

therefore we have the following convexity inequality:

κq(X) ≥
m

∑
i=1

ωiκq(Xαi )
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The case of Pareto distribution is particularly interesting. Here, the parameter α
represents the tail exponent of the distribution. If we normalize expectations to 1,

the cdf of Xα is Fα(x) = 1−
(

x
xmin

)−α
and we have:

κq(Xα) = q
α−1

α

and
d2

dα2 κq(Xα) = q
α−1

α
(log q)2

α3 > 0

Hence κq(Xα) is a convex function of α and we can write:

κq(X) ≥
m

∑
i=1

ωiκq(Xαi ) ≥ κq(Xᾱ)

where ᾱ = ∑m
i=1 ωiα.

Suppose now that X is a positive random variable with unknown distribution,
except that its tail decays like a power low with unknown exponent. An unbiased
estimation of the exponent, with necessarily some amount of uncertainty (i.e., a
distribution of possible true values around some average), would lead to a down-
ward biased estimate of κq .

Because the concentration measure only depends on the tail of the distribution,
this inequality also applies in the case of a mixture of distributions with a power
decay, as in Equation 23.1:

P(X > x) =
N

∑
j=1

ωi Li(x)x−αj (14.3)

The slightest uncertainty about the exponent increases the concentration index.
One can get an actual estimate of this bias by considering an average ᾱ > 1 and
two surrounding values α+ = α + δ and α− = α− δ. The convexity inequaly writes
as follows:

κq(ᾱ) = q1− 1
ᾱ <

1
2

(
q1− 1

α+δ + q1− 1
α−δ

)

So in practice, an estimated ᾱ of around 3/2, sometimes called the "half-cubic"
exponent, would produce similar results as value of α much closer ro 1, as we
used in the previous section. Simply κq(α) is convex, and dominated by the second

order effect ln(q)q1− 1
α+δ (ln(q)−2(α+δ))

(α+δ)4 , an effect that is exacerbated at lower values of α.

To show how unreliable the measures of inequality concentration from quantiles,
consider that a standard error of 0.3 in the measurement of α causes κq(α) to rise
by 0.25.
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14.5 a larger total sum is accompanied by increases in κ̂q

There is a large dependence between the estimator κ̂q and the sum S =
n

∑
j=1

Xj :

conditional on an increase in κ̂q the expected sum is larger. Indeed, as shown in
theorem 4, κ̂q and S are positively correlated.

For the case in which the random variables under concern are wealth, we observe
as in Figure 14.5 such conditional increase; in other words, since the distribution is
of the class of thick tails under consideration, the maximum is of the same order as
the sum, additional wealth means more measured inequality. Under such dynam-
ics, is quite absurd to assume that additional wealth will arise from the bottom or
even the middle. (The same argument can be applied to wars, pandemics, size or
companies, etc.)

60000 80000 100000 120000
Wealth

0.3

0.4

0.5

0.6

0.7

0.8
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1.0
k Hn=104 L

Figure 14.5: Effect of addi-
tional wealth on κ̂

14.6 conclusion and proper estimation of concentration
Concentration can be high at the level of the generator, but in small units or sub-
sections we will observe a lower κq. So examining times series, we can easily get
a historical illusion of rise in, say, wealth concentration when it has been there all
along at the level of the process; and an expansion in the size of the unit measured
can be part of the explanation.4

Even the estimation of α can be biased in some domains where one does not
see the entire picture: in the presence of uncertainty about the "true" α, it can be
shown that, unlike other parameters, the one to use is not the probability-weighted
exponents (the standard average) but rather the minimum across a section of ex-
ponents.

One must not perform analyses of year-on-year changes in κ̂q without adjustment.
It did not escape our attention that some theories are built based on claims of such
"increase" in inequality, as in [191], without taking into account the true nature of

4 Accumulated wealth is typically thicker tailed than income, see [99].
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κq, and promulgating theories about the "variation" of inequality without reference
to the stochasticity of the estimation − and the lack of consistency of κq across time
and sub-units. What is worse, rejection of such theories also ignored the size effect,
by countering with data of a different sample size, effectively making the dialogue
on inequality uninformational statistically.5

The mistake appears to be commonly made in common inference about fat-tailed
data in the literature. The very methodology of using concentration and changes
in concentration is highly questionable. For instance, in the thesis by Steven Pinker
[194] that the world is becoming less violent, we note a fallacious inference about
the concentration of damage from wars from a κ̂q with minutely small population
in relation to the fat-tailedness.6 Owing to the fat-tailedness of war casualties and
consequences of violent conflicts, an adjustment would rapidly invalidate such
claims that violence from war has statistically experienced a decline.

14.6.1 Robust methods and use of exhaustive data

We often face argument of the type "the method of measuring concentration from
quantile contributions κ̂ is robust and based on a complete set of data". Robust
methods, alas, tend to fail with fat-tailed data, see Chapter 8. But, in addition, the
problem here is worse: even if such "robust" methods were deemed unbiased, a
method of direct centile estimation is still linked to a static and specific population
and does not aggregage. Accordingly, such techniques do not allow us to make
statistical claims or scientific statements about the true properties which should
necessarily carry out of sample.

Take an insurance (or, better, reinsurance) company. The "accounting" profits in
a year in which there were few claims do not reflect on the "economic" status of
the company and it is futile to make statements on the concentration of losses per
insured event based on a single year sample. The "accounting" profits are not used
to predict variations year-on-year, rather the exposure to tail (and other) events,
analyses that take into account the stochastic nature of the performance. This
difference between "accounting" (deterministic) and "economic" (stochastic) values
matters for policy making, particularly under thick tails. The same with wars: we
do not estimate the severity of a (future) risk based on past in-sample historical
data.

14.6.2 How Should We Measure Concentration?

Practitioners of risk managers now tend to compute CVaR and other metrics, meth-
ods that are extrapolative and nonconcave, such as the information from the α ex-
ponent, taking the one closer to the lower bound of the range of exponents, as we

5 Financial Times, May 23, 2014 "Piketty findings undercut by errors" by Chris Giles.
6 Using Richardson’s data, [194]: "(Wars) followed an 80:2 rule: almost eighty percent of the deaths were

caused by two percent (his emph.) of the wars". So it appears that both Pinker and the literature cited for
the quantitative properties of violent conflicts are using a flawed methodology, one that produces a severe
bias, as the centile estimation has extremely large biases with fat-tailed wars. Furthermore claims about
the mean become spurious at low exponents.
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saw in our extension to Theorem 2 and rederiving the corresponding κ, or, more
rigorously, integrating the functions of α across the various possible states. Such
methods of adjustment are less biased and do not get mixed up with problems of
aggregation –they are similar to the "stochastic volatility" methods in mathemati-
cal finance that consist in adjustments to option prices by adding a "smile" to the
standard deviation, in proportion to the variability of the parameter representing
volatility and the errors in its measurement. Here it would be "stochastic alpha"
or "stochastic tail exponent "7 By extrapolative, we mean the built-in extension of
the tail in the measurement by taking into account realizations outside the sample
path that are in excess of the extrema observed.8 9
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7 Also note that, in addition to the centile estimation problem, some authors such as [192] when dealing
with censored data, use Pareto interpolation for unsufficient information about the tails (based on tail
parameter), filling-in the bracket with conditional average bracket contribution, which is not the same
thing as using full power law extension; such a method retains a significant bias.

8 Even using a lognormal distribution, by fitting the scale parameter, works to some extent as a rise of the
standard deviation extrapolates probability mass into the right tail.

9 We also note that the theorems would also apply to Poisson jumps, but we focus on the powerlaw case in
the application, as the methods for fitting Poisson jumps are interpolative and have proved to be easier to
fit in-sample than out of sample.
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T
his Chapter proposes an approach to compute the conditional

moments of fat-tailed phenomena that, only looking at data,
could be mistakenly considered as having infinite mean. This
type of problems manifests itself when a random variable Y
has a heavy-tailed distribution with an extremely wide yet

bounded support.

We introduce the concept of dual distribution, by means of a log-transformation
that smoothly removes the upper bound. The tail of the dual distribution can
then be studied using extreme value theory, without making excessive para-
metric assumptions, and the estimates one obtains can be used to study the
original distribution and compute its moments by reverting the transforma-
tion.

The central difference between our approach and a simple truncation is
in the smoothness of the transformation between the original and the dual
distribution, allowing use of extreme value theory.

War casualties, operational risk, environment blight, complex networks and
many other econophysics phenomena are possible fields of application.

15.1 introduction
Consider a heavy-tailed random variable Y with finite support [L, H]. W.l.o.g. set
L >> 0 for the lower bound, while for upper one H, assume that its value is
remarkably large, yet finite. It is so large that the probability of observing values
in its vicinity is extremely small, so that in data we tend to find observations only
below a certain M << H < ∞.

Research chapter, with P. Cirillo.
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Figure 15.1 gives a graphical representation of the problem. For our random vari-
able Y with remote upper bound H the real tail is represented by the continuous
line. However, if we only observe values up to M << H, and - willing or not -
we ignore the existence of H, which is unlikely to be seen, we could be inclined to
believe the the tail is the dotted one, the apparent one. The two tails are indeed es-
sentially indistinguishable for most cases, as the divergence is only evident when
we approach H.

Now assume we want to study the tail of Y and, since it is fat-tailed and despite
H < ∞, we take it to belong to the so-called Fréchet class2. In extreme value theory
[184], a distribution F of a random variable Y is said to be in the Fréchet class if
F̄(y) = 1− F(y) = y−αL(y), where L(y) is a slowly varying function . In other terms,
the Fréchet class is the class of all distributions whose right tail behaves as a power
law.

Looking at the data, we could be led to believe that the right tail is the dotted
line in Figure 15.1, and our estimation of α shows it be smaller than 1. Given
the properties of power laws, this means that E[Y] is not finite (as all the other
higher moments). This also implies that the sample mean is essentially useless for
making inference, in addition to any considerations about robustness [168]. But if
H is finite, this cannot be true: all the moments of a random variable with bounded
support are finite.

A solution to this situation could be to fit a parametric model, which allows for
fat tails and bounded support, such as for example a truncated Pareto [1]. But
what happens if Y only shows a Paretian behavior in the upper tail, and not for
the whole distribution? Should we fit a mixture model?

In the next section we propose a simple general solution, which does not rely on
strong parametric assumptions.

15.2 the dual distribution
Instead of altering the tails of the distribution we find it more convenient to trans-
form the data and rely on distributions with well known properties. In Figure 15.1,
the real and the apparent tails are indistinguishable to a great extent. We can use
this fact to our advantage, by transforming Y to remove its upper bound H, so
that the new random variable Z - the dual random variable - has the same tail as
the apparent tail. We can then estimate the shape parameter α of the tail of Z and
come back to Y to compute its moments or, to be more exact, to compute its excess
moments, the conditional moments above a given threshold, view that we will just
extract the information from the tail of Z.

Take Y with support [L, H], and define the function

ϕ(Y) = L− H log
(

H −Y
H − L

)
. (15.1)

2 Note that treating Y as belonging to the Fréchet class is a mistake. If a random variable has a finite upper
bound, it cannot belong to the Fréchet class, but rather to the Weibull class [116].
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Figure 15.1: Graphical representation of what may happen if one ignores the existence of the finite
upper bound H, since only M is observed.

We can verify that ϕ is "smooth": ϕ ∈ C∞, ϕ−1(∞) = H, and ϕ−1(L) = ϕ(L) = L.
Then Z = ϕ(Y) defines a new random variable with lower bound L and an infinite
upper bound. Notice that the transformation induced by ϕ(·) does not depend on
any of the parameters of the distribution of Y.

By construction, z = ϕ(y) ≈ y for very large values of H. This means that for a
very large upper bound, unlikely to be touched, the results we get for the tail of
Y and Z = ϕ(Y) are essentially the same, until we do not reach H. But while Y is
bounded, Z is not. Therefore we can safely model the unbounded dual distribution
of Z as belonging to the Fréchet class, study its tail, and then come back to Y and
its moments, which under the dual distribution of Z could not exist.3

The tail of Z can be studied in different ways, see for instance [184] and [87].
Our suggestions is to rely on the so-called de Pickands, Balkema and de Haan’s
Theorem [116]. This theorem allows us to focus on the right tail of a distribution,
without caring too much about what happens below a given threshold threshold
u. In our case u ≥ L.

3 Note that the use of logarithmic transformation is quite natural in the context of utility.
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Consider a random variable Z with distribution function G, and call Gu the con-
ditional df of Z above a given threshold u. We can then define the r.v. W, repre-
senting the rescaled excesses of Z over the threshold u, so that

Gu(w) = P(Z− u ≤ w|Z > u) =
G(u + w)− G(u)

1− G(u)
,

for 0 ≤ w ≤ zG − u, where zG is the right endpoint of G.

Pickands, Balkema and de Haan have showed that for a large class of distribu-
tion functions G, and a large u, Gu can be approximated by a Generalized Pareto
distribution, i.e. Gu(w)→ GPD(w; ξ, σ), as u→ ∞ where

GPD(w; ξ, σ) =

{
1− (1 + ξ w

σ )−1/ξ i f ξ ,= 0
1− e−

w
σ i f ξ = 0

, w ≥ 0. (15.2)

The parameter ξ, known as the shape parameter, and corresponding to 1/α, gov-
erns the fatness of the tails, and thus the existence of moments. The moment of
order p of a Generalized Pareto distributed random variable only exists if and only
if ξ < 1/p, or α > p [184]. Both ξ and σ can be estimated using MLE or the method
of moments [116].4

15.3 back to y : the shadow mean (or population mean)
With f and g, we indicate the densities of Y and Z.

We know that Z = ϕ(Y), so that Y = ϕ−1(Z) = (L− H)e
L−Z

H + H.

Now, let’s assume we found u = L∗ ≥ L, such that Gu(w) ≈ GPD(w; ξ , σ). This
implies that the tail of Y, above the same value L∗ that we find for Z, can be
obtained from the tail of Z, i.e. Gu.

First we have ∫ ∞

L∗
g(z) dz =

∫ ϕ−1(∞)

L∗
f (y) dy. (15.3)

And we know that

g(z; ξ, σ) =
1
σ

(
1 +

ξz
σ

)− 1
ξ−1

, z ∈ [L∗ , ∞). (15.4)

Setting α = ξ−1, we get

f (y; α, σ) =
H
(

1 + H(log(H−L)−log(H−y))
ασ

)−α−1

σ(H − y)
, y ∈ [L∗ , H], (15.5)

4 There are alternative methods to face finite (or concave) upper bounds, i.e., the use of tempered power
laws (with exponential dampening)[197] or stretched exponentials [149]; while being of the same nature
as our exercise, these methods do not allow for immediate applications of extreme value theory or similar
methods for parametrization.
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Figure 15.2: C.F.
Gauss, painted
by Christian
Albrecht Jensen.
Gauss has his
name on the
distribution, gen-
erally attributed
to Laplace.

or, in terms of distribution function,

F(y; α, σ) = 1−
(

1 +
H(log(H − L)− log(H − y))

ασ

)−α

. (15.6)

Clearly, given that ϕ is a one-to-one transformation, the parameters of f and g
obtained by maximum likelihood methods will be the same —the likelihood func-
tions of f and g differ by a scaling constant.

We can derive the shadow mean5 of Y, conditionally on Y > L∗, as

E[Y|Y > L∗] =
∫ H

L∗
y f (y; α, σ) dy, (15.7)

5 We call the population average –as opposed to the sample one – "shadow", as it is not immediately visible
from the data.
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obtaining

E[Y|Z > L∗] = (H − L∗)e
ασ
H

(ασ

H

)α
Γ
(

1− α,
ασ

H

)
+ L∗ . (15.8)

The conditional mean of Y above L∗ ≥ L can then be estimated by simply plug-
ging in the estimates α̂ and σ̂, as resulting from the GPD approximation of the
tail of Z. It is worth noticing that if L∗ = L, then E[Y|Y > L∗] = E[Y], i.e. the
conditional mean of Y above Y is exactly the mean of Y.

Naturally, in a similar way, we can obtain the other moments, even if we may
need numerical methods to compute them.

Our method can be used in general, but it is particularly useful when, from data,
the tail of Y appears so fat that no single moment is finite, as it is often the case
when dealing with operational risk losses, the degree distribution of large complex
networks, or other econophysical phenomena.

For example, assume that for Z we have ξ > 1. Then both E[Z|Z > L∗] and E[Z]
are not finite6. Figure 15.1 tells us that we might be inclined to assume that also
E[Y] is infinite - and this is what the data are likely to tell us if we estimate ξ̂ from
the tail7 of Y. But this cannot be true because H < ∞, and even for ξ > 1 we can
compute the expected value E[Y|Z > L∗] using equation (15.8).

Value-at-Risk and Expected Shortfall

Thanks to equation (15.6), we can compute by inversion the quantile function of Y
when Y ≥ L∗, that is

Q(p; α, σ, H, L) = e−γ(p)
(

L∗e
ασ
H + Heγ(p) − He

ασ
H

)
, (15.9)

where γ(p) = ασ(1−p)−1/α

H and p ∈ [0, 1]. Again, this quantile function is conditional
on Y being larger than L∗.

From equation (15.9), we can easily compute the Value-at-Risk (VaR) of Y|Y ≥ L∗

for whatever confidence level. For example, the 95% VaR of Y, if Y represents op-
erational losses over a 1-year time horizon, is simply VaRY

0.95 = Q(0.95; α, σ, H, L).

Another quantity we might be interested in when dealing with the tail risk of Y
is the so-called expected shortfall (ES), that is E[Y|Y > u ≥ L∗]. This is nothing
more than a generalization of equation (15.8).

We can obtain the expected shortfall by first computing the mean excess function
of Y|Y ≥ L∗, defined as

eu(Y) = E[Y− u|Y > u] =
∫ ∞

u (u− y) f (y; α, σ)dy
1− F(u)

,

6 Remember that for a GPD random variable Z, E [Zp ] < ∞ iff ξ < 1/p.
7 Because of the similarities between 1− F(y) and 1−G(z), at least up until M, the GPD approximation will

give two statistically undistinguishable estimates of ξ for both tails [184].
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for y ≥ u ≥ L∗. Using equation (15.5), we get

eu(Y) = (H − L)e
ασ
H

(ασ

H

)α




H log

(
H−L
H−u

)

ασ
+ 1




α

×

Γ
(

1− α,
ασ

H
+ log

(
H − L
H − u

))
. (15.10)

The Expected Shortfall is then simply computed as

E[Y|Y > u ≥ L∗] = eu(Y) + u.

As in finance and risk management, ES and VaR can be combined. For example
we could be interested in computing the 95% ES of Y when Y ≥ L∗. This is simply
given by VaRY

0.95 + eVaRY
0.95

(Y).

15.4 comparison to other methods
There are three ways to go about explicitly cutting a Paretian distribution in the
tails (not counting methods to stretch or "temper" the distribution).

1) The first one consists in hard truncation, i.e. in setting a single endpoint for the
distribution and normalizing. For instance the distribution would be normalized
between L and H, distributing the excess mass across all points.

2) The second one would assume that H is an absorbing barrier, that all the
realizations of the random variable in excess of H would be compressed into a
Dirac delta function at H –as practiced in derivative models. In that case the
distribution would have the same density as a regular Pareto except at point H.

3) The third is the one presented here.

The same problem has cropped up in quantitative finance over the use of trun-
cated normal (to correct for Bachelier’s use of a straight Gaussian) vs. logarithmic
transformation (Sprenkle, 1961 [216]), with the standard model opting for logarith-
mic transformation and the associated one-tailed lognormal distribution. Aside
from the additivity of log-returns and other such benefits, the models do not pro-
duce a "cliff", that is an abrupt change in density below or above, with the instabil-
ity associated with risk measurements on non-smooth function.

As to the use of extreme value theory, Breilant et al. (2014)[? ] go on to truncate
the distribution by having an excess in the tails with the transformation Y−α →
(Y−α − H−α) and apply EVT to the result. Given that the transformation includes
the estimated parameter, a new MLE for the parameter α is required. We find
issues with such a non-smooth transformation. The same problem occurs as with
financial asset models, particularly the presence an abrupt "cliff" below which there
is a density, and above which there is none. The effect is that the expectation
obtained in such a way will be higher than ours, particularly at values of α < 1, as
seen in Figure 15.3.
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We can demonstrate the last point as follows. Assume we observe distribution
is Pareto that is in fact truncated but treat it as a Pareto. The density is f (x) =
1
σ

(
x−L
ασ + 1

)−α−1
, x ∈ [L, ∞). The truncation gives g(x) = ( x−L

ασ +1)
−α−1

σ(1−αασα(ασ+H−L)−α) , x ∈
[L, H].

Moments of order p of the truncated Pareto (i.e. what is seen from realizations
of the process), M(p) are:

M(p) =αe−iπp(ασ)α(ασ− L)p−α

(
B H

L−ασ
(p + 1,−α)− B L

L−ασ
(p + 1,−α)

)

( ασ
ασ+H−L

)α − 1

(15.11)

where B(., .) is the Euler Beta function, B(a, b) = Γ(a)Γ(b)
Γ(a+b) =

∫ 1
0 ta−1(1− t)b−1 dt.

We end up with r(H, α), the ratio of the mean of the soft truncated to that of the
truncated Pareto.

r(H, α) =e−
α
H

( α

H

)α ( α

α + H

)−α
(

α + H
α

)−α

(
−
(

α+H
α

)α
+ H + 1

)

(α− 1)
(( α

H
)α −

(
α+H

H

)α)
Eα
( α

H
)

(15.12)

where Eα
( α

H
)

is the exponential integral eαz =
∫ ∞

1
et(−α)

tn dt.

15.5 applications
Operational risk The losses for a firm are bounded by the capitalization, with
well-known maximum losses.

Capped reinsurance contracts Reinsurance contracts almost always have caps
(i.e., a maximum claim); but a reinsurer can have many such contracts on the same
source of risk and the addition of the contract pushes the upper bound in such a
way as to cause larger potential cumulative harm.

Violence While wars are extremely fat-tailed, the maximum effect from any such
event cannot exceed the world’s population.

Credit risk A loan has a finite maximum loss, in a way similar to reinsurance
contracts.

City size While cities have been shown to be Zipf distributed, the size of a given
city cannot exceed that of the world’s population.
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Figure 15.3: Ratio of the expectation of smooth transformation to truncated.

Environmental harm While these variables are exceedingly fat-tailed, the risk is
confined by the size of the planet (or the continent on which they take place) as a
firm upper bound.

Complex networks The number of connections is finite.

Company size The sales of a company is bound by the GDP.

Earthquakes The maximum harm from an earthquake is bound by the energy.

Hydrology The maximum level of a flood can be determined.





16 O N T H E TA I L R I S K O F V I O L E N T
C O N F L I C T ( W I T H P. C I R I L LO ) ‡

W
e examine all possible statistical pictures of violent conflicts

over common era history with a focus on dealing with incom-
pleteness and unreliability of data. We apply methods from
extreme value theory on log-transformed data to remove com-
pact support, then, owing to the boundedness of maximum

casualties, retransform the data and derive expected means. We find the es-
timated mean likely to be at least three times larger than the sample mean,
meaning severe underestimation of the severity of conflicts from naive obser-
vation. We check for robustness by sampling between high and low estimates
and jackknifing the data. We study inter-arrival times between tail events and
find (first-order) memorylessless of events. The statistical pictures obtained
are at variance with the claims about "long peace".

16.1 introduction/summary
This study is as much about new statistical methodologies with thick tailed (and
unreliable data), as well as bounded random variables with local Power Law be-
havior, as it is about the properties of violence.2

Violence is much more severe than it seems from conventional analyses and the
prevailing "long peace" theory which claims that violence has declined. Adapting
methods from extreme value theory, and adjusting for errors in reporting of con-
flicts and historical estimates of casualties, we look at the various statistical pictures
of violent conflicts, with focus for the parametrization on those with more than 50k

Research chapter.
2 Acknowledgments: Captain Mark Weisenborn engaged in the thankless and gruesome task of compiling

the data, checking across sources and linking each conflict to a narrative on Wikipedia (see Appendix 1).
We also benefited from generous help on social networks where we put data for scrutiny, as well as advice
from historians thanked in the same appendix. We also thank the late Benoit Mandelbrot for insights on
the tail properties of wars and conflicts, as well as Yaneer Bar-Yam, Raphael Douady...
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Figure 16.1: Values of the
tail exponent α from Hill
estimator obtained across
100,000 different rescaled
casualty numbers uniformly
selected between low and
high estimates of conflict.
The exponent is slightly (but
not meaningfully) different
from the Maximum Likeli-
hood for all data as we focus
on top 100 deviations.

Figure 16.2: Q-Q plot of
the rescaled data in the near-
tail plotted against a Pareto
II-Lomax Style distribution.

Figure 16.3: Death toll
from "named conflicts"
over time. Conflicts lasting
more than 25 years are
disaggregated into two or
more conflicts, each one
lasting 25 years.

victims (in equivalent ratio of today’s population, which would correspond to ≈
5k in the 18th C.). Contrary to current discussions, all statistical pictures thus ob-
tained show that 1) the risk of violent conflict has not been decreasing, but is rather
underestimated by techniques relying on naive year-on-year changes in the mean,
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Figure 16.4: Rescaled death
toll of armed conflict and
regimes over time. Data
are rescaled w.r.t. today’s
world population. Conflicts
lasting more than 25 years
are disaggregated into two
or more conflicts, each one
lasting 25 years.
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Figure 16.5: Observed
"journalistic" mean com-
pared to MLE mean
(derived from rescaling
back the data to compact
support) for different values
of α (hence for permutations
of the pair (σα , α)). The
"range of α is the one we
get from possible variations
of the data from bootstrap
and reliability simulations.

or using sample mean as an estimator of the true mean of an extremely fat-tailed
phenomenon; 2) armed conflicts have memoryless inter-arrival times, thus incom-
patible with the idea of a time trend. Our analysis uses 1) raw data, as recorded
and estimated by historians; 2) a naive transformation, used by certain historians
and sociologists, which rescales past conflicts and casualties with respect to the ac-
tual population; 3) more importantly, a log transformation to account for the fact
that the number of casualties in a conflict cannot be larger than the world popula-
tion. (This is similar to the transformation of data into log-returns in mathematical
finance in order to use distributions with support on the real line.)

All in all, among the different classes of data (raw and rescaled), we observe
that 1) casualties are Power Law distributed.3 In the case of log-rescaled data we
observe .4 ≤ α ≤ .7, thus indicating an extremely fat-tailed phenomenon with an
undefined mean (a result that is robustly obtained); 2) the inter-arrival times of

3 Many earlier studies have found Paretianity in data, [? ],[38]. Our study, aside from the use of extreme
value techniques, reliability bootstraps, and compact support transformations, varies in both calibrations
and interpretation.
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conflicts above the 50k threshold follow a homogeneous Poisson process, indicat-
ing no particular trend, and therefore contradicting a popular narrative about the
decline of violence; 3) the true mean to be expected in the future, and the most
compatible with the data, though highly stochastic, is ≈ 3× higher than past mean.

Further, we explain: 1) how the mean (in terms of expected casualties) is severely
underestimated by conventional data analyses as the observed mean is not an esti-
mator of true mean (unlike the tail exponent that provides a picture with smaller
noise); 2) how misconceptions arise from the deceiving lengthy (and volatile) inter-
arrival times between large conflicts.

To remedy the inaccuracies of historical numerical assessments, we provide a
standard bootstrap analysis of our estimates, in addition to Monte Carlo checks
for unreliability of wars and absence of events from currently recorded history.

16.2 summary statistical discussion

16.2.1 Results

Paretian tails Peak-Over-Threshold methods show (both raw and rescaled vari-
ables) exhibit strong Paretiantail behavior, with survival probability P(X > x) =
λ(x)x−α, where λ : [L, +∞) → (0, +∞) is a slowly varying function, defined as
limx→+∞

λ(kx)
λ(x) = 1 for any k > 0.

We parametrize G(.), a Generalized Pareto Distribution (GPD) , see Table 16.4,
G(x) = 1− (1 + ξy/β)−1/ξ , with ξ ≈ 1.88,±.14 for rescaled data which corresponds
to a tail α = 1

ξ = .53,±.04.

Memorylessness of onset of conflicts Tables 16.2 and 16.3 show inter-arrival
times, meaning one can wait more than a hundred years for an event such as
WWII without changing one’s expectation. There is no visible autocorrelation, no
statistically detectable temporal structure (i.e. we cannot see the imprint of a self-
exciting process), see Figure 16.8.

Full distribution(s) Rescaled data fits a Lomax-Style distribution with same
tail as obtained by POT, with strong goodness of fit. For events with casualties
> L = 10K, 25K, 50K, etc. we fit different Pareto II (Lomax) distributions with
corresponding tail α (fit from GPD), with scale σ = 84, 360, i.e., with density
α( −L+σ+x

σ )
−α−1

σ , x ≥ L.

We also consider a wider array of statistical "pictures" from pairs α, σα across
the data from potential alternative values of α, with recalibration of maximum
likelihood σ, see Figure 16.5.

Difference between sample mean and maximum likelihood mean : Table 16.1
shows the true mean using the parametrization of the Pareto distribution above
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and inverting the transformation back to compact support. "True" or maximum
likelihood, or "statistical" mean is between 3 and 4 times observed mean.

This means the "journalistic" observation of the mean, aside from the conceptual
mistake of relying on sample mean, underestimates the true mean by at least 3
times and higher future observations would not allow the conlusion that violence
has "risen".

Table 16.1: Sample means and estimated maximum likelihood mean across minimum values L –
Rescaled data.

L Sample Mean ML Mean Ratio
10K 9.079× 106 3.11× 107 3.43
25K 9.82× 106 3.62× 107 3.69
50K 1.12× 107 4.11× 107 3.67

100K 1.34× 107 4.74× 107 3.53
200K 1.66× 107 6.31× 107 3.79
500K 2.48× 107 8.26× 107 3.31

16.2.2 Conclusion

History as seen from tail analysis is far more risky, and conflicts far more violent
than acknowledged by naive observation of behavior of averages in historical time
series.

Table 16.2: Average inter-arrival times and their mean absolute deviation for events with more than
1, 2, 5 and 10 million casualties, using actual estimates.

Threshold Average MAD
1 26.71 31.66
2 42.19 47.31
5 57.74 68.60
10 101.58 144.47

Table 16.3: Average inter-arrival times and their mean absolute deviation for events with more than
1, 2, 5, 10, 20, and 50 million casualties, using rescaled amounts.

Threshold Average MAD
1 11.27 12.59
2 16.84 18.13
5 26.31 27.29
10 37.39 41.30
20 48.47 52.14
50 67.88 78.57
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Table 16.4: Estimates (and standard errors) of the Generalized Pareto Distribution parameters for
casualties over a 50k threshold. For both actual and rescaled casualties, we also provide the number of
events lying above the threshold (the total number of events in our data is 99).

Data Nr. Excesses ξ β
Raw Data 307 1.5886 3.6254

(0.1467) (0.8191)
Naive Rescaling 524 1.8718 14.3254

(0.1259) (2.1111)
Log-rescaling 524 1.8717 14.3261

(0.1277) (2.1422)

16.3 methodological discussion

16.3.1 Rescaling Method

We remove the compact support to be able to use power laws as follows (see earlier
chapters). Using Xt as the r.v. for number of incidences from conflict at times t,
consider first a naive rescaling of X′t = Xt

Ht
, where Ht is the total human population

at period t. See appendix for methods of estimation of Ht.

Next, with today’s maximum population H and L the naively rescaled minimum
for our definition of conflict, we introduce a smooth rescaling function ϕ : [L, H]→
[L, ∞) satisfying:

i ϕ is "smooth": ϕ ∈ C∞,

ii ϕ−1(∞) = H,

iii ϕ−1(L) = ϕ(L) = L.

In particular, we choose:

ϕ(x) = L− H log
(

H − x
H − L

)
. (16.1)

We can perform appropriate analytics on xr = ϕ(x) given that it is unbounded,
and properly fit Power Law exponents. Then we can rescale back for the properties
of X. Also notice that the ϕ(x) ≈ x for very large values of H. This means that for
a very large upper bound, the results we will get for x and ϕ(x) will be essentially
the same. The big difference is only from a philosophical/methodological point of
view, in the sense that we remove the upper bound (unlikely to be reached).

In what follows we will use the naively rescaled casualties as input for the ϕ(·)
function.

We pick H = Pt0 for the exercise.

The distribution of x can be rederived as follows from the distribution of xr:
∫ ∞

L
f (xr) dxr =

∫ ϕ−1(∞)

L
g(x) dx, (16.2)
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where ϕ−1(u) = (L− H)e
L−u

H + H

In this case, from the Pareto-Lomax selected:

f (xr) =
α
(
−L+σ+xr

σ

)−α−1

σ
, xr ∈ [L, ∞) (16.3)

g(x) =
αH

(
σ−H log( H−x

H−L )
σ

)−α−1

σ(H − x)
, x ∈ [L, H],

which verifies
∫ H

L x g(x) dx = 1. Hence the expectation

Eg(x; L, H, σ, α) =
∫ H

L
x g(x) dx, (16.4)

Eg(X; L, H, σ, α) = αH

(
1
α
−

(H − L)eσ/H Eα+1
( σ

H
)

H

)
(16.5)

where E.(.) is the exponential integral Enz =
∫ ∞

1
et(−z)

tn dt.

Note that we rely on the invariance property:

Remark 16

If θ̂ is the maximum likelihood estimator (MLE) of θ, then for an absolutely contin-
uous function φ, φ(θ̂) is the MLE estimator of φ(θ).

For further details see [211].

16.3.2 Expectation by Conditioning (less rigorous)

We would be replacing a smooth function in C∞ by a Heaviside step function, that
is the indicator function 1 : R→ {0, 1}, written as 1X∈[L,H]:

E(1X∈[L,H]) =
∫ H

L x f (x) dx
∫ H

L f (x) dx

which for the Pareto Lomax becomes:

E(1X∈[L,H]) =
ασα(H−L)

σα−(H−L+σ)α + (α− 1)L + σ

α− 1
(16.6)
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16.3.3 Reliability of Data and Effect on Tail Estimates

Data from violence is largely anecdotal, spreading via citations, often based on
some vague estimate, without anyone’s ability to verify the assessments using
period sources. An event that took place in the seventh century, such as the an
Lushan rebellion, is "estimated" to have killed 26 million people, with no precise
or reliable methodology to allow us to trust the number. The independence war
of Algeria has various estimates, some from France, others from the rebels, and
nothing scientifically or professionally obtained.

As said earlier, in this chapter, we use different data: raw data, naively rescaled
data w.r.t. the current world population, and log-rescaled data to avoid the theo-
retical problem of the upper bound.

For some observations, together with the estimated number of casualties, as re-
sulting from historical sources, we also have a lower and upper bound available.
Let Xt be the number of casualties in a given conflict at time t. In principle, we can
define triplets like

• {Xt , Xl
t , Xu

t } for the actual estimates (raw data), where Xl
t and Xu

t represent
the lower and upper bound, if available.

• {Yt = Xt
P20015

Pt
, Yl

t = Xl
t

P20015
Pt

, Yu
t = Xu

t
P20015

Pt
} for the naively rescaled data,

where P2015 is the world population in 2015 and Pt is the population at time
t = 1, ..., 2014.

• {Zt = ϕ(Yt), Zl
t = ϕ(Yl

t ), Zu
t = ϕ(Yu

t )} for the log-rescaled data.

To prevent possible criticism about the use of middle estimates, when bounds are
present, we have decided to use the following Monte Carlo procedure (for more
details [201]), obtaining no significant different in the estimates of all the quantities
of interest (like the tail exponent α = 1/ξ):

1. For each event X for which bounds are present, we have assumed casualties
to be uniformly distributed between the lower and the upper bound, i.e.
X ∼ U(Xl , Xu). The choice of the uniform distribution is to keep things
simple. All other bounded distributions would in fact generate the same
results in the limit, thanks to the central limit theorem.

2. We have then generated a large number of Monte Carlo replications, and in
each replication we have assigned a random value to each event X according
to U(Xl , Xu).

3. For each replication we have computed the statistics of interest, typically the
tail exponent, obtaining values that we have later averaged.

This procedure has shown that the precision of estimates does not affect the tail
of the distribution of casualties, as the tail exponent is rather stable.

For those events for which no bound is given, the options were to use them as
they are, or to perturb them by creating fictitious bounds around them (and then
treat them as the other bounded ones in the Monte Carlo replications). We have
chosen the second approach.

The above also applies to Yt and Zt.
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Note that the tail α derived from an average is different from an average alpha
across different estimates, which is the reason we perform the various analyses
across estimates.

Technical comment These simulations are largely looking for a "stochastic al-
pha" bias from errors and unreliability of data (Chapter 18). With a sample size
of n, a parameter θ̂m will be the average parameter obtained across a large num-
ber of Monte Carlo runs. Let Xi be a given Monte Carlo simulated vector in-
dexed by i and Xµ is the middle estimate between high and low bounds. Since,
with 1

m ∑≤m‖Xj‖1= ‖Xµ‖1 across Monte Carlo runs but ∀j , ‖Xj‖1 ,= ‖Xµ‖1, θ̂m =
1
m ∑≤m θ̂(Xj) ,= θ̂(Xµ). For instance, consider the maximum likelihood estimation

of a Paretian tail, α̂(Xi) ! n
(
∑1≤i≤n log

( xi
L
))−1. With ∆ ≥ xm, define

α̂(Xi < ∆) ! 1
2



 n

∑n
i=1 log

( xi
L
)
− log

(
∆
L

) +
n

∑n
i=1 log

( xi
L
)

+ log
(

∆
L

)





which, owing to the concavity of the logarithmic function, gives the inequality

∀∆ ≥ xm , α̂(Xi < ∆) ≥ α̂(Xi).

16.3.4 Definition of An "Event"

"Named" conflicts are an arbitrary designation that, often, does not make sense
statistically: a conflict can have two or more names; two or more conflicts can have
the same name, and we found no satisfactory hierarchy between war and conflict.
For uniformity, we treat events as the shorter of event or its disaggregation into
units with a maximum duration of 25 years each. Accordingly, we treat Mongolian
wars, which lasted more than a century and a quarter, as more than a single event.
It makes little sense otherwise as it would be the equivalent of treating the period
from the Franco-Prussian war to WW II as "German(ic) wars", rather than multiple
events because these wars had individual names in contemporary sources. Effec-
tively the main sources such as the Encyclopedia of War [189] list numerous conflicts
in place of "Mongol Invasions" –the more sophisticated the historians in a given
area, the more likely they are to break conflicts into different "named" events and,
depending on historians, Mongolian wars range between 12 and 55 conflicts.

What controversy about the definition of a "name" can be, once again, solved
by bootstrapping. Our conclusion, incidentally, is invariant to the bundling or
unbundling of the Mongolian wars.

Further, in the absence of a clearly defined protocol in historical studies, it has
been hard to disentangle direct death from wars and those from less direct effects
on populations (say blocades, famine). For instance the First Jewish War has con-
fused historians as an estimated 30K death came from the war, and a considerably
higher (between 350K and the number 1M according to Josephus) from the famine
or civilian casualties.
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16.3.5 Missing Events

We can assume that there are numerous wars that are not part of our sample, even
if we doubt that such events are in the "tails" of the distribution, given that large
conflicts are more likely to be reported by historians. Further, we also assume that
their occurrence is random across the data (in the sense that they do not have an
effect on clustering).

But we are aware of a bias from differential in both accuracy and reporting across
time: events are more likely to be recorded in modern times than in the past.
Raising the minimum value L the number of such "missed" events and their impact
are likely to drop rapidly. Indeed, as a robustness check, raising the bar to a
minimum L = 500K does not change our analysis.

A simple jackknife procedure, performed by randomly removing a proportion
of events from the sample and repeating analyses, shows us the dependence of
our analysis on missing events, dependence that we have found to be insignificant,
when focusing on the tail of the distribution of casualties. In other words, given
that we are dealing with extremes, if removing 30% of events and checking the
effects on parameters produce no divergence from initial results, then we do not
need to worry of having missed 30% of events, as missing events are not likely to
cause thinning of the tails.4

16.3.6 Survivorship Bias

We did not take into account of the survivorship biases in the analysis, assum-
ing it to be negligible before 1960, as the probability of a conflict affecting all of
mankind was negligible. Such probability (and risk) became considerably higher
since, especially because of nuclear and other mass destruction weapons.

16.4 data analysis
Figures 16.3 and 16.4 graphically represent our data: the number of casualties
over time. Figure 16.3 refers to the estimated actual number of victims, while
Figure 16.4 shows the rescaled amounts, obtained by rescaling the past observation
with respect to the world population in 2015 (around 7.2 billion people)5. Figures
16.3 might suggest an increase in the death toll of armed conflicts over time, thus
supporting the idea that war violence has increased. Figure 16.4, conversely, seems
to suggest a decrease in the (rescaled) number of victims, especially in the last
hundred years, and possibly in violence as well. In what follows we show that
both interpretations are surely naive, because they do not take into consideration
the fact that we are dealing with extreme events.

4 The opposite is not true, which is at the core of the Black Swan asymmetry: such procedure does not rem-
edy the missing of tail, "Black Swan" events from the record. A single "Black Swan" event can considerably
fatten the tail. In this case the tail is fat enough and no missing information seems able to make it thinner.

5 Notice that, in equation (16.1), for H = 7.2 billion, ϕ(x) ≈ x. Therefore Figure 16.4 is also representative
for log-rescaled data.
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16.4.1 Peaks over Threshold

Given the fat-tailed nature of the data, which can be easily observed with some ba-
sic graphical tools like histograms on the logs and QQplots (Figure 16.6 shows the
QQplot of actual casualties against an exponential distribution: the clear concav-
ity is a signal of fat-tailed distribution), it seems appropriate to use a well-known
method of extreme value theory to model war casualties over time: the Peaks-over-
Threshold or POT [184].

According to the POT method, excesses of an i.i.d. sequence over a high thresh-
old u (that we have to identify) occur at the times of a homogeneous Poisson
process, while the excesses themselves can be modeled with a Generalized Pareto
Distribution (GPD). Arrival times and excesses are assumed to be independent of
each other.

In our case, assuming the independence of the war events does not seem a strong
assumption, given the time and space separation among them. Regarding the other
assumptions, on the contrary, we have to check them.

We start by identifying the threshold u above which the GPD approximation may
hold. Different heuristic tools can be used for this purpose, from Zipf plot to mean
excess function plots, where one looks for the linearity which is typical of fat-tailed
phenomena [44, 82]. Figure 16.7 shows the mean excess function plot for actual
casualties6: an upward trend is clearly present, already starting with a threshold
equal to 5k victims. For the goodness of fit, it might be appropriate to choose a
slightly larger threshold, like u = 50k7.

Figure 16.6: QQplot of actual casualties against standard exponential quantile. The concave curvature
of data points is a clear signal of heavy tails.

6 Similar results hold for the rescaled amounts (naive and log). For the sake of brevity we always show
plots for one of the two variables, unless a major difference is observed.

7 This idea has also been supported by subsequent goodness-of-fit tests.
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Figure 16.7: Mean excess function plot (MEPLOT) for actual casualties. An upward trend - almost
linear in the first part of the graph - is present, suggesting the presence of a fat right tail. The variability
of the mean excess function for higher thresholds is due to the small number of observation exceeding
those thresholds and should not be taken into consideration.

16.4.2 Gaps in Series and Autocorrelation

To check whether events over time occur according to a homogeneous Poisson
process, a basic assumption of the POT method, we can look at the distribution
of the inter-arrival times or gaps, which should be exponential. Gaps should also
show no autocorrelation.

Figure 16.8: ACF plot of gaps for actual casualties, no significant autocorrelation is visible.

Figure 16.8 clearly shows the absence of autocorrelation. The plausibility of an
exponential distribution for the inter-arrival times can be positively checked using
both heuristic and analytic tools. Here we omit the positive results for brevity.
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However, in order to provide some extra useful information, in Tables 16.2 and
16.3 we provide some basic statistics about the inter-arrival times for very catas-
trophic events in terms of casualties8. The simple evidence there contained should
already be sufficient to underline how unreliable can be the statement that war
violence has been decreasing over time. For an events with more than 10 million
victims, if we refer to actual estimates, the average time delay is 101.58 years, with
a mean absolute deviation of 144.47 years9. This means that it is totally plausible
that in the last few years we have not observed such a large event. It could simply
happen tomorrow or some time in the future. This also means that every trend
extrapolation makes no great sense for this type of extreme events. Finally, we
have to consider that an event as large as WW2 happened only once in 2014 years,
if we deal with actual casualties (for rescaled casualties we can consider the An
Lushan rebellion); in this case the possible waiting time is even longer.

16.4.3 Tail Analysis

Given that the POT assumptions about the Poisson process seem to be confirmed
by data, it is finally the time to fit a Generalized Pareto Distribution to the ex-
ceedances.

Consider a random variable X with df F, and call Fu the conditional df of X above
a given threshold u. We can then define a r.v. Y, representing the rescaled excesses
of X over the threshold u, getting [184]

Fu(y) = P(X− u ≤ y|X > u) =
F(u + y)− F(u)

1− F(u)

for 0 ≤ y ≤ xF − u, where xF is the right endpoint of the underlying distribution
F. Pickands [190], Balkema and de Haan [8], [9] and [10] showed that for a large
class of underlying distribution functions F (following in the so-called domain of
attraction of the GEV distribution [184]), and a large u, Fu can be approximated by
a Generalized Pareto distribution: Fu(y)→ G(y), as u→ ∞ where

G(y) =

{
1− (1 + ξy/β)−1/ξ i f ξ ,= 0
1− e−y/β i f ξ = 0.

. (16.7)

It can be shown that the GPD distribution is a distribution interpolating between
the exponential distribution (for ξ = 0) and a class of Pareto distributions. We refer
to [184] for more details.

The parameters in (16.7) can be estimated using methods like maximum likeli-
hood or probability weighted moments [184]. The goodness of fit can then be
tested using bootstrap-based tests [262].

8 Table 16.2 does not show the average delay for events with 20M (50M) or more casualties. This is due to
the limited amount of these observations in actual, non-rescaled data. In particular, all the events with
more than 20 million victims have occurred during the last 150 years, and the average inter-arrival time is
below 20 years. Are we really living in more peaceful world?

9 In case of rescaled amounts, inter-arrival times are shorter, but the interpretation is the same.
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Table 16.4 contains our mle estimates for actual and rescaled casualties above a
50k victims threshold. This threshold is in fact the one providing the best com-
promise between goodness of fit and a sufficient number of observation, so that
standard errors are reliable. The actual and both the rescaled data show two differ-
ent sets of estimates, but their interpretation is strongly consistent. For this reason
we just focus on actual casualties for the discussion.

The parameter ξ is the most important for us: it is the parameter governing the
fatness of the right tail. A ξ greater than 1 (we have 1.5886) signifies that no mo-
ment is defined for our Generalized Pareto: a very fat-tailed situation. Naturally,
in the sample, we can compute all the moments we are interested in, but from a
theoretical point of view they are completely unreliable and their interpretation
is extremely flawed (a very common error though). According to our fitting, very
catastrophic events are not at all improbable. It is worth noticing that the estimates
is significant, given that its standard error is 0.1467.

Figures 16.9 and 16.10 compare our fittings to actual data. In both figures it
is possible to see the goodness of the GPD fitting for most of the observations
above the 50k victims threshold. Some problems arise for the very large events,
like WW2 and the An Lushan rebellion 10. In this case it appears that our fitting
expects larger events to have happened. This is a well-known problem for extreme
data [184]. The very large event could just be behind the corner.

Similarly, events with 5 to 10 million victims (not at all minor ones!) seem to be
slightly more frequent than what is expected by our GPD fitting. This is another
signal of the extreme character of war casualties, which does not allow for the
extrapolation of simplistic trends.

Figure 16.9: GPD tail fitting to actual casualties’ data (in 10k). Parameters as per Table 16.4, first
line.

10 If we remove the two largest events from the data, the GPD hypothesis cannot be rejected at the 5%
significance level.
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Figure 16.10: GPD cumulative distribution fitting to actual casualties’ data (in 10k). Parameters as
per Table 16.4, first line.

16.4.4 An Alternative View on Maxima

Another method is the block-maxima approach of extreme value theory. In this
approach data are divided into blocks, and within each block only the maximum
value is taken into consideration. The Fisher-Tippet theorem [184] then guarantees
that the normalized maxima converge in distribution to a Generalized Extreme
Value Distribution, or GEV.

GEV(x; ξ) =





exp

(
−(1 + ξx)−

1
ξ

)
ξ ,= 0

exp (− exp(−x)) ξ = 0
, 1 + ξx > 0

This distribution is naturally related to the GPD, and we refer to [184] for more
details.

If we divide our data into 100-year blocks, we obtain 21 observation (the last
block is the residual one from 2001 to 2014). Maximum likelihood estimations
give a ξ larger than 2, indicating that we are in the so-called Fréchet maximum
domain of attraction, compatible with very heavy-tailed phenomena. A value of ξ
greater than 2 under the GEV distribution further confirms the idea of the absence
of moments, a clear signal of a very heavy right tail.

16.4.5 Full Data Analysis

Naturally, being aware of limitations, we can try to fit all our data, while for ca-
sualties in excess of 10000, we fit the Pareto Distribution from Equation 16.3 with
α ≈ 0.53 throughout. The goodness of fit for the "near tail" (L=10K) can be see
in Figure 16.2. Similar results to Figure 16.2 are seen for different values in table
below, all with the same goodness of fit.



312 on the tail risk of violent conflict (with p . cirillo)‡

L σ
10K 84, 260
25K 899, 953
50K 116, 794
100K 172, 733
200K 232, 358
500K 598, 292

The different possible values of the mean in Equation 16.4 can be calculated across
different set values of α, with one single degree of freedom: the corresponding σ is
a MLE estimate using such α as fixed: for a sample size n, and xi the observations
higher than L, σα =

{
σ : αn

σ − (α + 1) ∑n
i=1

1
xi−L+σ = 0, σ > 0

}
.

The sample average for L = 10K is 9.12× 106, across 100K simulations, with the
spread in values showed in Figure 16.15.

The "true" mean from Equation 16.4 yields 3.1 ∗ 107 , and we repeated for L =10K,
20K, 50K, 100K, 200K, and 500K, finding ratios of true estimated mean to observed
safely between 3 and 4., see Table 16.1. Notice that this value for the mean of
≈ 3.5 times the observed sample mean is only a general guideline, since, being
stochastic, does not reveal any precise information other than prevent us from
taking the naive mean estimation seriously.

For under fat tails, the mean derived from estimates of α is more rigorous and
has a smaller error, since the estimate of α is asymptotically Gaussian while the
average of a power law, even when it exists, is considerably more stochastic. See
the discussion on "slowness of the law of large numbers" in 8 in connection with
the point.

We get the mean by truncation for L=10K a bit lower, under equation 16.6; around
1.8835× 107.

We finally note that, for values of L considered, 96 % of conflicts with more than
10,000 victims are below the mean: where m is the mean,

P(X < m) = 1−



1−
H log

(
αeσ/H Eα+1

( σ
H
))

σ




−α

.

16.5 additional robustness and reliability tests

16.5.1 Bootstrap for the GPD

In order to check our sensitivity to the quality/precision of our data, we have de-
cided to perform some bootstrap analysis. For both raw data and the rescaled ones
we have generated 100K new samples by randomly selecting 90% of the observa-
tions, with replacement. Figures 16.11, 16.12 and 16.13 show the stability of our ξ
estimates. In particular ξ > 0 in all samples, indicating the extreme fat-tailedness
of the number of victims in armed conflicts. The ξ estimates in Table 16.4 appear
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to be good approximations for our GPD real shape parameters, notwithstanding
imprecisions and missing observations in the data.

Raw data: 100k bootstrap samples
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Figure 16.11: ξ parameter’s
distribution over 100K boot-
strap samples for actual
data. Each sample is ran-
domly selected with replace-
ment using 90% of the orig-
inal observations.

Naively rescaled data: 100k bootstrap samples
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Figure 16.12: ξ parameter’s
distribution over 100K boot-
strap samples for naively
rescaled data. Each sample
is randomly selected with re-
placement using 90% of the
original observations.

Log−rescaled data: 100k bootstrap samples
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Figure 16.13: ξ parame-
ter’s distribution over 100K
bootstrap samples for log-
rescaled data. Each sample
is randomly selected with
replacement using 90% of
the original observations.

16.5.2 Perturbation Across Bounds of Estimates

We performed analyses for the "near tail" using the Monte Carlo techniques dis-
cussed in section 16.3.3. We look at second order "p-values", that is the sensitivity
of the p-values across different estimates in Figure 16.14 –practically all results
meet the same statistical significance and goodness of fit.

In addition, we look at values of both the sample means and the alpha-derived
MLE mean across permutations, see Figures 16.15 and 16.16.
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Figure 16.14: P-Values of
Pareto-Lomax across 100K
combinations. This is not to
ascertain the p-value, rather
to check the robustness by
looking at the variations
across permutations of esti-
mates.
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Figure 16.15: Rescaled sam-
ple mean across 100K esti-
mates between high-low.
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Figure 16.16: Rescaled
MLE mean across 100K
estimates between high-low.

16.6 conclusion: is the world more unsafe than it seems?
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Figure 16.17: Loglogplot
comparison of f and
g, showing a pasting-
boundary style capping
around H.

To put our conclusion in the simplest of terms: the occurrence of events that
would raise the average violence by a multiple of 3 would not cause us to
rewrite this chapter, nor to change the parameters calibrated within.

• Indeed, from statistical analysis alone, the world is more unsafe than casually
examined numbers. Violence is underestimated by journalistic nonstatistical
looks at the mean and lack of understanding of the stochasticity of under
inter-arrival times.

• The transformation into compact support allowed us to perform the analyses
and gauge such underestimation which , if noisy, gives us an idea of the
underestimation and its bounds.

• In other words, a large event and even a rise in observed mean violence
would not be inconsistent with statistical properties, meaning it would justify
a "nothing has changed" reaction.

• We avoided discussions of homicide since we limited L to values > 10, 000,
but its rate doesn’t appear to have a particular bearing on the tails. It could
be a drop in the bucket. It obeys different dynamics. We may have observed
lower rate of homicide in societies but most risks of death come from violent
conflict. (Casualties from homicide by rescaling from the rate 70 per 100k,
gets us 5.04 × 106 casualties per annum at today’s population. A drop to
minimum levels stays below the difference between errors on the mean of
violence from conflicts with higher than 10,000 casualties.)

• We ignored survivorship bias in the data analysis (that is, the fact that had
the world been more violent, we wouldn’t be here to talk about it). Adding it would
increase the risk. The presence of tail effects today makes further analysis
require taking it into account. Since 1960, a single conflict –which almost
happened– has the ability to reach the max casualties, something we did not
have before. (We can rewrite the model with one of fragmentation of the
world, constituted of "separate" isolated n independent random variables Xi,
each with a maximum value Hi, with the total ∑n ωi Hi = H, with all wi > 0,
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∑n ωi = 1. In that case the maximum (that is worst conflict) could require
the joint probabilities that all X1, X2, · · · Xn are near their maximum value,
which, under subexponentiality, is an event of much lower probability than
having a single variable reach its maximum.)11

16.7 acknowledgments
The data was compiled by Captain Mark Weisenborn. We thank Ben Kiernan for
comments on East Asian conflicts.

11 How long do we have to wait before making a scientific pronouncement about the drop in the incidence
of wars of a certain magnitude? Simply, because inter-arrival time follows a memoryless exponential
distribution, roughly the survival function of a deviation of three times the mean is e−3 ≈ .05. It means
wait for three times as long as the mean inter-arrival times before saying something scientific. For large
wars such as WW1 and WW2, wait 300 years. It is what it is.
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T
his is from an article that is part of the debate with public in-

tellectuals who claim that violence have dropped "from data",
without realizing that science is hard; significance requires fur-
ther data under fat tails and more careful examination. Our
response (by the author and P. Cirillo) provides a way to sum-

marize the main problem with naive empiricism under fat tails.

In a recent issue of Significance Mr. Peter McIntyre asked what the chances are
that World War III will occur this century. Prof. Michael Spagat wrote that nobody
knows, nobody can really answer–and we totally agree with him on this. Then he
adds that "a really huge war is possible but, in my view, extremely unlikely." To
support his statement, Prof. Spagat relies partly on the popular science work of
Prof. Steven Pinker, expressed in The Better Angels of our Nature and journalistic
venues. Prof. Pinker claims that the world has experienced a long-term decline in
violence, suggesting a structural change in the level of belligerence of humanity.

It is unfortunate that Prof. Spagat, in his answer, refers to our paper (this volume,
Chapter 16 ), which is part of a more ambitious project we are working on related
to fat-tailed variables.

What characterizes fat tailed variables? They have their properties (such as the
mean) dominated by extreme events, those "in the tails". The most popularly
known version is the "Pareto 80/20".

We show that, simply, data do not support the idea of a structural change in
human belligerence. So Prof. Spagat’s first error is to misread our claim: we
are making neither pessimistic nor optimistic declarations: we just believe that
statisticians should abide by the foundations of statistical theory and avoid telling
data what to say.

Let us go back to first principles.

Discussion chapter.

317
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Figure G.1: After Napoleon, there was a lull in Europe. Until nationalism came to change the story.

Foundational Principles

Fundamentally, statistics is about ensuring people do not build scientific theories
from hot air, that is without significant departure from random. Otherwise, it is
patently "fooled by randomness".

Further, for fat tailed variables, the conventional mechanism of the law of large
numbers is considerably slower and significance requires more data and longer
periods. Ironically, there are claims that can be done on little data: inference is
asymmetric under fat-tailed domains. We require more data to assert that there
are no Black Swans than to assert that there are Black Swans hence we would
need much more data to claim a drop in violence than to claim a rise in it.

Finally, statements that are not deemed statistically significant –and shown to be
so –should never be used to construct scientific theories.

These foundational principles are often missed because, typically, social scientists’
statistical training is limited to mechanistic tools from thin tailed domains [2]. In
physics, one can often claim evidence from small data sets, bypassing standard
statistical methodologies, simply because the variance for these variables is low.
The higher the variance, the more data one needs to make statistical claims. For
fat-tails, the variance is typically high and underestimated in past data.

The second –more serious –error Spagat and Pinker made is to believe that tail
events and the mean are somehow different animals, not realizing that the mean
includes these tail events.

For fat-tailed variables, the mean is almost entirely determined by extremes.
If you are uncertain about the tails, then you are uncertain about the mean.

It is thus incoherent to say that violence has dropped but maybe not the risk of tail
events; it would be like saying that someone is "extremely virtuous except during
the school shooting episode when he killed 30 students".
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Robustness

Our study tried to draw the most robust statistical picture of violence, relying on
methods from extreme value theory and statistical methods adapted to fat tails.
We also put robustness checks to deal with the imperfection of data collected some
thousand years ago: our results need to hold even if a third (or more) of the data
were wrong.

Inter-arrival times

We show that the inter-arrival times among major conflicts are extremely long, and
consistent with a homogenous Poisson process: therefore no specific trend can be
established: we as humans can not be deemed as less belligerent than usual. For
a conflict generating at least 10 million casualties, an event less bloody than WW1
or WW2, the waiting time is on average 136 years, with a mean absolute deviation
of 267 (or 52 years and 61 deviations for data rescaled to today’s population). The
seventy years of what is called the "Long Peace" are clearly not enough to state
much about the possibility of WW3 in the near future.

Underestimation of the mean

We also found that the average violence observed in the past underestimates the
true statistical average by at least half. Why? Consider that about 90-97% of the
observations fall below the mean, which requires some corrections with the help
of extreme value theory. (Under extreme fat tails, the statistical mean can be closer
to the past maximum observation than sample average.)

A common mistake

Similar mistakes have been made in the past. In 1860, one H.T. Buckle2 used the
same unstatistical reasoning as Pinker and Spagat.

That this barbarous pursuit is, in the progress of society, steadily de-
clining, must be evident, even to the most hasty reader of European
history. If we compare one country with another, we shall find that for
a very long period wars have been becoming less frequent; and now so
clearly is the movement marked, that, until the late commencement of
hostilities, we had remained at peace for nearly forty years: a circum-
stance unparalleled (...) The question arises, as to what share our moral
feelings have had in bringing about this great improvement.

Moral feelings or not, the century following Mr. Buckle’s prose turned out to be
the most murderous in human history.

2 Buckle, H.T. (1858) History of Civilization in England, Vol. 1, London: John W. Parker and Son.
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We conclude by saying that we find it fitting –and are honored –to expose fun-
damental statistical mistakes in a journal called Significance, as the problem is pre-
cisely about significance and conveying notions of statistical rigor to the general
public.
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U N C E RTA I N TY †

T
he Opposite of Central Limit: With the Central Limit Theorem, we

start with a specific distribution and end with a Gaussian. The
opposite is more likely to be true. Recall how we fattened the tail
of the Gaussian by stochasticizing the variance? Now let us use

the same metaprobability method, putting additional layers of uncertainty.

The Regress Argument (Error about Error) The main problem behind The Black
Swan is the limited understanding of model (or representation) error, and, for those
who get it, a lack of understanding of second order errors (about the methods used
to compute the errors) and by a regress argument, an inability to continuously
reapplying the thinking all the way to its limit ( particularly when one provides no
reason to stop). Again, there is no problem with stopping the recursion, provided
it is accepted as a declared a priori that escapes quantitative and statistical methods.

Epistemic not statistical re-derivation of power laws Note that previous deriva-
tions of power laws have been statistical (cumulative advantage, preferential attach-
ment, winner-take-all effects, criticality), and the properties derived by Yule, Man-
delbrot, Zipf, Simon, Bak, and others result from structural conditions or breaking
the independence assumptions in the sums of random variables allowing for the
application of the central limit theorem, [90] [212][100] [162] [161] . This work is
entirely epistemic, based on standard philosophical doubts and regress arguments.

Discussion chapter.
A version of this chapter was presented at Benoit Mandelbrot’s Scientific Memorial on April 29, 2011,in
New Haven, CT.
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17.1 methods and derivations

Figure 17.1: A version of
this chapter was presented
at Benoit Mandelbrot’s
memorial.

17.1.1 Layering Uncertainties

Take a standard probability distribution, say the Gaussian. The measure of dis-
persion, here σ, is estimated, and we need to attach some measure of dispersion
around it. The uncertainty about the rate of uncertainty, so to speak, or higher
order parameter, similar to what called the “volatility of volatility” in the lingo of
option operators (see Taleb, 1997, Derman, 1994, Dupire, 1994, Hull and White,
1997) –here it would be “uncertainty rate about the uncertainty rate”. And there is
no reason to stop there: we can keep nesting these uncertainties into higher orders,
with the uncertainty rate of the uncertainty rate of the uncertainty rate, and so
forth. There is no reason to have certainty anywhere in the process.
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17.1.2 Higher Order Integrals in the Standard Gaussian Case

We start with the case of a Gaussian and focus the uncertainty on the assumed
standard deviation. Define φ(µ,σ;x) as the Gaussian PDF for value x with mean µ
and standard deviation σ.

A 2ndorder stochastic standard deviation is the integral of φ across values of σ ∈
R+, under the PDF f (σ̄, σ1; σ) , with σ1 its scale parameter (our approach to trach
the error of the error), not necessarily its standard deviation; the expected value of
σ1 is σ1.

f (x)1 =
∫ ∞

0
φ(µ, σ, x) f (σ̄, σ1; σ) dσ

Generalizing to the Nth order, the density function f(x) becomes

f (x)N =
∫ ∞

0
...
∫ ∞

0
φ(µ, σ, x) f (σ̄, σ1, σ) f (σ1, σ2, σ1) . . .

f (σN−1, σN , σN−1)dσ dσ1 dσ2 ... dσN (17.1)

The problem is that this approach is parameter-heavy and requires the specifi-
cations of the subordinated distributions (in finance, the lognormal has been tra-
ditionally used for σ2 (or Gaussian for the ratio Log[ σ2

t
σ2 ] since the direct use of

a Gaussian allows for negative values). We would need to specify a measure f
for each layer of error rate. Instead this can be approximated by using the mean
deviation for σ, as we will see next.

Discretization using nested series of two-states for σ- a simple multiplicative pro-
cess

We saw in the last chapter a quite effective simplification to capture the convexity,
the ratio of (or difference between) φ(µ,σ,x) and

∫ ∞
0 φ(µ, σ, x) f (σ̄, σ1, σ) dσ (the

first order standard deviation) by using a weighted average of values of σ, say, for
a simple case of one-order stochastic volatility:

σ(1 ± a(1))

with 0 ≤ a(1) < 1, where a(1) is the proportional mean absolute deviation for σ, in
other word the measure of the absolute error rate for σ. We use 1

2 as the probability
of each state. Unlike the earlier situation we are not preserving the variance, rather
the STD. Thus the distribution using the first order stochastic standard deviation
can be expressed as:

f (x)1 =
1
2

(
φ(µ, σ (1 + a(1)), x) + φ(µ, σ(1− a(1)), x)

)
(17.2)

Now assume uncertainty about the error rate a(1), expressed by a(2), in the same
manner as before. Thus in place of a(1) we have 1

2 a(1)( 1± a(2)).
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Figure 17.2: Three levels of error rates for σ following a multiplicative process

The second order stochastic standard deviation:

f (x)2 =
1
4

(
φ

(
µ, σ(1 + a(1)(1 + a(2))), x

)
+

φ

(
µ, σ(1− a(1)(1 + a(2))), x) + φ(µ, σ(1 + a(1)(1− a(2)), x

)
+ φ
(

µ, σ(1− a(1)(1− a(2))), x
))

(17.3)

and the Nth order:

f (x)N =
1

2N

2N

∑
i=1

φ(µ, σMN
i , x)

where MN
i is the ith scalar (line) of the matrix MN (2N × 1

)
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MN =




N

∏
j=1

(a(j)Ti,j + 1)




2N

i=1

and Ti,j the element of ithline and jthcolumn of the matrix of the exhaustive com-
bination of n-Tuples of the set {−1, 1},that is the sequences of n length (1, 1, 1, ...)
representing all combinations of 1 and −1.

for N=3,

T =





1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1





and

M3 =





(1− a(1))(1− a(2))(1− a(3))
(1− a(1))(1− a(2))(a(3) + 1)
(1− a(1))(a(2) + 1)(1− a(3))
(1− a(1))(a(2) + 1)(a(3) + 1)
(a(1) + 1)(1− a(2))(1− a(3))
(a(1) + 1)(1− a(2))(a(3) + 1)
(a(1) + 1)(a(2) + 1)(1− a(3))
(a(1) + 1)(a(2) + 1)(a(3) + 1)





So M3
1 = {(1− a(1))(1− a(2))(1− a(3))}, etc.

Note that the various error rates a( i) are not similar to sampling errors, but
rather projection of error rates into the future. They are, to repeat, epistemic.

The Final Mixture Distribution The mixture weighted average distribution (re-
call that φ is the ordinary Gaussian PDF with mean µ, std σ for the random variable
x).

f (x|µ, σ, M, N) = 2−N
2N

∑
i=1

φ
(

µ, σMN
i , x

)

It could be approximated by a lognormal distribution for σ and the correspond-
ing V as its own variance. But it is precisely the V that interest us, and V depends
on how higher order errors behave.
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Figure 17.3: Thicker tails (higher peaks) for higher values of N; here N = 0, 5, 10, 25, 50, all values of
a= 1

10

Next let us consider the different regimes for higher order errors.

regime 1 (explosive): case of a constant parameter a
Special case of constant a: Assume that a(1)=a(2)=...a(N)=a, i.e. the case of flat

proportional error rate a. The Matrix M collapses into a conventional binomial
tree for the dispersion at the level N.

f (x|µ, σ, M, N) = 2−N
N

∑
j=0

(
N
j

)
φ
(

µ, σ(a + 1)j(1− a)N−j , x
)

(17.4)

Because of the linearity of the sums, when a is constant, we can use the binomial
distribution as weights for the moments (note again the artificial effect of constrain-
ing the first moment µ in the analysis to a set, certain, and known a priori).





Moment
1 µ

2 σ2 (a2 + 1
)N + µ2

3 3µσ2 (a2 + 1
)N + µ3

4 6µ2σ2 (a2 + 1
)N + µ4 + 3

(
a4 + 6a2 + 1

)N
σ4
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Note again the oddity that in spite of the explosive nature of higher moments,
the expectation of the absolute value of x is both independent of a and N, since

the perturbations of σ do not affect the first absolute moment =
√

2
π σ (that is, the

initial assumed σ). The situation would be different under addition of x.

Every recursion multiplies the variance of the process by (1 + a2 ). The process
is similar to a stochastic volatility model, with the standard deviation (not the
variance) following a lognormal distribution, the volatility of which grows with M,
hence will reach infinite variance at the limit.

Consequences

For a constant a > 0, and in the more general case with variable a where a(n) ≥
a(n-1), the moments explode.

A- Even the smallest value of a >0, since
(
1 + a2)N is unbounded, leads to the

second moment going to infinity (though not the first) when N→ ∞. So some-
thing as small as a .001% error rate will still lead to explosion of moments and
invalidation of the use of the class of L2 distributions.

B- In these conditions, we need to use power laws for epistemic reasons, or, at
least, distributions outside the L2 norm, regardless of observations of past data.

Note that we need an a priori reason (in the philosophical sense) to cutoff the N
somewhere, hence bound the expansion of the second moment.

Convergence to Properties Similar to Power Laws

We can see on the example next Log-Log plot (Figure 1) how, at higher or-
ders of stochastic volatility, with equally proportional stochastic coefficient, (where
a(1)=a(2)=...=a(N)= 1

10 ) how the density approaches that of a Power Law (just like
the Lognormal distribution at higher variance), as shown in flatter density on the
LogLog plot. The probabilities keep rising in the tails as we add layers of uncer-
tainty until they seem to reach the boundary of the power law, while ironically the
first moment remains invariant.

The same effect takes place as a increases towards 1, as at the limit the tail expo-
nent P>x approaches 1 but remains >1.

17.1.3 Effect on Small Probabilities

Next we measure the effect on the thickness of the tails. The obvious effect is the
rise of small probabilities.

Take the exceedant probability,that is, the probability of exceeding K, given N,
for parameter a constant:

P > K|N =
N

∑
j=0

2−N−1
(

N
j

)
erfc

(
K√

2σ(a + 1)j(1− a)N−j

)
(17.5)
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Figure 17.4: LogLog Plot of the probability of exceeding x showing power law-style flattening as N
rises. Here all values of a= 1/10

where erfc(.) is the complementary of the error function, 1-erf(.), erf(z) = 2√
π

∫ z
0 e−t2 dt

Convexity effect The next Table shows the ratio of exceedant probability under
different values of N divided by the probability in the case of a standard Gaussian.

Table 17.1: Case of a = 1
10

N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 1.01724 1.155 7
10 1.0345 1.326 45
15 1.05178 1.514 221
20 1.06908 1.720 922
25 1.0864 1.943 3347

Table 17.2: Case of a = 1
100

N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 2.74 146 1.09× 1012

10 4.43 805 8.99× 1015

15 5.98 1980 2.21× 1017

20 7.38 3529 1.20× 1018

25 8.64 5321 3.62× 1018
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17.2 regime 2: cases of decaying parameters a( n)
As we said, we may have (actually we need to have) a priori reasons to decrease the
parameter a or stop N somewhere. When the higher order of a(i) decline, then the
moments tend to be capped (the inherited tails will come from the lognormality of
σ).

17.2.1 Regime 2-a;“Bleed” of Higher Order Error

Take a “bleed” of higher order errors at the rate λ, 0≤ λ < 1 , such as a(N) = λ
a(N-1), hence a(N) =λN a(1), with a(1) the conventional intensity of stochastic
standard deviation. Assume µ=0.

With N=2 , the second moment becomes:

M2(2) =
(

a(1)2 + 1
)

σ2
(

a(1)2λ2 + 1
)

With N=3,

M2(3) = σ2
(

1 + a(1)2
) (

1 + λ2a(1)2
) (

1 + λ4a(1)2
)

finally, for the general N:

M3(N) =
(

a(1)2 + 1
)

σ2
N−1

∏
i=1

(
a(1)2λ2i + 1

)
(17.6)

We can reexpress 17.6 using the Q-Pochhammer symbol (a; q)N = ∏N−1
i=1

(
1− aqi

)

M2(N) = σ2
(
−a(1)2; λ2

)
N

Which allows us to get to the limit

lim
N→∞

M2(N) = σ2
(
λ2; λ2)

2
(
a(1)2; λ2)

∞

(λ2 − 1)2 (λ2 + 1)

As to the fourth moment:

By recursion:

M4(N) = 3σ4
N−1

∏
i=0

(
6a(1)2λ2i + a(1)4λ4i + 1

)

M4(N) = 3σ4
((

2
√

2− 3
)

a(1)2; λ2
)

N

(
−
(

3 + 2
√

2
)

a(1)2; λ2
)

N (17.7)
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lim
N→∞

M4(N) = 3σ4
((

2
√

2− 3
)

a(1)2; λ2
)

∞

(
−
(

3 + 2
√

2
)

a(1)2; λ2
)

∞ (17.8)

So the limiting second moment for λ=.9 and a(1)=.2 is just 1.28 σ2, a significant
but relatively benign convexity bias. The limiting fourth moment is just 9.88σ4,
more than 3 times the Gaussian’s (3 σ4), but still finite fourth moment. For small
values of a and values of λ close to 1, the fourth moment collapses to that of a
Gaussian.

17.2.2 Regime 2-b; Second Method, a Non Multiplicative Error Rate

For N recursions,

σ(1 ± (a(1)(1 ± (a(2)(1 ± a(3)( ...)))

P(X, µ, σ, N) =
1
L

L

∑
i=1

f
(

x, µ, σ
(

1 +
(

TN .AN
)

i

)

(MN .T + 1)i) is the ith component of the (N × 1) dot product of TN the matrix of
Tuples in (xx) , L the length of the matrix, and A contains the parameters

AN =
(

aj
)

j=1,...N

So for instance, for N = 3, T =
(
1, a, a2, a3)

A3 T3 =





a3 + a2 + a
−a3 + a2 + a
a3 − a2 + a
−a3 − a2 + a
a3 + a2 − a
−a3 + a2 − a
a3 − a2 − a
−a3 − a2 − a





The moments are as follows:

M1(N) = µ

M2(N) = µ2 + 2σ
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M4(N) = µ4 + 12µ2σ + 12σ2
N

∑
i=0

a2i

At the limit:

lim
N→∞

M4(N) =
12σ2

1− a2 + µ4 + 12µ2σ

which is very mild.

17.3 limit distribution
See Taleb and Cirillo [241] for the treatment of the limit distribution which will be
a lognormal under the right conditions. In fact lognormal approximations work
well when errors on errors are in constant proportion.





18 STO C H A ST I C TA I L E X P O N E N T F O R
A SYM M E T R I C P O W E R L A W S †

W
e examine random variables in the power law/slowly varying

class with stochastic tail exponent , the exponent α having
its own distribution. We show the effect of stochasticity of α
on the expectation and higher moments of the random vari-
able. For instance, the moments of a right-tailed or right-

asymmetric variable, when finite, increase with the variance of α; those of
a left-asymmetric one decreases. The same applies to conditional shortfall
(CVar), or mean-excess functions.

We prove the general case and examine the specific situation of lognormally
distributed α ∈ [b, ∞), b > 1.

The stochasticity of the exponent induces a significant bias in the estimation
of the mean and higher moments in the presence of data uncertainty. This
has consequences on sampling error as uncertainty about α translates into a
higher expected mean.

The bias is conserved under summation, even upon large enough a number
of summands to warrant convergence to the stable distribution. We establish
inequalities related to the asymmetry.

We also consider the situation of capped power laws (i.e. with compact
support), and apply it to the study of violence by Cirillo and Taleb (2016).
We show that uncertainty concerning the historical data increases the true
mean.

Research chapter.

Conference: Extremes and Risks in Higher Dimensions, Lorentz Center, Leiden, The Netherlands, Septem-
ber 2016.
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18.1 background
Stochastic volatility has been introduced heuristically in mathematical finance by
traders looking for biases on option valuation, where a Gaussian distribution is
considered to have several possible variances, either locally or at some specific
future date. Options far from the money (i.e. concerning tail events) increase in
value with uncertainty on the variance of the distribution, as they are convex to
the standard deviation.

This led to a family of models of Brownian motion with stochastic variance (see
review in Gatheral [102]) and proved useful in tracking the distributions of the
underlying and the effect of the nonGaussian character of random processes on
functions of the process (such as option prices).

Just as options are convex to the scale of the distribution, we find many situations
where expectations are convex to the Power Law tail exponent . This note examines
two cases:

• The standard power laws, one-tailed or asymmetric.

• The pseudo-power law, where a random variable appears to be a Power law
but has compact support, as in the study of violence [46] where wars have
the number of casualties capped at a maximum value.

18.2 one tailed distributions with stochastic alpha

18.2.1 General Cases

Definition 18.1
Let X be a random variable belonging to the class of distributions with a "power law" right
tail, that is support in [x0, +∞) ,∈ R:

Subclass P1:

{X : P(X > x) = L(x)x−α ,
∂qL(x)

∂xq = 0 for q ≥ 1} (18.1)

We note that x_0 can be negative by shifting, so long as x0 > −∞.

Class P:
{X : P(X > x) = L(x) x−α} (18.2)

where ∼ means that the limit of the ratio or rhs to lhs goes to 1 as x → ∞. L :
[xmin, +∞) → (0, +∞) is a slowly varying function, defined as limx→+∞

L(kx)
L(x) = 1 for

any k > 0. L′(x) is monotone. The constant α > 0.

We further assume that:
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lim
x→∞

L′(x) x = 0 (18.3)

lim
x→∞

L′′(x) x = 0 (18.4)

We have
P1 ⊂ P

We note that the first class corresponds to the Pareto distributions (with proper
shifting and scaling), where L is a constant and P to the more general one-sided
power laws.

18.2.2 Stochastic Alpha Inequality

Throughout the rest of the paper we use for notation X′ for the stochastic alpha
version of X, the constant α case.

Proposition 18.1
Let p = 1, 2, ..., X′ be the same random variable as X above in P1 (the one-tailed regular
variation class), with x0 ≥ 0, except with stochastic α with all realizations > p that
preserve the mean ᾱ,

E(X
′p) ≥ E(Xp).

Proposition 18.2
Let K be a threshold. With X in the P class, we have the expected conditional shortfall
(CVar):

lim
K→∞

E(X
′ |X′>K) ≥ lim

K→∞
E(X|X>K).

The sketch of the proof is as follows.

We remark that E(Xp) is convex to α, in the following sense. Let Xαi be the
random variable distributed with constant tail exponent αi, with αi > p, ∀i, and
ωi be the normalized positive weights: ∑i ωi = 1, 0 ≤ |ωi|≤ 1, ∑i ωiαi = ᾱ. By
Jensen’s inequality:

ωi ∑
i
E(Xp

αi ) ≥ E(∑
i

(ωiX
p
αi )).

As the classes are defined by their survival functions, we first need to solve
for the corresponding density: ϕ(x) = αx−α−1L(x, α)− x−αL(1,0)(x, α) and get the
normalizing constant.

L(x0, α) = xα
0 −

2x0L(1,0)(x0, α)
α− 1

−
2x2

0L(2,0)(x0, α)
(α− 1)(α− 2)

, (18.5)

α ,= 1, 2 when the first and second derivative exist, respectively. The slot notation
L(p,0)(x0, α) is short for ∂p L(x,α)

∂xp |x=x0 .
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By the Karamata representation theorem, [22],[248], a function L on [x0, +∞) is
slowly moving (Definition) if and only if it can be written in the form

L(x) = exp
(∫ x

x0

ε(t)
t

dt
)

+ η(x)

where η(.) is a bounded measurable function converging to a finite number as
x → +∞, and ε(x) is a bounded measurable function converging to zero as x →
+∞.

Accordingly, L′(x) goes to 0 as x → ∞. (We further assumed in 18.3 and 18.4
that L′(x) goes to 0 faster than x and L′′ (x) goes to 0 faster than x2). Integrating by
parts,

E(Xp) = xp
0 + p

∫ ∞

x0

xp−1 dF̄(x)

where F̄ is the survival function in Eqs. 23.1 and 18.2. Integrating by parts three
additional times and eliminating derivatives of L(.) of higher order than 2:

(18.6)E(Xp) =
xp−α

0 L(x0, α)
p − α

−
xp−α+1

0 L(1,0)(x0, α)
(p − α)(p − α + 1)

+
xp−α+2

0 L(2,0)(x0, α)
(p − α)(p − α + 1)(p − α + 2)

which, for the special case of X in P1 reduces to:

(18.7)E(Xp) = xp
0

α

α − p

As to Proposition 2, we can approach the proof from the property that limx→∞ L′(x) =
0. This allows a proof of var der Mijk’s law that Paretianinequality is invariant to
the threshold in the tail, that is E(X|X>K)

K converges to a constant as K → +∞.
Equation 18.6 presents the exact conditions on the functional form of L(x) for the
convexity to extend to sub-classes between P1 and P.

Our results hold to distributions that are transformed by shifting and scaling, of
the sort:

x 7→ x− µ + x0 (Pareto II), or with further transformations to Pareto types II and
IV.

We note that the representation P1 uses the same parameter, x0, for both scale
and minimum value, as a simplification.

We can verify that the expectation from Eq. 18.7 is convex to α: ∂E(Xp)
∂α2 = xp

0
2

(α−1)3 .

18.2.3 Approximations for the Class P

For P \P1, our results hold when we can write an approximation the expectation
of X as a constant multiplying the integral of x−α, namely

E(X) ≈ k
ν(α)

α− 1
(18.8)
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where k is a positive constant that does not depend on α and ν(.) is approximated
by a linear function of α (plus a threshold). The expectation will be convex to α.

Example: Student T Distribution For the Student T distribution with tail α, the
"sophisticated" slowly varying function in common use for symmetric power laws
in quantitative finance, the half-mean or the mean of the one-sided distribution (i.e.
with support on R+ becomes

2ν(α) = 2

√
αΓ
(

α+1
2

)

√
πΓ
( α

2
) ≈ α

(1 + log(4))
π

,

where Γ(.) is the gamma function.

18.3 sums of power laws
As we are dealing from here on with convergence to the stable distribution, we
consider situations of 1 < α < 2, hence p = 1 and will be concerned solely with
the mean.

We observe that the convexity of the mean is invariant to summations of Power
Law distributed variables as X above. The Stable distribution has a mean that
in conventional parameterizations does not appear to depend on α –but in fact
depends on it.

Let Y be distributed according to a Pareto distribution with density f (y) !
αλαy−α−1, y ≥ λ > 0 and with its tail exponent 1 < α < 2. Now, let Y1, Y2, . . . Yn
be identical and independent copies of Y. Let χ(t) be the characteristic function
for f (y). We have χ(t) = α(−it)αΓ(−α,−it), where γ(., .) is the incomplete gamma
function. We can get the mean from the characteristic function of the average of n
summands 1

n (Y1 + Y2 + ...Yn), namely χ( t
n )n. Taking the first derivative:

(18.9)
−i

∂χ( t
n )n

∂t
= (−i)α(n−1)n1−αnαnλα(n−1)tα(n−1)−1Γ

(

−α,− itλ
n

)n−1 (
(−i)ααλαtαΓ

(
−α,− itλ

n

)
− nαe

iλt
n

)

and

lim
n→∞

−i
∂χ( t

n )n

∂t


t=0

= λ
α

α− 1
(18.10)

Thus we can see how the converging asymptotic distribution for the average will
have for mean the scale times α

α−1 , which does not depends on n.

Let χS(t) be the characteristic function of the corresponding stable distribution
Sα,β,µ,σ, from the distribution of an infinitely summed copies of Y. By the Lévy
continuity theorem, we have
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• 1
n Σi≤nYi

D−→ S, with distribution Sα,β,µ,σ, where D−→ denotes convergence in
distribution

and

• χS(t) = limn→∞ χ(t/n)n

are equivalent.

So we are dealing with the standard result [272],[209], for exact Pareto sums [269],
replacing the conventional µ with the mean from above:

χS(t) = exp
(

i
(

λ
αt

α− 1
+ |t|α

(
β tan

(πα

2

)
sgn(t) + i

)))
.

18.4 asymmetric stable distributions
We can verify by symmetry that, effectively, flipping the distribution in subclasses
P1 and P2 around y0 to make it negative yields a negative value of the mean d
higher moments, hence degradation from stochastic α.

The central question becomes:

Remark 17: Preservation of Asymmetry

A normalized sum in P1 one-tailed distribution with expectation that depends on α
of the form in Eq. 18.8 will necessarily converge in distribution to an asymmetric
stable distribution Sα,β,µ,1, with β ,= 0.

Remark 18

Let Y′ be Y under mean-preserving stochastic α. The convexity effect becomes

sgn
(
E(Y′)−E(Y)

)
= sgn(β).

The sketch of the proof is as follows. Consider two slowly varying functions as in
23.1, each on one side of the tails. We have L(y) = 1y<yθ L−(y) + 1y≥yθ

L+(y):






L+(y), L : [yθ , +∞], limy→∞ L+(y) = c

L−(y), L : [−∞, yθ], limy→−∞ L−(y) = d.

From [209],

if






P(X > x) ∼ cx−α , x → +∞

P(X < x) ∼ d|x|−α , x → +∞,
then Y converges in distribution to Sα,β,µ,1

with the coefficient β = c−d
c+d .
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We can show that the mean can be written as (λ+ − λ−) α
α−1 where:

λ+ ≥ λ− if
∫ ∞

yθ

L+(y)dy, ≥
∫ yθ

−∞
L−(y)dy

18.5 pareto distribution with lognormally distributed α

Now assume α is following a shifted Lognormal distribution with mean α0 and
minimum value b, that is, α − b follows a Lognormal L

(
log(α0)− σ2

2 , σ
)

. The
parameter b allows us to work with a lower bound on the tail exponent in order to
satisfy finite expectation. We know that the tail exponent will eventually converge
to b but the process may be quite slow.

Proposition 18.3
Assuming finite expectation for X’ and for exponent the lognormally distributed shifted
variable α− b with law L

(
log(α0)− σ2

2 , σ
)

, b ≥ 1 mininum value for α, and scale λ:

(18.11)E(Y′) = E(Y) + λ
(eσ2 − b)
α0 − b

We need b ≥ 1 to avoid problems of infinite expectation.

Let φ(y, α) be the density with stochastic tail exponent. With α > 0, α0 > b, b ≥
1, σ > 0, Y ≥ λ > 0 ,

(18.12)

E(Y) =
∫ ∞

b

∫ ∞

L
yφ(y; α) dy dα

=
∫ ∞

b
λ

α

α − 1
1√

2πσ(α − b)

exp



−

(
log(α − b)− log(α0 − b) + σ2

2

)2

2σ2



 dα

=
λ
(

α0 + eσ2 − b
)

α0 − b
.

Approximation of the Density

With b = 1 (which is the lower bound for b),we get the density with stochastic α:

φ(y; α0, σ) = lim
k→∞

1
Y2

k

∑
i=0

1
i!

L(α0 − 1)ie
1
2 i(i−1)σ2

(log(λ)− log(y))i−1(i + log(λ)− log(y))

(18.13)

This result is obtained by expanding α around its lower bound b (which we simpli-
fied to b = 1) and integrating each summand.
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18.6 pareto distribution with gamma distributed alpha
Proposition 18.4
Assuming finite expectation for X′ scale λ, and for exponent a gamma distributed shifted
variable α− 1 with law ϕ(.), mean α0 and variance s2, all values for α greater than 1:

E(X′) = E(X′) +
s2

(α0 − 1)(α0 − s− 1)(α0 + s− 1)
(18.14)

Proof.

ϕ(α) =
e
−

(α−1)(α0−1)
s2

(
s2

(α−1)(α0−1)

)
− (

α0−1)2

s2

(α−1)Γ
(
(α0−1)2

s2

) , α > 1 (18.15)

∫ ∞

1
αλαx−α−1 ϕ(α) dα (18.16)

=
∫ ∞

1

α

(
e−

(α−1)(α0−1)
s2

(
s2

(α−1)(α0−1)

)− (α0−1)2

s2

)

(α− 1)
(

(α− 1)Γ
(

(α0−1)2

s2

)) dα

=
1
2

(
1

α0 + s− 1
+

1
α0 − s− 1

+ 2
)

18.7 the bounded power law in cirillo and taleb (2016)
In [46] and [45], the studies make use of bounded power laws, applied to violence
and operational risk, respectively. Although with α < 1 the variable Z has finite
expectations owing to the upper bound.

The methods offered were a smooth transformation of the variable as follows: we
start with z ∈ [L, H), L > 0 and transform it into x ∈ [L, ∞), the latter legitimately
being Power Law distributed.

So the smooth logarithmic transformation):

x = ϕ(z) = L− H log
(

H − z
H − L

)
,

and

f (x) =

(
x−L
ασ + 1

)−α−1

σ
.

We thus get the distribution of Z which will have a finite expectation for all positive
values of α.
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(18.17)

∂2E(Z)
∂α2 =

1
H3 (H − L)

(
e

ασ
H

(
2H3G4,0

3,4

(
ασ

H
| α + 1, α + 1, α + 1

1, α, α, α

)

− 2H2(H + σ)G3,0
2,3

(
ασ

H
| α + 1, α + 1

1, α, α

)

+ σ
(

ασ2 + (α + 1)H2 + 2αHσ
)

Eα

(ασ

H

))
− Hσ(H + σ)

)

which appears to be positive in the range of numerical perturbations in [46].3 At
such a low level of α, around 1

2 , the expectation is extremely convex and the bias
will be accordingly extremely pronounced.

This convexity has the following practical implication. Historical data on violence
over the past two millennia, is fundamentally unreliable [46]. Hence an impreci-
sion about the tail exponent , from errors embedded in the data, need to be present
in the computations. The above shows that uncertainty about α, is more likely to
make the "true" statistical mean (that is the mean of the process as opposed to sam-
ple mean) higher than lower, hence supports the statement that more uncertainty
increases the estimation of violence.

18.8 additional comments
The bias in the estimation of the mean and shortfalls from uncertainty in the tail
exponent can be added to analyses where data is insufficient, unreliable, or simply
prone to forgeries.

In additional to statistical inference, these result can extend to processes, whether
a compound Poisson process with power laws subordination [217] (i.e. a Poisson
arrival time and a jump that is Power Law distributed) or a Lévy process. The latter
can be analyzed by considering successive "slice distributions" or discretization of
the process [50]. Since the expectation of a sum of jumps is the sum of expectation,
the same convexity will appear as the one we got from Eq. 18.8.

18.9 acknowledgments
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3 G4,0
3,4

(
ασ
H | α + 1, α + 1, α + 1

1, α, α, α

)
is the Meijer G function.





19 M E TA - D I ST R I B U T I O N O F P-VA LU E S
A N D P- H A C K I N G ‡

W
e present an exact probability distribution (meta-distribution)

for p-values across ensembles of statistically identical phenom-
ena, as well as the distribution of the minimum p-value among
m independents tests. We derive the distribution for small sam-
ples 2 < n ≤ n∗ ≈ 30 as well as the limiting one as the sample

size n becomes large. We also look at the properties of the "power" of a test
through the distribution of its inverse for a given p-value and parametriza-
tion.

P-values are shown to be extremely skewed and volatile, regardless of the
sample size n, and vary greatly across repetitions of exactly same protocols
under identical stochastic copies of the phenomenon; such volatility makes
the minimum p value diverge significantly from the "true" one. Setting
the power is shown to offer little remedy unless sample size is increased
markedly or the p-value is lowered by at least one order of magnitude.

The formulas allow the investigation of the stability of the reproduction
of results and "p-hacking" and other aspects of meta-analysis –including a
metadistribution of p-hacked results.

From a probabilistic standpoint, neither a p-value of .05 nor a "power" at .9
appear to make the slightest sense.

Assume that we know the "true" p-value, ps, what would its realizations look
like across various attempts on statistically identical copies of the phenomena? By
true value ps, we mean its expected value by the law of large numbers across
an m ensemble of possible samples for the phenomenon under scrutiny, that is
1
m ∑≤m pi

P−→ ps (where P−→ denotes convergence in probability). A similar conver-
gence argument can be also made for the corresponding "true median" pM. The
main result of the paper is that the the distribution of n small samples can be made
explicit (albeit with special inverse functions), as well as its parsimonious limiting
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one for n large, with no other parameter than the median value pM. We were
unable to get an explicit form for ps but we go around it with the use of the me-
dian. Finally, the distribution of the minimum p-value under can be made explicit,
in a parsimonious formula allowing for the understanding of biases in scientific
studies.

n=5

n=10

n=15

n=20

n=25

0.00 0.05 0.10 0.15 0.20
p
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Figure 19.1: The different values for Equ. 19.1 showing convergence to the limiting distribution.

It turned out, as we can see in Figure 19.2 the distribution is extremely asymmet-
ric (right-skewed), to the point where 75% of the realizations of a "true" p-value
of .05 will be <.05 (a borderline situation is 3× as likely to pass than fail a given
protocol), and, what is worse, 60% of the true p-value of .12 will be below .05.

Although with compact support, the distribution exhibits the attributes of
extreme fat-tailedness. For an observed p-value of, say, .02, the "true" p-value
is likely to be >.1 (and very possibly close to .2), with a standard deviation >.2
(sic) and a mean deviation of around .35 (sic, sic). Because of the excessive
skewness, measures of dispersion in L1 and L2 (and higher norms) vary
hardly with ps, so the standard deviation is not proportional, meaning an in-
sample .01 p-value has a significant probability of having a true value > .3.

So clearly we don’t know what we are talking about when we talk about
p-values.

Earlier attempts for an explicit meta-distribution in the literature were found in
[132] and [208], though for situations of Gaussian subordination and less parsimo-
nious parametrization. The severity of the problem of significance of the so-called "sta-
tistically significant" has been discussed in [105] and offered a remedy via Bayesian
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methods in [138], which in fact recommends the same tightening of standards to
p-values ≈ .01. But the gravity of the extreme skewness of the distribution of
p-values is only apparent when one looks at the meta-distribution.

For notation, we use n for the sample size of a given study and m the number of
trials leading to a p-value.

19.1 proofs and derivations
Proposition 19.1
Let P be a random variable ∈ [0, 1]) corresponding to the sample-derived one-tailed p-value
from the paired T-test statistic (unknown variance) with median value M(P) = pM ∈
[0, 1] derived from a sample of n size. The distribution across the ensemble of statistically
identical copies of the sample has for PDF

ϕ(p; pM) =

{
ϕ(p; pM)L for p < 1

2
ϕ(p; pM)H for p > 1

2

ϕ(p; pM)L = λ
1
2 (−n−1)
p

√√√√−
λp
(
λpM − 1

)

(
λp − 1

)
λpM − 2

√(
1− λp

)
λp

√(
1− λpM

)
λpM + 1




1

1
λp
− 2
√

1−λp
√

λpM√
λp
√

1−λpM
+ 1

1−λpM
− 1





n/2

ϕ(p; pM)H =
(

1− λ′p
)

1
2 (−n−1)





(
λ′p − 1

) (
λpM − 1

)

λ′p
(
−λpM

)
+ 2
√(

1− λ′p
)

λ′p
√(

1− λpM

)
λpM + 1




n+1

2 (19.1)

where λp = I−1
2p

(
n
2 , 1

2

)
, λpM = I−1

1−2pM

(
1
2 , n

2

)
, λ′p = I−1

2p−1

(
1
2 , n

2

)
, and I−1

(.) (., .) is the
inverse beta regularized function.

Remark 19

For p= 1
2 the distribution doesn’t exist in theory, but does in practice and we can work

around it with the sequence pmk = 1
2 ± 1

k , as in the graph showing a convergence to
the Uniform distribution on [0, 1] in Figure 19.3. Also note that what is called the
"null" hypothesis is effectively a set of measure 0.
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Proof. Let Z be a random normalized variable with realizations ζ, from a vector#v of
n realizations, with sample mean mv, and sample standard deviation sv, ζ = mv−mh

sv√
n

(where mh is the level it is tested against), hence assumed to ∼ Student T with n
degrees of freedom, and, crucially, supposed to deliver a mean of ζ̄,

f (ζ; ζ̄) =

(
n

(ζ̄−ζ)2+n

) n+1
2

√
nB
(

n
2 , 1

2

)

where B(.,.) is the standard beta function. Let g(.) be the one-tailed survival func-
tion of the Student T distribution with zero mean and n degrees of freedom:

g(ζ) = P(Z > ζ) =






1
2 I n

ζ2+n

(
n
2 , 1

2

)
ζ ≥ 0

1
2

(
I ζ2

ζ2+n

(
1
2 , n

2

)
+ 1
)

ζ < 0

where I(.,.) is the incomplete Beta function.

We now look for the distribution of g ◦ f (ζ). Given that g(.) is a legit Borel func-
tion, and naming p the probability as a random variable, we have by a standard
result for the transformation:

ϕ(p, ζ̄) =
f
(

g(−1)(p)
)

|g′
(

g(−1)(p)
)
|

We can convert ζ̄ into the corresponding median survival probability because of
symmetry of Z. Since one half the observations fall on either side of ζ̄, we can
ascertain that the transformation is median preserving: g(ζ̄) = 1

2 , hence ϕ(pM , .) =
1
2 . Hence we end up having {ζ̄ : 1

2 I n
ζ̄2+n

(
n
2 , 1

2

)
= pM} (positive case) and {ζ̄ :

1
2

(
I ζ2

ζ2+n

(
1
2 , n

2

)
+ 1
)

= pM} (negative case). Replacing we get Eq.19.1 and Proposi-

tion 19.1 is done.

We note that n does not increase significance, since p-values are computed from
normalized variables (hence the universality of the meta-distribution); a high n
corresponds to an increased convergence to the Gaussian. For large n, we can
prove the following proposition:

Proposition 19.2
Under the same assumptions as above, the limiting distribution for ϕ(.):

lim
n→∞

ϕ(p; pM) = e−erfc−1(2pM)(erfc−1(2pM)−2erfc−1(2p)) (19.2)

where erfc(.) is the complementary error function and er f c(.)−1 its inverse.
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The limiting CDF Φ(.)

Φ(k; pM) =
1
2

erfc
(

erf−1(1− 2k)− erf−1(1− 2pM)
)

(19.3)

Proof. For large n, the distribution of Z = mv
sv√

n
becomes that of a Gaussian, and the

one-tailed survival function g(.) = 1
2 erfc

(
ζ√
2

)
, ζ(p)→

√
2erfc−1(p).
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Figure 19.2: The probability distribution of a one-tailed p-value with expected value .11 generated
by Monte Carlo (histogram) as well as analytically with ϕ(.) (the solid line). We draw all possible
subsamples from an ensemble with given properties. The excessive skewness of the distribution makes
the average value considerably higher than most observations, hence causing illusions of "statistical
significance".

This limiting distribution applies for paired tests with known or assumed sample
variance since the test becomes a Gaussian variable, equivalent to the convergence
of the T-test (Student T) to the Gaussian when n is large.
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Figure 19.3: The probability distribution of p at different values of pM. We observe how pM = 1
2 leads

to a uniform distribution.

Remark 20

For values of p close to 0, ϕ in Equ. 19.2 can be usefully calculated as:

ϕ(p; pM) =
√

2πpM

√√√√log

(
1

2πp2
M

)

e

√
− log

(
2π log

(
1

2πp2

))
−2 log(p)

√

− log
(

2π log
(

1
2πp2

M

))
−2 log(pM)

+ O(p2). (19.4)

The approximation works more precisely for the band of relevant values 0 < p < 1
2π .

From this we can get numerical results for convolutions of ϕ using the Fourier
Transform or similar methods.

We can and get the distribution of the minimum p-value per m trials across
statistically identical situations thus get an idea of "p-hacking", defined as attempts
by researchers to get the lowest p-values of many experiments, or try until one of
the tests produces statistical significance.
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Proposition 19.3
The distribution of the minimum of m observations of statistically identical p-values be-
comes (under the limiting distribution of proposition 19.2):

ϕm(p; pM) = m eerfc−1(2pM)(2erfc−1(2p)−erfc−1(2pM))

(
1− 1

2
erfc

(
erfc−1(2p)− erfc−1(2pM)

))m−1
(19.5)

Proof. P (p1 > p, p2 > p, . . . , pm > p) =
⋂n

i=1 Φ(pi) = Φ̄(p)m. Taking the first deriva-
tive we get the result.

Outside the limiting distribution: we integrate numerically for different values
of m as shown in Figure 19.4. So, more precisely, for m trials, the expectation is
calculated as:

E(pmin) =
∫ 1

0
−m ϕ(p; pM)

(∫ p

0
ϕ(u, .) du

)m−1
dp

n=5

n=15
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m trials

0.02
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0.08

0.10

0.12
Expected min p-val

Figure 19.4: The "p-hacking" value across m trials for pM = .15 and ps = .22.

19.2 inverse power of test
Let β be the power of a test for a given p-value p, for random draws X from
unobserved parameter θ and a sample size of n. To gauge the reliability of β as a
true measure of power, we perform an inverse problem:
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β Xθ,p,n

β−1(X)

∆

Proposition 19.4
Let βc be the projection of the power of the test from the realizations assumed to be student
T distributed and evaluated under the parameter θ. We have

Φ(βc) =

{
Φ(βc)L for βc < 1

2
Φ(βc)H for βc > 1

2

where

Φ(βc)L =
√

1− γ1γ
− n

2
1(

− γ1

2
√

1
γ3
−1
√
−(γ1−1)γ1−2

√
−(γ1−1)γ1+γ1
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2
√

1
γ3
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γ3

)
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2

√
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(19.6)

Φ(βc)H =
√
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where γ1 = I−1
2βc

(
n
2 , 1

2

)
, γ2 = I−1

2βc−1

(
1
2 , n

2

)
, and γ3 = I−1

(1,2ps−1)

(
n
2 , 1

2

)
.

19.3 application and conclusion
• One can safely see that under such stochasticity for the realizations of p-

values and the distribution of its minimum, to get what people mean by 5%
confidence (and the inferences they get from it), they need a p-value of at
least one order of magnitude smaller.

• Attempts at replicating papers, such as the open science project [49], should
consider a margin of error in its own procedure and a pronounced bias to-
wards favorable results (Type-I error). There should be no surprise that a
previously deemed significant test fails during replication –in fact it is the
replication of results deemed significant at a close margin that should be
surprising.
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• The "power" of a test has the same problem unless one either lowers p-values
or sets the test at higher levels, such at .99.
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H S O M E C O N F U S I O N S I N B E H AV I O R A L
E C O N O M I C S

W
saw earlier (Chapters 3 and 11) that the problem of "overesti-

mation of the tails" by agents is more attributable to the use
of a wrong "normative" model by psychologists and decision
scientists who are innocent of fat tails. Here we use two cases il-
lustrative of such improper use of probability, uncovered with

our simple heuristic of inducing a second order effect and seeing the effect
of Jensens’s inequality on the expectation operator.

One such unrigorous use of probability (the equity premium puzzle) in-
volves the promoter of "nudging", an invasive and sinister method devised
by psychologists that aim at manipulating decisions by citizens.

h.1 case study: how the myopic loss aversion is misspecified
The so-called "equity premium puzzle", originally detected by Mehra and Prescott
[169], is called so because equities have historically yielded too high a return over
fixed income investments; the puzzle is why it isn’t arbitraged away.

We can easily figure out that the analysis misses the absence of ergodicity in
such domain, as we saw in Chapter 3: agents do not really capture market returns
unconditionally; it is foolish to use ensemble probabilities and the law of large
numbers for individual investors who only have one life. Also "positive expected
returns" for a market is not a sufficient condition for an investor to obtain a positive
expectation; a certain Kelly-style path scaling strategy, or path dependent dynamic
hedging is required.

Benartzi and Thaler [17] claims that the Kahneman-Tversky prospect theory [139]
explains such behavior owing to myopia. This might be true but such an analysis
falls apart under thick tails.

So here we fatten tails of the distribution with stochasticity of, say, the scale pa-
rameter, and can see what happens to some results in the literature that seem ab-
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surd at face value, and in fact are absurd under more rigorous use of probabilistic
analyses.

Myopic loss aversion
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H0
or the degradation

of "utility" under second
order effects.

Take the prospect theory valuation w function for x changes in wealth x, parametrized
with λ and α.

wλ,α(x) = xα 1x≥0 − λ(−xα)1x<0

Let φµt,σ
√

t(x) be the Normal Distribution density with corresponding mean and
standard deviation (scaled by t)
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The expected "utility" (in the prospect sense):

H0(t) =
∫ ∞

−∞
wλ,α(x)φµt,σ

√
t(x) dx (H.1)
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(
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√
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We can see from H.2 that the more frequent sampling of the performance trans-
lates into worse utility. So what Benartzi and Thaler did was try to find the sam-
pling period "myopia" that translates into the sampling frequency that causes the
"premium" —the error being that they missed second order effects.

Now under variations of σ with stochatic effects, heuristically captured, the story
changes: what if there is a very small probability that the variance gets multiplied
by a large number, with the total variance remaining the same? The key here is that
we are not even changing the variance at all: we are only shifting the distribution
to the tails. We are here generously assuming that by the law of large numbers it
was established that the "equity premium puzzle" was true and that stocks really
outperformed bonds.

So we switch between two states, (1 + a) σ2 w.p. p and (1− a) w.p. (1− p).

Rewriting H.1

(H.3)Ha,p(t) =
∫ ∞

−∞
wλ,α(x)

(
p φµ t,

√
1+a σ

√
t(x) + (1− p) φµ t,

√
1−a σ

√
t(x)
)

dx

Result Conclusively, as can be seen in figures H.1 and H.2, second order effects
cancel the statements made from "myopic" loss aversion. This doesn’t mean that
myopia doesn’t have effects, rather that it cannot explain the "equity premium",
not from the outside (i.e. the distribution might have different returns, but from
the inside, owing to the structure of the Kahneman-Tversky value function v(x).

Comment We used the (1 + a) heuristic largely for illustrative reasons; we could
use a full distribution for σ2 with similar results. For instance the gamma distribu-

tion with density f (v) = vγ−1e−
αv
V ( V

α )
−γ

Γ(γ) with expectation V matching the variance
used in the "equity premium" theory.

Rewriting H.3 under that form,
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∫ ∞

−∞

∫ ∞

0
wλ,α(x)φµ t,

√
v t(x) f (v) dv dx

Which has a closed form solution (though a bit lengthy for here).

True problem with Benartzi and Thaler Of course the problem has to do with
thick tails and the convergence under LLN, which we treat separately.

Time Preference Under Model Error

Another example of the effect of the randomization of a parameter –the creation of
an additional layer of uncertainty so to speak.

This author once watched with a great deal of horror one Laibson [150] at a
conference in Columbia University present the idea that having one massage today
to two tomorrow, but reversing in a year from now is irrational (or something of the
sort) and we need to remedy it with some policy. (For a review of time discounting
and intertemporal preferences, see [96], as economists tend to impart to agents
what seems to be a varying "discount rate", derived in a simplified model).1

Intuitively, what if I introduce the probability that the person offering the mas-
sage is full of balloney? It would clearly make me both prefer immediacy at almost
any cost and conditionally on his being around at a future date, reverse the prefer-
ence. This is what we will model next.

First, time discounting has to have a geometric form, so preference doesn’t be-
come negative: linear discounting of the form Ct, where C is a constant ant t is
time into the future is ruled out: we need something like Ct or, to extract the
rate, (1 + k)t which can be mathematically further simplified into an exponential,
by taking it to the continuous time limit. Exponential discounting has the form
e−k t. Effectively, such a discounting method using a shallow model prevents "time
inconsistency", so with δ < t:

lim
t→∞

e−k t

e−k (t−δ) = e−k δ

Now add another layer of stochasticity: the discount parameter, for which we
use the symbol λ, is now stochastic.

So we now can only treat H(t) as

H(t) =
∫

e−λ tφ(λ) dλ.

It is easy to prove the general case that under symmetric stochasticization of
intensity ∆λ (that is, with probabilities 1

2 around the center of the distribution)
using the same technique we did in 4.1:

1 Farmer and Geanakoplos [89] have applied a similar approach to Hyperbolic discounting.
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H′(t, ∆λ) =
1
2

(
e−(λ−∆λ)t + e−(λ+∆λ)t

)

H′(t, ∆λ)
H′(t, 0)

=
1
2

eλt
(

e(−∆λ−λ)t + e(∆λ−λ)t
)

= cosh(∆ λt)

Where cosh is the cosine hyperbolic function − which will converge to a certain
value where intertemporal preferences are flat in the future.

Example: Gamma Distribution Under the gamma distribution with support in

R+, with parameters α and β, φ(λ) = β−αλα−1e
− λ

β

Γ(α)

we get:

H(t, α, β) =
∫ ∞

0
e−λ t

(
β−αλα−1e−

λ
β

)

Γ(α)
dλ = β−α

(
1
β

+ t
)−α

,

so
lim
t→∞

H(t, α, β)
H(t− δ, α, β)

= 1

Meaning that preferences become flat in the future no matter how steep they are in
the present, which explains the drop in discount rate in the economics literature.

Further, fudging the distribution and normalizing it, when

φ(λ)=
e−

λ
k

k
,

we get the normatively obtained so-called hyperbolic discounting:

H(t) =
1

1 + k t
,

which turns out to not be the empirical "pathology" that naive researchers have
claimed it to be. It is just that their model missed a layer of uncertainty.
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20 F I N A N C I A L T H E O RY ’ S FA I LU R E S
W I T H O P T I O N P R I C I N G †

L
et us discuss why option theory, as seen according to the so-

called "neoclassical economics", fails in the real world. How
does financial theory price financial products? The principal
difference in paradigm between the one presented by Bache-
lier in 1900, [6] and the modern finance one known as Black-

Scholes-Merton [24] and [171] lies in a few central assumptions by which
Bachelier was closer to reality and the way traders do business and have
done business for centuries.
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Figure 20.1: The hedging
errors for an option portfo-
lio (under a daily revision
regime) over 3000 days, un-
der a constant volatility Stu-
dent T with tail exponent
α = 3. Technically the er-
rors should not converge in
finite time as their distribu-
tion has infinite variance.

20.1 bachelier not black-scholes
Bachelier’s model is based on an actuarial expectation of final payoffs –not dy-
namic hedging. It means you can use any distribution! A more formal proof using

Discussion chapter.
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Figure 20.2: Hedging er-
rors for an option portfo-
lio (daily revision) under an
equivalent (rather fictional)
"Black-Scholes" world.
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Figure 20.3: Portfolio
Hedging errors including
the stock market crash of
1987.

measure theory is provided in Chapter 21 so for now let us just get the intuition
without too much mathematics.

The same method was later used by a series of researchers, such as Sprenkle [216]
in 1964, Boness, [26] in 1964, Kassouf and Thorp, [253] in 1967, Thorp, [249] (only
published in 1973).

They all encountered the following problem: how to produce a risk parameter
–a risky asset discount rate – to make it compatible with portfolio theory? The
Capital Asset Pricing Model requires that securities command an expected rate of
return in proportion to their riskiness. In the Black-Scholes-Merton approach, an
option price is derived from continuous-time dynamic hedging, and only in prop-
erties obtained from continuous time dynamic hedging –we will describe dynamic
hedging in some details further down. Thanks to such a method, an option col-
lapses into a deterministic payoff and provides returns independent of the market;
hence it does not require any risk premium.

20.1.1 Distortion from Idealization

The problem we have with the Black-Scholes-Merton approach is that the require-
ments for dynamic hedging are extremely idealized, requiring the following strict
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conditions. The operator is assumed to be able to buy and sell in a frictionless
market, incurring no transaction costs. The procedure does not allow for the price
impact of the order flow –if an operator sells a quantity of shares, it should not
have consequences on the subsequent price. The operator knows the probability
distribution, which is the Gaussian, with fixed and constant parameters through
time (all parameters do not change). Finally, the most significant restriction: no
scalable jumps. In a subsequent revision [Merton, 1976] allows for jumps but these
are deemed to be Poisson arrival time, and fixed or, at the worst, Gaussian. The
framework does not allow the use of power laws both in practice and mathemati-
cally. Let us examine the mathematics behind the stream of dynamic hedges in the
Black-Scholes-Merton equation.

Assume the risk-free interest rate r = 0 with no loss of generality. The canoni-
cal Black-Scholes-Merton model consists in selling a call and purchasing shares of
stock that provide a hedge against instantaneous moves in the security. Thus the
portfolio π locally “hedged” against exposure to the first moment of the distribu-
tion is the following:

π = −C +
∂C
∂S

S (20.1)

where C is the call price, and S the underlying security.

Take the change in the values of the portfolio

∆π = −∆C +
∂C
∂S

∆S (20.2)

By expanding around the initial values of S, we have the changes in the portfolio
in discrete time. Conventional option theory applies to the Gaussian in which all
orders higher than (∆S)2 and ∆t disappears rapidly.

∆π = − ∂C
∂t

∆t− 1
2

∂2C
∂S2 ∆S2 + O

(
∆S3

)
(20.3)

Taking expectations on both sides, we can see from (3) very strict requirements on
moment finiteness: all moments need to converge. If we include another term,
− 1

6
∂3C
∂S3 ∆S3, it may be of significance in a probability distribution with significant

cubic or quartic terms. Indeed, although the nth derivative with respect to S can
decline very sharply, for options that have a strike K away from the center ot the
distribution, it remains that the moments are rising disproportionately fast for that
to carry a mitigating effect.

So here we mean all moments need to be finite and losing in impact –no approx-
imation. Note here that the jump diffusion model (Merton,1976) does not cause
much trouble since it has all the moments. And the annoyance is that a power
law will have every moment higher than α infinite, causing the equation of the
Black-Scholes-Merton portfolio to fail.

As we said, the logic of the Black-Scholes-Merton so-called solution thanks to
Itô’s lemma was that the portfolio collapses into a deterministic payoff. But let us
see how quickly or effectively this works in practice.
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20.1.2 The Actual Replication Process:

The payoff of a call should be replicated with the following stream of dynamic
hedges, the limit of which can be seen here, between t and T

Lim
∆t→0

(
n=T/∆t

∑
i=1

∂C
∂S

|S=St+(i−1)∆t,t=t+(i−1)∆t,
(
St+i∆t − St+(i−1)∆t

)
)

(20.4)

We break up the period into n increments ∆t. Here the hedge ratio ∂C
∂S is computed

as of time t +(i-1) ∆t, but we get the nonanticipating difference between the price
at the time the hedge was initiatied and the resulting price at t+ i ∆t.

This is supposed to make the payoff deterministic at the limit of ∆t → 0. In the
Gaussian world, this would be an Itô-McKean integral.

20.1.3 Failure: How Hedging Errors Can Be Prohibitive.

As a consequence of the mathematical property seen above, hedging errors in an
cubic α appear to be indistinguishable from those from an infinite variance process.
Furthermore such error has a disproportionaly large effect on strikes away from
the money.

In short: dynamic hedging in a power law world removes no risk.

next
The next chapter will use measure theory to show why options can still be risk-
neutral.



21 U N I Q U E O P T I O N P R I C I N G
M E A S U R E ( N O DY N A M I C
H E D G I N G / C O M P L E T E M A R K E T S ) ‡

W
e present the proof that under simple assumptions, such as

constraints of Put-Call Parity, the probability measure for the
valuation of a European option has the mean derived from
the forward price which can, but does not have to be the risk-
neutral one, under any general probability distribution, by-

passing the Black-Scholes-Merton dynamic hedging argument, and without
the requirement of complete markets and other strong assumptions. We con-
firm that the heuristics used by traders for centuries are both more robust,
more consistent, and more rigorous than held in the economics literature.
We also show that options can be priced using infinite variance (finite mean)
distributions.

21.1 background
Option valuations methodologies have been used by traders for centuries, in an
effective way (Haug and Taleb, [126]). In addition, valuations by expectation of
terminal payoff forces the mean of the probability distribution used for option
prices to be that of the forward, thanks to Put-Call Parity and, should the forward
be risk-neutrally priced, so will the option be. The Black-Scholes argument (Black
and Scholes, 1973, Merton, 1973) is held to allow risk-neutral option pricing thanks
to dynamic hedging, as the option becomes redundant (since its payoff can be
built as a linear combination of cash and the underlying asset dynamically revised
through time). This is a puzzle, since: 1) Dynamic Hedging is not operationally
feasible in financial markets owing to the dominance of portfolio changes result-
ing from jumps, 2) The dynamic hedging argument doesn’t stand mathematically
under fat tails; it requires a very specific "Black-Scholes world" with many impos-
sible assumptions, one of which requires finite quadratic variations, 3) Traders use
the same Black-Scholes "risk neutral argument" for the valuation of options on as-

Research chapter.
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sets that do not allow dynamic replication, 4) Traders trade options consistently in
domain where the risk-neutral arguments do not apply 5) There are fundamental
informational limits preventing the convergence of the stochastic integral.2

There have been a couple of predecessors to the present thesis that Put-Call parity
is sufficient constraint to enforce some structure at the level of the mean of the
underlying distribution, such as Derman and Taleb (2005), Haug and Taleb (2010).
These approaches were heuristic, robust though deemed hand-waving (Ruffino
and Treussard, [207]). In addition they showed that operators need to use the
risk-neutral mean. What this chapter does is

• It goes beyond the "handwaving" with formal proofs.

• It uses a completely distribution-free, expectation-based approach and proves
the risk-neutral argument without dynamic hedging, and without any distri-
butional assumption.

• Beyond risk-neutrality, it establishes the case of a unique pricing distribution
for option prices in the absence of such argument. The forward (or future)
price can embed expectations and deviate from the arbitrage price (owing to,
say, regulatory or other limitations) yet the options can still be priced at a
distibution corresponding to the mean of such a forward.

• It shows how one can practically have an option market without "complete-
ness" and without having the theorems of financial economics hold.

These are done with solely two constraints: "horizontal", i.e. put-call parity, and
"vertical", i.e. the different valuations across strike prices deliver a probability
measure which is shown to be unique. The only economic assumption made here
is that the forward exits, is tradable — in the absence of such unique forward
price it is futile to discuss standard option pricing. We also require the probability
measures to correspond to distributions with finite first moment.

Preceding works in that direction are as follows. Breeden and Litzenberger [31]
and Dupire [72], show how option spreads deliver a unique probability measure;
there are papers establishing broader set of arbitrage relations between options
such as Carr and Madan [37]3.

However 1) none of these papers made the bridge between calls and puts via
the forward, thus translating the relationships from arbitrage relations between
options delivering a probability distribution into the necessity of lining up to the
mean of the distribution of the forward, hence the risk-neutral one (in case the
forward is arbitraged.) 2) Nor did any paper show that in the absence of second
moment (say, infinite variance), we can price options very easily. Our methodology
and proofs make no use of the variance. 3) Our method is vastly simpler, more
direct, and robust to changes in assumptions.

2 Further, in a case of scientific puzzle, the exact formula called "Black-Scholes-Merton" was written down
(and used) by Edward Thorp in a heuristic derivation by expectation that did not require dynamic hedging,
see Thorpe [251].

3 See also Green and Jarrow [114] and Nachman [175]. We have known about the possibility of risk neutral
pricing without dynamic hedging since Harrison and Kreps [123] but the theory necessitates extremely
strong –and severely unrealistic –assumptions, such as strictly complete markets and a multiperiod pricing
kernel
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We make no assumption of general market completeness. Options are not re-
dundant securities and remain so. Table 1 summarizes the gist of the paper.4 5

21.2 proof
Define C(St0 , K, t) and P(St0 , K, t) as European-style call and put with strike price K,
respectively, with expiration t, and S0 as an underlying security at times t0, t ≥ t0,
and St the possible value of the underlying security at time t.

21.2.1 Case 1: Forward as risk-neutral measure

Define r = 1
t−t0

∫ t
t0

rsds, the return of a risk-free money market fund and δ =
1

t−t0

∫ t
t0

δsds the payout of the asset (continuous dividend for a stock, foreign in-
terest for a currency).

We have the arbitrage forward price FQ
t :

FQ
t = S0

(1 + r)(t−t0)

(1 + δ)(t−t0) ≈ S0 e(r−δ)(t−t0) (21.1)

by arbitrage, see Keynes 1924. We thus call FQ
t the future (or forward) price ob-

tained by arbitrage, at the risk-neutral rate. Let FP
t be the future requiring a risk-

associated "expected return" m, with expected forward price:

FP
t = S0(1 + m)(t−t0) ≈ S0 em (t−t0). (21.2)

Remark: By arbitrage, all tradable values of the forward price given St0 need to be equal
to FQ

t .

"Tradable" here does not mean "traded", only subject to arbitrage replication by
"cash and carry", that is, borrowing cash and owning the secutity yielding d if the
embedded forward return diverges from r.

21.2.2 Derivations

In the following we take F as having dynamics on its own –irrelevant to whether
we are in case 1 or 2 –hence a unique probability measure Q.

4 The famed Hakkanson paradox is as follows: if markets are complete and options are redudant, why
would someone need them? If markets are incomplete, we may need options but how can we price them?
This discussion may have provided a solution to the paradox: markets are incomplete and we can price
options.

5 Option prices are not unique in the absolute sense: the premium over intrinsic can take an entire spectrum
of values; it is just that the put-call parity constraints forces the measures used for puts and the calls to be
the same and to have the same expectation as the forward. As far as securities go, options are securities
on their own; they just have a strong link to the forward.
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Table 21.1: Main practical differences between the dynamic hedging argument and the static Put-Call
parity with spreading across strikes.

Black-Scholes Merton Put-Call Parity with Spread-
ing

Type Continuous rebalancing. Interpolative static hedge.

Limit Law of large numbers in time
(horizontal).

Law of large numbers across
strikes (vertical).

Market As-
sumptions

1) Continuous Markets, no
gaps, no jumps.

1) Gaps and jumps accept-
able. Possibility of continuous
Strikes, or acceptable number
of strikes.

2) Ability to borrow and lend
underlying asset for all dates.

2) Ability to borrow and lend
underlying asset for single for-
ward date.

3) No transaction costs in trad-
ing asset.

3) Low transaction costs in
trading options.

Probability Dis-
tribution

Requires all moments to be fi-
nite. Excludes the class of
slowly varying distributions

Requires finite 1st moment (in-
finite variance is acceptable).

Market Com-
pleteness

Achieved through dynamic
completeness

Not required (in the tradi-
tional sense)

Realism of As-
sumptions

Low High

Convergence Uncertain; one large jump
changes expectation

Robust

Fitness to Real-
ity

Only used after "fudging"
standard deviations per strike.

Portmanteau, using specific
distribution adapted to reality

Define Ω = [0, ∞) = AK ∪ Ac
K where AK = [0, K] and Ac

K = (K, ∞).

Consider a class of standard (simplified) probability spaces (Ω, µi) indexed by i,
where µi is a probability measure, i.e., satisfying

∫
Ω dµi = 1.
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Theorem 6

For a given maturity T, there is a unique measure µQ that prices European puts and
calls by expectation of terminal payoff.

This measure can be risk-neutral in the sense that it prices the forward FQ
t , but

does not have to be and imparts rate of return to the stock embedded in the for-
ward.

Lemma 21.1
For a given maturity T, there exist two measures µ1 and µ2 for European calls and puts
of the same maturity and same underlying security associated with the valuation by expec-
tation of terminal payoff, which are unique such that, for any call and put of strike K, we
have:

C =
∫

Ω
fC dµ1 , (21.3)

and
P =

∫

Ω
fP dµ2 , (21.4)

respectively, and where fC and fP are (St − K)+ and (K− St)+ respectively.

Proof. For clarity, set r and δ to 0 without a loss of generality. By Put-Call Parity
Arbitrage, a positive holding of a call ("long") and negative one of a put ("short")
replicates a tradable forward; because of P/L variations, using positive sign for
long and negative sign for short:

C(St0 , K, t)− P(St0 , K, t) + K = FP
t (21.5)

necessarily since FP
t is tradable.

Put-Call Parity holds for all strikes, so:

C(St0 , K + ∆K, t)− P(St0 , K + ∆K, t) + K + ∆K = FP
t (21.6)

for all K ∈ Ω

Now a Call spread in quantities 1
∆K , expressed as

C(St0 , K, t)− C(St0 , K + ∆K, t),

delivers $1 if St > K + ∆K (that is, corresponds to the indicator function 1S>K+∆K),
0 if St ≤ K (or 1S>K), and the quantity times St − K if K < St ≤ K + ∆K, that is,
between 0 and $1 (see Breeden and Litzenberger, 1978[31]). Likewise, consider the
converse argument for a put, with ∆K < St.

At the limit, for ∆K → 0

∂C(St0 , K, t)
∂K

= −P(St > K) = −
∫

Ac
K

dµ1. (21.7)
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By the same argument:

∂P(St0 , K, t)
∂K

=
∫

AK
dµ2 = 1−

∫

Ac
K

dµ2. (21.8)

As semi-closed intervals generate the whole Borel σ-algebra on Ω, this shows
that µ1and µ2 are unique.

Lemma 21.2
The probability measures of puts and calls are the same, namely for each Borel set A in Ω,
µ1(A) = µ2(A).

Proof. Combining Equations 21.5 and 21.6, dividing by 1
∆K and taking ∆K → 0:

− ∂C(St0 , K, t)
∂K

+
∂P(St0 , K, t)

∂K
= 1 (21.9)

for all values of K, so

∫

Ac
K

dµ1 =
∫

Ac
K

dµ2, (21.10)

hence µ1(AK) = µ2(AK) for all K ∈ [0, ∞). This equality being true for any semi-
closed interval, it extends to any Borel set.

Lemma 21.3
Puts and calls are required, by static arbitrage, to be evaluated at same as risk-neutral
measure µQ as the tradable forward.

Proof.

FP
t =

∫

Ω
Ft dµQ; (21.11)

from Equation 21.5

∫

Ω
fC(K) dµ1 −

∫

Ω
fP(K) dµ1 =

∫

Ω
Ft dµQ − K (21.12)

Taking derivatives on both sides, and since fC − fP = S0 + K, we get the Radon-
Nikodym derivative:

dµQ
dµ1

= 1 (21.13)

for all values of K.
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21.3 case where the forward is not risk neutral
Consider the case where Ft is observable, tradable, and use it solely as an under-
lying security with dynamics on its own. In such a case we can completely ignore
the dynamics of the nominal underlying S, or use a non-risk neutral "implied"

rate linking cash to forward, m∗ =
log
(

F
S0

)

t−t0
. the rate m can embed risk premium,

difficulties in financing, structural or regulatory impediments to borrowing, with
no effect on the final result.

In that situation, it can be shown that the exact same results as before apply, by
remplacing the measure µQ by another measure µQ∗ . Option prices remain unique
6.

21.4 comment
We have replaced the complexity and intractability of dynamic hedging with a
simple, more benign interpolation problem, and explained the performance of pre-
Black-Scholes option operators using simple heuristics and rules, bypassing the
structure of the theorems of financial economics.

Options can remain non-redundant and markets incomplete: we are just arguing
here for a form of arbitrage pricing (which includes risk-neutral pricing at the level
of the expectation of the probability measure), nothing more. But this is sufficient
for us to use any probability distribution with finite first moment, which includes
the Lognormal, which recovers Black-Scholes.

A final comparison. In dynamic hedging, missing a single hedge, or encounter-
ing a single gap (a tail event) can be disastrous —as we mentioned, it requires a
series of assumptions beyond the mathematical, in addition to severe and highly
unrealistic constraints on the mathematical. Under the class of fat tailed distribu-
tions, increasing the frequency of the hedges does not guarantee reduction of risk.
Further, the standard dynamic hedging argument requires the exact specification
of the risk-neutral stochastic process between t0 and t, something econometrically
unwieldy, and which is generally reverse engineered from the price of options,
as an arbitrage-oriented interpolation tool rather than as a representation of the
process.

Here, in our Put-Call Parity based methodology, our ability to track the risk
neutral distribution is guaranteed by adding strike prices, and since probabilities
add up to 1, the degrees of freedom that the recovered measure µQ has in the
gap area between a strike price K and the next strike up, K + ∆K, are severely
reduced, since the measure in the interval is constrained by the difference

∫ c
AK

dµ−∫ c
AK+∆K

dµ. In other words, no single gap between strikes can significantly affect
the probability measure, even less the first moment, unlike with dynamic hedging.

6 We assumed 0 discount rate for the proofs; in case of nonzero rate, premia are discounted at the rate of
the arbitrage operator
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In fact it is no different from standard kernel smoothing methods for statistical
samples, but applied to the distribution across strikes.7

The assumption about the presence of strike prices constitutes a natural condi-
tion: conditional on having a practical discussion about options, options strikes
need to exist. Further, as it is the experience of the author, market-makers can add
over-the-counter strikes at will, should they need to do so.

acknowledgments
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7 For methods of interpolation of implied probability distribution between strikes, see Avellaneda et al.[4].
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B L A C K-S C H O L E S - M E RTO N
F O R M U L A ∗,‡

O
ption traders use a heuristically derived pricing formula which

they adapt by fudging and changing the tails and skewness by
varying one parameter, the standard deviation of a Gaussian.
Such formula is popularly called "Black-Scholes-Merton" ow-
ing to an attributed eponymous discovery (though changing

the standard deviation parameter is in contradiction with it). However, we
have historical evidence that: (1) the said Black, Scholes and Merton did not
invent any formula, just found an argument to make a well known (and used)
formula compatible with the economics establishment, by removing the risk
parameter through dynamic hedging, (2) option traders use (and evidently
have used since 1902) sophisticated heuristics and tricks more compatible
with the previous versions of the formula of Louis Bachelier and Edward O.
Thorp (that allow a broad choice of probability distributions) and removed
the risk parameter using put-call parity, (3) option traders did not use the
Black-Scholes-Merton formula or similar formulas after 1973 but continued
their bottom-up heuristics more robust to the high impact rare event. The
chapter draws on historical trading methods and 19th and early 20th century
references ignored by the finance literature. It is time to stop using the wrong
designation for option pricing.

22.1 breaking the chain of transmission
For us, practitioners, theories should arise from practice 2. This explains our con-
cern with the "scientific" notion that practice should fit theory. Option hedging,
pricing, and trading is neither philosophy nor mathematics. It is a rich craft with

Research chapter.
2 For us, in this discussion, a "practitioner" is deemed to be someone involved in repeated decisions about

option hedging, that is with a risk-P/L and skin in the game, not a support quant who writes pricing
software or an academic who provides consulting advice.
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traders learning from traders (or traders copying other traders) and tricks develop-
ing under evolution pressures, in a bottom-up manner. It is techne, not episteme.
Had it been a science it would not have survived for the empirical and scientific fit-
ness of the pricing and hedging theories offered are, we will see, at best, defective
and unscientific (and, at the worst, the hedging methods create more risks than
they reduce). Our approach in this chapter is to ferret out historical evidence of
techne showing how option traders went about their business in the past.

Options, we will show, have been extremely active in the pre-modern finance
world. Tricks and heuristically derived methodologies in option trading and risk
management of derivatives books have been developed over the past century, and
used quite effectively by operators. In parallel, many derivations were produced
by mathematical researchers. The economics literature, however, did not recognize
these contributions, substituting the rediscoveries or subsequent re formulations
done by (some) economists. There is evidence of an attribution problem with
Black-Scholes-Merton option formula , which was developed, used, and adapted
in a robust way by a long tradition of researchers and used heuristically by option
book runners. Furthermore, in a case of scientific puzzle, the exact formula called
Black-Sholes-Merton was written down (and used) by Edward Thorp which, para-
doxically, while being robust and realistic, has been considered unrigorous. This
raises the following: 1) The Black-Scholes-Merton innovation was just a neoclassi-
cal finance argument, no more than a thought experiment 3, 2) We are not aware
of traders using their argument or their version of the formula.

It is high time to give credit where it belongs.

22.2 introduction/summary

22.2.1 Black-Scholes was an argument

Option traders call the formula they use the Black-Scholes-Merton formula without
being aware that by some irony, of all the possible options formulas that have been
produced in the past century, what is called the Black-Scholes-Merton formula
(after Black and Scholes, 1973, and Merton, 1973) is the one the furthest away from
what they are using. In fact of the formulas written down in a long history it is the
only formula that is fragile to jumps and tail events.

First, something seems to have been lost in translation: Black and Scholes [25]
and Merton [172] actually never came up with a new option formula, but only an
theoretical economic argument built on a new way of deriving, rather re-deriving,
an already existing and well known formula. The argument, we will see, is ex-
tremely fragile to assumptions. The foundations of option hedging and pricing
were already far more firmly laid down before them. The Black-Scholes-Merton

3 Here we question the notion of confusing thought experiments in a hypothetical world, of no predictive
power, with either science or practice. The fact that the Black-Scholes-Merton argument works in a Platonic
world and appears to be elegant does not mean anything since one can always produce a Platonic world
in which a certain equation works, or in which a rigorous proof can be provided, a process called reverse-
engineering.
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Figure 22.1: Louis Bachelier, who came up with
an option formula based on expectation. It is
based on more rigorous foundations than the
Black-Scholes dynamic hedging argument as it
does not require a thin-tailed distribution. Few
people are aware of the fact that the Black-Scholes
so-called discovery was an argument to remove
the expectation of the underlying security, not
the derivation of a new equation.

argument, simply, is that an option can be hedged using a certain methodology
called dynamic hedging and then turned into a risk-free instrument, as the port-
folio would no longer be stochastic. Indeed what Black, Scholes and Merton did
was marketing, finding a way to make a well-known formula palatable to the eco-
nomics establishment of the time, little else, and in fact distorting its essence.

Such argument requires strange far-fetched assumptions: some liquidity at the
level of transactions, knowledge of the probabilities of future events (in a neoclassi-
cal Arrow-Debreu style) , and, more critically, a certain mathematical structure that
requires thin-tails, or mild randomness, on which, later4. The entire argument is in-
deed, quite strange and rather inapplicable for someone clinically and observation-
driven standing outside conventional neoclassical economics. Simply, the dynamic
hedging argument is dangerous in practice as it subjects you to blowups; it makes
no sense unless you are concerned with neoclassical economic theory. The Black-
Scholes-Merton argument and equation flow a top-down general equilibrium the-
ory, built upon the assumptions of operators working in full knowledge of the
probability distribution of future outcomes in addition to a collection of assump-
tions that, we will see, are highly invalid mathematically, the main one being the
ability to cut the risks using continuous trading which only works in the very nar-
rowly special case of thin-tailed distributions. But it is not just these flaws that
make it inapplicable: option traders do not buy theories , particularly specula-
tive general equilibrium ones, which they find too risky for them and extremely
lacking in standards of reliability. A normative theory is, simply, not good for

4 Of all the misplaced assumptions of Black Scholes that cause it to be a mere thought experiment, though
an extremely elegant one, a flaw shared with modern portfolio theory, is the certain knowledge of future
delivered variance for the random variable (or, equivalently, all the future probabilities). This is what
makes it clash with practice the rectification by the market fattening the tails is a negation of the Black-
Scholes thought experiment.
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decision-making under uncertainty (particularly if it is in chronic disagreement
with empirical evidence). People may take decisions based on speculative theories,
but avoid the fragility of theories in running their risks.

Yet professional traders, including the authors (and, alas, the Swedish Academy
of Science) have operated under the illusion that it was the Black-Scholes-Merton
formula they actually used we were told so. This myth has been progressively
reinforced in the literature and in business schools, as the original sources have
been lost or frowned upon as anecdotal (Merton [174]).

Figure 22.2: The typical
"risk reduction" performed
by the Black-Scholes-
Merton argument. These
are the variations of a dy-
namically hedged portfolio
(and a quite standard one).
BSM indeed "smoothes"
out variations but exposes
the operator to massive tail
events reminiscent of such
blowups as LTCM. Other
option formulas are robust
to the rare event and make
no such claims.

This discussion will present our real-world, ecological understanding of option
pricing and hedging based on what option traders actually do and did for more
than a hundred years.

This is a very general problem. As we said, option traders develop a chain of
transmission of techne, like many professions. But the problem is that the chain
is often broken as universities do not store the acquired skills by operators. Effec-
tively plenty of robust heuristically derived implementations have been developed
over the years, but the economics establishment has refused to quote them or ac-
knowledge them. This makes traders need to relearn matters periodically. Failure
of dynamic hedging in 1987, by such firm as Leland O ’ ŹBrien Rubinstein, for in-
stance, does not seem to appear in the academic literature published after the event
(Merton, [174], Rubinstein,[205], Ross [203]); to the contrary dynamic hedging is
held to be a standard operation 5.

There are central elements of the real world that can escape them academic re-
search without feedback from practice (in a practical and applied field) can cause
the diversions we witness between laboratory and ecological frameworks. This ex-
plains why so many finance academics have had the tendency to produce smooth
returns, then blow up using their own theories6. We started the other way around,

5 For instance how mistakes never resurface into the consciousness, Mark Rubinstein was awarded in 1995
the Financial Engineer of the Year award by the International Association of Financial Engineers. There
was no mention of portfolio insurance and the failure of dynamic hedging.

6 For a standard reaction to a rare event, see the following: "Wednesday is the type of day people will
remember in quant-land for a very long time," said Mr. Rothman, a University of Chicago Ph.D. who ran
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first by years of option trading doing million of hedges and thousands of option
trades. This in combination with investigating the forgotten and ignored ancient
knowledge in option pricing and trading we will explain some common myths
about option pricing and hedging. There are indeed two myths:

• That we had to wait for the Black-Scholes-Merton options formula to trade
the product, price options, and manage option books. In fact the introduction
of the Black, Scholes and Merton argument increased our risks and set us
back in risk management. More generally, it is a myth that traders rely on
theories, even less a general equilibrium theory, to price options.

• That we use the Black-Scholes-Merton options pricing formula. We, simply
don’t.

In our discussion of these myth we will focus on the bottom-up literature on
option theory that has been hidden in the dark recesses of libraries. And that
addresses only recorded matters not the actual practice of option trading that has
been lost.

22.3 myth 1: traders did not price options before bsm
It is assumed that the Black-Scholes-Merton theory is what made it possible for
option traders to calculate their delta hedge (against the underlying) and to price
options. This argument is highly debatable, both historically and analytically.

Options were actively trading at least already in the 1600 as described by Joseph
De La Vega implying some form of techneń, a heuristic method to price them and
deal with their exposure. De La Vega describes option trading in the Netherlands,
indicating that operators had some expertise in option pricing and hedging. He
diffusely points to the put-call parity, and his book was not even meant to teach
people about the technicalities in option trading. Our insistence on the use of
Put-Call parity is critical for the following reason: The Black-Scholes-Merton Źs
claim to fame is removing the necessity of a risk-based drift from the underlying
security to make the trade risk-neutral. But one does not need dynamic hedging
for that: simple put call parity can suffice (Derman and Taleb, 2005), as we will
discuss later. And it is this central removal of the risk-premium that apparently
was behind the decision by the Nobel committee to grant Merton and Scholes the
(then called) Bank of Sweden Prize in Honor of Alfred Nobel: Black, Merton and
Scholes made a vital contribution by showing that it is in fact not necessary to
use any risk premium when valuing an option. This does not mean that the risk
premium disappears; instead it is already included in the stock price. It is for
having removed the effect of the drift on the value of the option, using a thought
experiment, that their work was originally cited, something that was mechanically
present by any form of trading and converting using far simpler techniques.

a quantitative fund before joining Lehman Brothers. "Events that models only predicted would happen
once in 10,000 years happened every day for three days." One "Quant Sees Shakeout For the Ages – ’10,000
Years" By Kaja Whitehouse,Wall Street Journal August 11, 2007; Page B3.
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Options have a much richer history than shown in the conventional literature.
Forward contracts seems to date all the way back to Mesopotamian clay tablets
dating all the way back to 1750 B.C. Gelderblom and Jonker [104] show that Ams-
terdam grain dealers had used options and forwards already in 1550.

In the late 1800 and the early 1900 there were active option markets in London
and New York as well as in Paris and several other European exchanges. Markets it
seems, were active and extremely sophisticated option markets in 1870. Kairys and
Valerio (1997) discuss the market for equity options in USA in the 1870s, indirectly
showing that traders were sophisticated enough to price for tail events7.

There was even active option arbitrage trading taking place between some of
these markets. There is a long list of missing treatises on option trading: we traced
at least ten German treatises on options written between the late 1800s and the
hyperinflation episode8.

22.4 methods and derivations
One informative extant source, Nelson [176], speaks volumes: An option trader
and arbitrageur, S.A. Nelson published a book The A B C of Options and Arbitrage
based on his observations around the turn of the twentieth century. According to
Nelson (1904) up to 500 messages per hour and typically 2000 to 3000 messages
per day were sent between the London and the New York market through the ca-
ble companies. Each message was transmitted over the wire system in less than a
minute. In a heuristic method that was repeated in Dynamic Hedging [225] , Nel-
son, describe in a theory-free way many rigorously clinical aspects of his arbitrage
business: the cost of shipping shares, the cost of insuring shares, interest expenses,
the possibilities to switch shares directly between someone being long securities
in New York and short in London and in this way saving shipping and insurance
costs, as well as many more tricks etc.

7 The historical description of the market is informative until Kairys and Valerio [140] try to gauge whether
options in the 1870s were underpriced or overpriced (using Black-Scholes-Merton style methods). There
was one tail-event in this period, the great panic of September 1873. Kairys and Valerio find that holding
puts was profitable, but deem that the market panic was just a one-time event :
"However, the put contracts benefit from the financial panic that hit the market in September, 1873. View-
ing this as a one-time event, we repeat the analysis for puts excluding any unexpired contracts written
before the stock market panic."
Using references to the economic literature that also conclude that options in general were overpriced
in the 1950s 1960s and 1970s they conclude: "Our analysis shows that option contracts were generally
overpriced and were unattractive for retail investors to purchase. They add: İEmpirically we find that both
put and call options were regularly overpriced relative to a theoretical valuation model." These results are
contradicted by the practitioner Nelson (1904): "The majority of the great option dealers who have found
by experience that it is the givers, and not the takers, of option money who have gained the advantage in
the long run."

8 Here is a partial list: Bielschowsky, R (1892): Ueber die rechtliche Natur der Prämiengeschäfte, Bresl.
Genoss.-Buchdr; Granichstaedten-Czerva, R (1917): Die Prämiengeschäfte an der Wiener Börse, Frank-
furt am Main; Holz, L. (1905) Die Prämiengeschäfte, Thesis (doctoral)–Universität Rostock; Kitzing, C.
(1925):Prämiengeschäfte : Vorprämien-, Rückprämien-, Stellagen- u. Nochgeschäfte ; Die solidesten Spekulation-
sgeschäfte mit Versicherg auf Kursverlust, Berlin; Leser, E, (1875): Zur Geschichte der Prämiengeschäfte; Szkolny,
I. (1883): Theorie und praxis der prämiengeschäfte nach einer originalen methode dargestellt., Frankfurt am Main;
Author Unknown (1925): Das Wesen der Prämiengeschäfte, Berlin : Eugen Bab & Co., Bankgeschäft.
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Figure 22.3: Espen Haug
(coauthor of chapter) with
Mandelbrot and this author
in 2007.

The formal financial economics canon does not include historical sources from
outside economics, a mechanism discussed in Taleb (2007)[227]. The put-call parity
was according to the formal option literature first fully described by Stoll [219], but
neither he nor others in the field even mention Nelson. Not only was the put-call
parity argument fully understood and described in detail by Nelson, but he, in
turn, makes frequent reference to Higgins (1902) [129]. Just as an example Nelson
(1904) referring to Higgins (1902) writes:

It may be worthy of remark that calls are more often dealt than puts
the reason probably being that the majority of punters in stocks and
shares are more inclined to look at the bright side of things, and there-
fore more often see a rise than a fall in prices.

This special inclination to buy calls and to leave the puts severely
alone does not, however, tend to make calls dear and puts cheap, for it
can be shown that the adroit dealer in options can convert a put into
a call, a call into a put, a call or more into a put-and-call, in fact any
option into another, by dealing against it in the stock. We may therefore
assume, with tolerable accuracy, that the call of a stock at any moment
costs the same as the put of that stock, and half as much as the Put-and-
Call.

The Put-and-Call was simply a put plus a call with the same strike and maturity,
what we today would call a straddle. Nelson describes the put-call parity over
many pages in full detail. Static market neutral delta hedging was also known at
that time, in his book Nelson for example writes:

Sellers of options in London as a result of long experience, if they sell
a Call, straightway buy half the stock against which the Call is sold; or
if a Put is sold; they sell half the stock immediately.

We must interpret the value of this statement in the light that standard options in
London at that time were issued at-the-money (as explicitly pointed out by Nelson);
furthermore, all standard options in London were European style. In London in- or
out-of-the-money options were only traded occasionally and were known as fancy



382 option traders never use the black-scholes-merton formula∗,‡

options. It is quite clear from this and the rest of Nelson’s book that the option
dealers were well aware that the delta for at-the-money options was approximately
50%. As a matter of fact, at-the-money options trading in London at that time were
adjusted to be struck to be at-the-money forward, in order to make puts and calls
of the same price. We know today that options that are at-the-money forward and
do not have very long time to maturity have a delta very close to 50% (naturally
minus 50% for puts). The options in London at that time typically had one month
to maturity when issued.

Nelson also diffusely points to dynamic delta hedging, and that it worked better
in theory than practice (see Haug [125]. It is clear from all the details described
by Nelson that options in the early 1900 traded actively and that option traders at
that time in no way felt helpless in either pricing or in hedging them.

Herbert Filer was another option trader that was involved in option trading from
1919 to the 1960s. Filer(1959) describes what must be considered a reasonable
active option market in New York and Europe in the early 1920s and 1930s. Filer
mentions however that due to World War II there was no trading on the European
Exchanges, for they were closed. Further, he mentions that London option trading
did not resume before 1958. In the early 1900, option traders in London were
considered to be the most sophisticated, according to [177]. It could well be that
World War II and the subsequent shutdown of option trading for many years was
the reason known robust arbitrage principles about options were forgotten and
almost lost, to be partly re-discovered by finance professors such as Stoll.

Earlier, in 1908, Vinzenz Bronzin published a book deriving several option pricing
formulas, and a formula very similar to what today is known as the Black-Scholes-
Merton formula, see also Hafner and Zimmermann (2007, 2009) [117]. Bronzin
based his risk-neutral option valuation on robust arbitrage principles such as the
put-call parity and the link between the forward price and call and put options in
a way that was rediscovered by Derman and Taleb (2005)9. Indeed, the put-call
parity restriction is sufficient to remove the need to incorporate a future return in
the underlying security it forces the lining up of options to the forward price10.

Again, in 1910 Henry Deutsch describes put-call parity but in less detail than
Higgins and Nelson. In 1961 Reinach again described the put-call parity in quite
some detail (another text typically ignored by academics). Traders at New York
stock exchange specializing in using the put-call parity to convert puts into calls
or calls into puts was at that time known as Converters. Reinach (1961) [198]:

9 The argument Derman Taleb(2005) [63] was present in [225] but remained unnoticed.
10 Ruffino and Treussard (2006) [204] accept that one could have solved the risk-premium by happenstance,

not realizing that put-call parity was so extensively used in history. But they find it insufficient. Indeed
the argument may not be sufficient for someone who subsequently complicated the representation of the
world with some implements of modern finance such as "stochastic discount rates" while simplifying it
at the same time to make it limited to the Gaussian and allowing dynamic hedging. They write that
the use of a non-stochastic discount rate common to both the call and the put options is inconsistent
with modern equilibrium capital asset pricing theory. Given that we have never seen a practitioner use
stochastic discount rate, we, like our option trading predecessors, feel that put-call parity is sufficient &
does the job.
The situation is akin to that of scientists lecturing birds on how to fly, and taking credit for their subsequent
performance except that here it would be lecturing them the wrong way.
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Although I have no figures to substantiate my claim, I estimate that
over 60 percent of all Calls are made possible by the existence of Con-
verters.

In other words the converters (dealers) who basically operated as market makers
were able to operate and hedge most of their risk by statically hedging options
with options. Reinach wrote that he was an option trader (Converter) and gave
examples on how he and his colleagues tended to hedge and arbitrage options
against options by taking advantage of options embedded in convertible bonds:

Writers and traders have figured out other procedures for making profits writ-
ing Puts & Calls. Most are too specialized for all but the seasoned professional.
One such procedure is the ownership of a convertible bond and then writing of
Calls against the stock into which the bonds are convertible. If the stock is called
converted and the stock is delivered.

Higgins, Nelson and Reinach all describe the great importance of the put-call
parity and to hedge options with options. Option traders were in no way helpless
in hedging or pricing before the Black-Scholes-Merton formula. Based on simple
arbitrage principles they were able to hedge options more robustly than with Black-
Scholes-Merton. As already mentioned static market-neutral delta hedging was
described by Higgins and Nelson in 1902 and 1904. Also, W. D. Gann (1937)
discusses market neutral delta hedging for at-the-money options, but in much less
details than Nelson (1904). Gann also indicates some forms of auxiliary dynamic
hedging.

Mills (1927) illustrates how jumps and fat tails were present in the literature in
the pre-Modern Portfolio Theory days. He writes: "(...) distribution may depart
widely from the Gaussian type because the influence of one or two extreme price
changes".

22.4.1 Option formulas and Delta Hedging

Which brings us to option pricing formulas. The first identifiable one was Bachelier
(1900) [5]. Sprenkle in 1961 [215] extended Bacheliers work to assume lognormal
rather than normal distributed asset price. It also avoids discounting (to no signif-
icant effect since many markets, particularly the U.S., option premia were paid at
expiration).

James Boness (1964) [26] also assumed a lognormal asset price. He derives a
formula for the price of a call option that is actually identical to the Black-Scholes-
Merton 1973 formula, but the way Black, Scholes and Merton derived their formula
based on continuous dynamic delta hedging or alternatively based on CAPM they
were able to get independent of the expected rate of return. It is in other words
not the formula itself that is considered the great discovery done by Black, Scholes
and Merton, but how they derived it. This is among several others also pointed
out by Rubinstein (2006) [206]:
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The real significance of the formula to the financial theory of investment lies not
in itself, but rather in how it was derived. Ten years earlier the same formula had
been derived by Case M. Sprenkle [215] and A. James Boness [26].

Samuelson (1969) and Thorp (1969) published somewhat similar option pricing
formulas to Boness and Sprenkle. Thorp (2007) claims that he actually had an iden-
tical formula to the Black-Scholes-Merton formula programmed into his computer
years before Black, Scholes and Merton published their theory.

Now, delta hedging. As already mentioned static market-neutral delta hedging
was clearly described by Higgins and Nelson 1902 and 1904. Thorp and Kassouf
(1967) presented market neutral static delta hedging in more details, not only for
at-the-money options, but for options with any delta. In his 1969 paper Thorp is
shortly describing market neutral static delta hedging, also briefly pointed in the
direction of some dynamic delta hedging, not as a central pricing device, but a
risk-management tool. Filer also points to dynamic hedging of options, but with-
out showing much knowledge about how to calculate the delta. Another ignored
and forgotten text is a book/booklet published in 1970 by Arnold Bernhard & Co.
The authors are clearly aware of market neutral static delta hedging or what they
name balanced hedge for any level in the strike or asset price. This book has multi-
ple examples of how to buy warrants or convertible bonds and construct a market
neutral delta hedge by shorting the right amount of common shares. Arnold Bern-
hard & Co also published deltas for a large number of warrants and convertible
bonds that they distributed to investors on Wall Street.

Referring to Thorp and Kassouf (1967), Black, Scholes and Merton took the idea
of delta hedging one step further, Black and Scholes (1973):

If the hedge is maintained continuously, then the approximations mentioned
above become exact, and the return on the hedged position is completely inde-
pendent of the change in the value of the stock. In fact, the return on the hedged
position becomes certain. This was pointed out to us by Robert Merton.

This may be a brilliant mathematical idea, but option trading is not mathematical
theory. It is not enough to have a theoretical idea so far removed from reality that
is far from robust in practice. What is surprising is that the only principle option
traders do not use and cannot use is the approach named after the formula, which
is a point we discuss next.

22.5 myth 2: traders today use black-scholes
Traders don’t do Valuation.

First, operationally, a price is not quite valuation. Valuation requires a strong
theoretical framework with its corresponding fragility to both assumptions and
the structure of a model. For traders, a price produced to buy an option when one
has no knowledge of the probability distribution of the future is not valuation, but
an expedient. Such price could change. Their beliefs do not enter such price. It
can also be determined by his inventory.
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This distinction is critical: traders are engineers, whether boundedly rational (or
even non interested in any form of probabilistic rationality), they are not privy
to informational transparency about the future states of the world and their prob-
abilities. So they do not need a general theory to produce a price merely the
avoidance of Dutch-book style arbitrages against them, and the compatibility with
some standard restriction: In addition to put-call parity, a call of a certain strike K
cannot trade at a lower price than a call K + ∆K (avoidance of negative call and put
spreads), a call struck at K and a call struck at K + 2∆K cannot be more expensive
than twice the price of a call struck at K + ∆ (negative butterflies), horizontal cal-
endar spreads cannot be negative (when interest rates are low), and so forth. The
degrees of freedom for traders are thus reduced: they need to abide by put-call
parity and compatibility with other options in the market.

In that sense, traders do not perform valuation with some pricing kernel until
the expiration of the security, but, rather, produce a price of an option compatible
with other instruments in the markets, with a holding time that is stochastic. They
do not need top-down science.

22.5.1 When do we value?

If you find traders operated solo, in a desert island, having for some to produce an
option price and hold it to expiration, in a market in which the forward is absent,
then some valuation would be necessary but then their book would be minuscule.
And this thought experiment is a distortion: people would not trade options unless
they are in the business of trading options, in which case they would need to have
a book with offsetting trades. For without offsetting trades, we doubt traders
would be able to produce a position beyond a minimum (and negligible) size as
dynamic hedging not possible. (Again we are not aware of many non-blownup
option traders and institutions who have managed to operate in the vacuum of the
Black Scholes-Merton argument). It is to the impossibility of such hedging that we
turn next.

22.6 on the mathematical impossibility of dynamic hedging
Finally, we discuss the severe flaw in the dynamic hedging concept. It assumes,
nay, requires all moments of the probability distribution to exist11.

Assume that the distribution of returns has a scale-free or fractal property that
we can simplify as follows: for x large enough, (i.e. in the tails), P(X>nx)

P(X>x) depends
on n, not on x. In financial securities, say, where X is a daily return, there is no
reason for P(X>20%)/P(X>10%) to be different from P(X>15%)/P(X>7.5%). This
self-similarity at all scales generates power law, or Paretian, tails, i.e., above a
crossover point, P(X > x) = Kxα. It happens, looking at millions of pieces of

11 Merton (1992) seemed to accept the inapplicability of dynamic hedging but he perhaps thought that
these ills would be cured thanks to his prediction of the financial world "spiraling towards dynamic
completeness". Fifteen years later, we have, if anything, spiraled away from it.
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data, that such property holds in markets all markets, baring sample error. For
overwhelming empirical evidence, see Mandelbrot (1963), which predates Black-
Scholes-Merton (1973) and the jump-diffusion of Merton (1976); see also Stanley
et al. (2000), and Gabaix et al. (2003). The argument to assume the scale-free is
as follows: the distribution might have thin tails at some point (say above some
value of X). But we do not know where such point is we are epistemologically in
the dark as to where to put the boundary, which forces us to use infinity.

Some criticism of these "true fat-tails" accept that such property might apply for
daily returns, but, owing to the Central Limit Theorem, the distribution is held to
become Gaussian under aggregation for cases in which α is deemed higher than
2. Such argument does not hold owing to the preasymptotics of scalable distribu-
tions: Bouchaud and Potters (2003) and Mandelbrot and Taleb (2007) argue that
the presasymptotics of fractal distributions are such that the effect of the Central
Limit Theorem are exceedingly slow in the tails in fact irrelevant. Furthermore,
there is sampling error as we have less data for longer periods, hence fewer tail
episodes, which give an in-sample illusion of thinner tails. In addition, the point
that aggregation thins out the tails does not hold for dynamic hedging in which
the operator depends necessarily on high frequency data and their statistical prop-
erties. So long as it is scale-free at the time period of dynamic hedge, higher
moments become explosive, infinite to disallow the formation of a dynamically
hedge portfolio. Simply a Taylor expansion is impossible as moments of higher
order that 2 matter critically one of the moments is going to be infinite.

The mechanics of dynamic hedging are as follows. Assume the risk-free interest
rate of 0 with no loss of generality. The canonical Black-Scholes-Merton pack-
age consists in selling a call and purchasing shares of stock that provide a hedge
against instantaneous moves in the security. Thus the portfolio π locally "hedged"
against exposure to the first moment of the distribution is the following:

π = −C +
∂C
∂S

S

where C is the call price, and S the underlying security. Take the discrete time
change in the values of the portfolio

∆π = −∆C +
∂C
∂S

∆S

By expanding around the initial values of S, we have the changes in the portfolio
in discrete time. Conventional option theory applies to the Gaussian in which all
orders higher than ∆S2 disappear rapidly.

Taking expectations on both sides, we can see here very strict requirements on
moment finiteness: all moments need to converge. If we include another term,
of order ∆S3, such term may be of significance in a probability distribution with
significant cubic or quartic terms. Indeed, although the nth derivative with respect
to S can decline very sharply, for options that have a strike K away from the cen-
ter of the distribution, it remains that the delivered higher orders of S are rising
disproportionately fast for that to carry a mitigating effect on the hedges. So here
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we mean all moments–no approximation. The logic of the Black-Scholes-Merton
so-called solution thanks to Ito’s lemma was that the portfolio collapses into a de-
terministic payoff. But let us see how quickly or effectively this works in practice.
The Actual Replication process is as follows: The payoff of a call should be repli-
cated with the following stream of dynamic hedges, the limit of which can be seen
here, between t and T:

lim
∆t→0

(
n=T/∆t

∑
i=1

∂C
∂S

|S=St+(i−1)∆t,t=t+(i−1)∆t,
(
St+i∆t − St+(i−1)∆t

)
)

(22.1)

Such policy does not match the call value: the difference remains stochastic
(while according to Black Scholes it should shrink), unless one lives in a fantasy
world in which such risk reduction is possible.

Further, there is an inconsistency in the works of Merton making us confused
as to what theory finds acceptable: in Merton (1976) he agrees that we can use
Bachelier-style option derivation in the presence of jumps and discontinuities, no
dynamic hedging but only when the underlying stock price is uncorrelated to the
market. This seems to be an admission that dynamic hedging argument applies
only to some securities: those that do not jump and are correlated to the market.

22.6.1 The (confusing) Robustness of the Gaussian

The success of the formula last developed by Thorp, and called Black-Scholes-
Merton was due to a simple attribute of the Gaussian: you can express any prob-
ability distribution in terms of Gaussian, even if it has fat tails, by varying the
standard deviation σ at the level of the density of the random variable. It does
not mean that you are using a Gaussian, nor does it mean that the Gaussian is
particularly parsimonious (since you have to attach a σ for every level of the price).
It simply mean that the Gaussian can express anything you want if you add a func-
tion for the parameter σ, making it a function of strike price and time to expiration.

This volatility smile, i.e., varying one parameter to produce σ(K), or volatility
surface, varying two parameter, σ(S, t) is effectively what was done in different
ways by Dupire (1994, 2005) [72, 73] and Derman [61, 64] see Gatheral (2006 [103]).
They assume a volatility process not because there is necessarily such a thing only
as a method of fitting option prices to a Gaussian. Furthermore, although the
Gaussian has finite second moment (and finite all higher moments as well), you
can express a scalable with infinite variance using Gaussian volatility surface. One
strong constrain on the σ parameter is that it must be the same for a put and call
with same strike (if both are European-style), and the drift should be that of the
forward.

Indeed, ironically, the volatility smile is inconsistent with the Black-Scholes-Merton
theory. This has lead to hundreds if not thousands of papers trying extend (what
was perceived to be) the Black-Scholes-Merton model to incorporate stochastic
volatility and jump-diffusion. Several of these researchers have been surprised
that so few traders actually use stochastic volatility models. It is not a model that
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says how the volatility smile should look like, or evolves over time; it is a hedging
method that is robust and consistent with an arbitrage free volatility surface that
evolves over time.

In other words, you can use a volatility surface as a map, not a territory. How-
ever it is foolish to justify Black-Scholes-Merton on grounds of its use: we repeat
that the Gaussian bans the use of probability distributions that are not Gaussian
whereas non-dynamic hedging derivations (Bachelier, Thorp) are not grounded in
the Gaussian.

22.6.2 Order Flow and Options

It is clear that option traders are not necessarily interested in the probability dis-
tribution at expiration time given that this is abstract, even metaphysical for them.
In addition to the put-call parity constrains that according to evidence was fully
developed already in 1904, we can hedge away inventory risk in options with other
options. One very important implication of this method is that if you hedge op-
tions with options then option pricing will be largely demand and supply based.
This in strong contrast to the Black-Scholes-Merton (1973) theory that based on the
idealized world of geometric Brownian motion with continuous-time delta hedg-
ing then demand and supply for options simply should not affect the price of
options. If someone wants to buy more options the market makers can simply
manufacture them by dynamic delta hedging that will be a perfect substitute for
the option itself.

This raises a critical point: option traders do not estimate the odds of rare events
by pricing out-of-the-money options. They just respond to supply and demand.
The notion of implied probability distribution is merely a Dutch-book compatibil-
ity type of proposition.

22.6.3 Bachelier-Thorp

The argument often casually propounded attributing the success of option volume
to the quality of the Black-Scholes formula is rather weak. It is particularly weak-
ened by the fact that options had been so successful at different time periods and
places.

Furthermore, there is evidence that while both the Chicago Board Options Ex-
change and the Black-Scholes-Merton formula came about in 1973, the model was
"rarely used by traders" before the 1980s (O’Connell, 2001). When one of the au-
thors (Taleb) became a pit trader in 1992, almost two decades after Black-Scholes-
Merton, he was surprised to find that many traders still priced options sheets free,
pricing off the butterfly, and off the conversion, without recourse to any formula.

Even a book written in 1975 by a finance academic appears to credit Thorpe and
Kassouf (1967) – rather than Black-Scholes (1973), although the latter was present
in its bibliography. Auster (1975):
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Sidney Fried wrote on warrant hedges before 1950, but it was not until 1967 that
the book Beat the Market by Edward O. Thorp and Sheen T. Kassouf rigorously,
but simply, explained the short warrant/long common hedge to a wide audience.

We conclude with the following remark. Sadly, all the equations, from the first
(Bachelier), to the last pre-Black-Scholes-Merton (Thorp) accommodate a scale-free
distribution. The notion of explicitly removing the expectation from the forward
was present in Keynes (1924) and later by Blau (1944) â and long a Call short a put
of the same strike equals a forward. These arbitrage relationships appeared to be
well known in 1904.

One could easily attribute the explosion in option volume to the computer age
and the ease of processing transactions, added to the long stretch of peaceful eco-
nomic growth and absence of hyperinflation. From the evidence (once one removes
the propaganda), the development of scholastic finance appears to be an epiphe-
nomenon rather than a cause of option trading. Once again, lecturing birds how
to fly does not allow one to take subsequent credit.

This is why we call the equation Bachelier-Thorp. We were using it all along and
gave it the wrong name, after the wrong method and with attribution to the wrong
persons. It does not mean that dynamic hedging is out of the question; it is just
not a central part of the pricing paradigm. It led to the writing down of a certain
stochastic process that may have its uses, some day, should markets spiral towards
dynamic completeness. But not in the present.





23 O P T I O N P R I C I N G U N D E R P O W E R
L A W S : A R O B U ST H E U R I ST I C ∗,‡

I
n this (research) chapter, we build a heuristic that takes a

given option price in the tails with strike K and extends (for
calls, all strikes > K, for puts all strikes < K) assuming the
continuation falls into what we define as "Karamata constant"
or "Karamata point" beyond which the strong Pareto law holds.

The heuristic produces relative prices for options, with for sole parameter the
tail index α under some mild arbitrage constraints.

Usual restrictions such as finiteness of variance are not required.

The heuristic allows us to scrutinize the volatility surface and test theories
of relative tail option mispricing and overpricing usually built on thin tailed
models and modification of the Black-Scholes formula.

ℓ

log S

Log Survival Function

Figure 23.1: The Karamata point where the
slowly moving function is safely replaced by a
constant L(S) = l. The constant varies whether
we use the price S or its geometric return –but
not the asymptotic slope which corresponds to
the tail index α.

Research chapter, with the Universa team: Brandon Yarckin, Chitpuneet Mann, Damir Delic, and Mark
Spitznagel.
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Figure 23.2: We show a straight Black-
Scholes option price (constant volatil-
ity), one with a volatility "smile", i.e.
the scale increases in the tails, and
power law option prices. Under the
simplified case of a power law distribu-
tion for the underlying, option prices
are linear to strike.

23.1 introduction
The power law class is conventionally defined by the property of the survival func-
tion, as follows. Let X be a random variable belonging to the class of distributions
with a "power law" right tail, that is:

P(X > x) = L(x) x−α (23.1)

where L : [xmin, +∞)→ (0, +∞) is a slowly varying function, defined as limx→+∞
L(kx)
L(x) =

1 for any k > 0 [22].

The survival function of X is called to belong to the "regular variation" class RVα.
More specifically, a function f : R+ → R+ is index varying at infinity with index ρ
( f ∈ RVρ) when

lim
t→∞

f (tx)
f (t)

= xρ .

More practically, there is a point where L(x) approaches its limit, l, becoming a
constant as in Figure 23.1–we call it the "Karamata constant". Beyond such value
the tails for power laws are calibrated using such standard techniques as the Hill
estimator. The distribution in that zone is dubbed the strong Pareto law by B.
Mandelbrot [162],[75].

23.2 call pricing beyond the karamata constant
Now define a European call price C(K) with a strike K and an underlying price S,
K, S ∈ (0, +∞), as (S− K)+, with its valuation performed under some probability
measure P, thus allowing us to price the option as EP(S − K)+ =

∫ ∞
K (S − K)dP.

This allows us to immediately prove the following.



23.2 call pricing beyond the karamata constant 393

23.2.1 First approach, S is in the regular variation class

We start with a simplified case, to build the intuition. Let S have a survival function
in the regular variation class RVα as per 23.1. For all K > l and α > 1,

C(K) =
K1−αlα

α− 1
(23.2)

Remark 21

We note that the parameter l, when derived from an existing option price, contains
all necessary information about the probability distribution below S = l, which under
a given α parameter makes it unnecessary to estimate the mean, the "volatility" (that
is, scale) and other attributes.

Let us assume that α is exogenously set (derived from fitting distributions, or,
simply from experience, in both cases α is supposed to fluctuate minimally [239] ).
We note that C(K) is invariant to distribution calibrations and the only parameters
needed l which, being constant, disappears in ratios. Now consider as set the
market price of an "anchor" tail option in the market is Cm with strike K1, defined
as an option for the strike of which other options are priced in relative value. We

can simply generate all further strikes from l =
(

(α− 1)CmKα−1
1

)1/α
and applying

Eq. 23.2.

Result 1: Relative Pricing under Distribution for S

For K1, K2 ≥ l,

C(K2) =
(

K2
K1

)1−α

C(K1). (23.3)

The advantage is that all parameters in the distributions are eliminated: all we
need is the price of the tail option and the α to build a unique pricing mechanism.

Remark 22: Avoiding confusion about L and α

The tail index α and Karamata constant l should correspond to the assigned distri-
bution for the specific underlying. A tail index α for S in the regular variation class
as as per 23.1 leading to Eq. 23.2 is different from that for r = S−S0

S0
∈ RVα . For

consistency, each should have its own Zipf plot and other representations.

1. If P(X > x) = La(x) x−α, and P( X−X0
X0

> x−X0
X0

) = Lb(x) x−α, the α con-
stant will be the same, but the the various L(.) will be reaching their constant
level at a different rate.

2. If rc = log S
S0

, it is not in the regular variation class, see theorem.

The reason α stays the same is owing to the scale-free attribute of the tail index.
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Theorem 7: Log returns

Let S be a random variable with survival function ϕ(s) = L(s)s−α ∈ RVα, where
L(.) is a slowly varying function. Let rl be the log return rl = log s

s0
. ϕrl (rl) is not

in the RVα class.

Proof. Immediate. The transformation ϕrl (rl) = L(s)s−
log(logα (s))

log(s) .

We note, however, that in practice, although we may need continuous compound-
ing to build dynamics [229], our approach assumes such dynamics are contained
in the anchor option price selected for the analysis (or l). Furthermore there is no
tangible difference, outside the far tail, between log S

S0
and S−S0

S0
.

23.2.2 Second approach, S has geometric returns in the regular variation
class

Let us now apply to real world cases where the returns S−S0
S0

are Paretian. Consider,
for r > l, S = (1 + r)S0, where S0 is the initial value of the underlying and r ∼ P(l, α)
(Pareto I distribution) with survival function

(
K− S0

lS0

)−α

, K > S0(1 + l) (23.4)

and fit to Cm using l = (α−1)1/αC1/α
m (K−S0)1− 1

α

S0
, which, as before shows that practically

all information about the distribution is embedded in l.

Let S−S0
S0

be in the regular variation class. For S ≥ S0(1 + l),

C(K, S0) =
(l S0)α(K− S0)1−α

α− 1
(23.5)

We can thus rewrite Eq. 23.3 to eliminate l:

Result 2: Relative Pricing under Distribution for S−S0
S0

For K1, K2 ≥ (1 + l)S0,

C(K2) =
(

K2 − S0
K1 − S0

)1−α

C(K1). (23.6)
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Figure 23.3: Put Prices in the SP500 using "fix K" as anchor (from Dec 31, 2018 settlement), and
generating an option prices using a tail index α that matches the market (blue) ("model), and in red
prices for α = 2.75. We can see that market prices tend to 1) fit a power law (matches stochastic
volatility with fudged parameters), 2) but with an α that thins the tails. This shows how models
claiming overpricing of tails are grossly misspecified.

Remark 23

Unlike the pricing methods in the Black-Scholes modification class (stochastic and
local volatility models, (see the expositions of Dupire, Derman and Gatheral, [74]
[102], [60], finiteness of variance is not required for our model or option pricing
in general, as shown in [229]. The only requirement is α > 1, that is, finite first
moment.
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Figure 23.4: Same results as in Fig 23.3 but expressed using implied volatility. We match the price
to implied volatility for downside strikes (anchor 90, 85, and 80) using our model vs market, in ratios.
We assume α = 2.75.
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Figure 23.5: The intuition of the Log log plot for
the second calibration

23.3 put pricing
We now consider the put strikes (or the corresponding calls in the negative tail,
which should be priced via put-call parity arbitrage). Unlike with calls, we can
only consider the variations of S−S0

S0
, not the logarithmic returns (nor those of S

taken separately).
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We construct the negative side with a negative return for the underlying. Let
r be the rate of return S = (1 − r)S0, and Let r > l > 0 be Pareto distributed
in the positive domain, with density fr(r) = α lαr−α−1. We have by probabilistic
transformation and rescaling the PDF of the underlying:

fS(S) = −
α
(
− S−S0

lS0

)−α−1

lS0
λ S ∈ [0, (1− l)S0)

where the scaling constant λ =
(

1
(−1)α+1(lα−1)

)
is set in a way to get fs(S) to integrate

to 1. The parameter λ, however, is close to 1, making the correction negligible,
in applications where σ

√
t ≤ 1

2 (σ being the Black-Scholes equivalent implied
volatility and t the time to expiration of the option).

Remarkably, both the parameters l and the scaling λ are eliminated.

Result 3: Put Pricing

For K1, K2 ≤ (1− l)S0,

(23.7)P(K2) = P(K1)
(−1)1−αS−α

0 ((α − 1)K2 + S0)− (K2 − S0) 1−α

(−1)1−αS−α
0 ((α − 1)K1 + S0)− (K1 − S0) 1−α

23.4 arbitrage boundaries
Obviously, there is no arbitrage for strikes higher than the baseline one K1 in
previous equations. For we can verify the Breeden-Litzenberger result [32], where
the density is recovered from the second derivative of the option with respect to
the strike ∂2C(K)

∂K2 |K≥K1 = αK−α−1Lα ≥ 0.

However there remains the possibility of arbitrage between strikes K1 + ∆K, K1,
and K1 − ∆K by violating the following boundary: let BSC(K, σ(K)) be the Black-
Scholes value of the call for strike K with volatility σ(K) a function of the strike
and t time to expiration. We have

C(K1 + ∆K) + BSC(K1 − ∆K) ≥ 2 C(K1), (23.8)

where BSC(K1, σ(K1)) = C(K1). For inequality 23.8 to be satisfied, we further need
an inequality of call spreads, taken to the limit:

∂BSC(K, σ(K))
∂K

|K=K1≥
∂C(K)

∂K
|K=K1 (23.9)
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Such an arbitrage puts a lower bound on the tail index α. Assuming 0 rates to
simplify:

(23.10)

α ≥ 1
− log (K − S0) + log(l) + log (S0)

log




1
2

erfc
(

tσ(K)2 + 2 log(K)− 2 log (S0)
2
√

2
√

tσ(K)

)

−

√
S0
√

tσ′(K)K
log(S0)
tσ(K)2

+ 1
2 exp

(
− log2(K)+log2(S0)

2tσ(K)2
− 1

8 tσ(K)2
)

√
2π





23.5 comments
As we can see in Figure 23.5, stochastic volatility models and similar adaptations
(say, jump-diffusion or standard Poisson variations) eventually fail "out in the tails"
outside the zone for which they were calibrated. There has been poor attempts to
extrapolate the option prices using a fudged thin-tailed probability distribution
rather than a Paretian one –hence the numerous claims in the finance literature on
"overpricing" of tail options combined with some psycholophastering on "dread
risk" are unrigorous on that basis. The proposed methods allow us to approach
such claims with more realism.

Finaly, note that our approach isn’t about absolute mispricing of tail options, but
relative to a given strike closer to the money.
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24 F O U R M I STA K E S I N Q UA N T I TAT I V E
F I N A N C E ∗,‡

W
e discuss Jeff Holman’s (who at the time was, surprisingly, a se-

nior risk officer for a large hedge fund) comments in Quantitative
Finance to illustrate four critical errors students should learn to
avoid:

1. Mistaking tails (4th moment and higher) for volatility (2nd moment)

2. Missing Jensen’s Inequality when calculating return potential

3. Analyzing the hedging results without the performance of the underly-
ing

4. The necessity of a numéraire in finance.

The review of Antifragile by Mr Holman (Dec 4, 2013) is replete with factual,
logical, and analytical errors. We will only list here the critical ones, and ones with
generality to the risk management and quantitative finance communities; these
should be taught to students in quantitative finance as central mistakes to avoid,
so beginner quants and risk managers can learn from these fallacies.

24.1 conflation of second and fourth moments
It is critical for beginners not to fall for the following elementary mistake. Mr
Holman gets the relation of the VIX (volatility contract) to betting on "tail events"
backwards. Let us restate the notion of "tail events" (we saw earlier in the book):
it means a disproportionate role of the tails in determining the properties of distri-
bution, which, mathematically, means a smaller one for the "body".2

Discussion chapter.
2 The point is staring at every user of spreadsheets: kurtosis, or scaled fourth moment, the standard measure

of fattailedness, entails normalizing the fourth moment by the square of the variance.

399
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Mr Holman seems to get the latter part of the attributes of fattailedness in reverse.
It is an error to mistake the VIX for tail events. The VIX is mostly affected by at-the-
money options which corresponds to the center of the distribution, closer to the
second moment not the fourth (at-the-money options are actually linear in their
payoff and correspond to the conditional first moment). As explained about seven-
teen years ago in Dynamic Hedging (Taleb, 1997) (see appendix), in the discussion
on such tail bets, or "fourth moment bets", betting on the disproportionate role
of tail events of fattailedness is done by selling the around-the-money-options (the
VIX) and purchasing options in the tails, in order to extract the second moment
and achieve neutrality to it (sort of becoming "market neutral"). Such a neutrality
requires some type of "short volatility" in the body because higher kurtosis means
lower action in the center of the distribution.

A more mathematical formulation is in the technical version of the Incerto : fat
tails means "higher peaks" for the distribution as, the fatter the tails, the more mar-

kets spend time between µ−
√

1
2

(
5−
√

17
)

σ and µ +
√

1
2

(
5−
√

17
)

σ where σ is

the standard deviation and µ the mean of the distribution (we used the Gaussian
here as a base for ease of presentation but the argument applies to all unimodal dis-
tributions with "bell-shape" curves, known as semiconcave). And "higher peaks"
means less variations that are not tail events, more quiet times, not less. For the
consequence on option pricing, the reader might be interested in a quiz I routinely
give students after the first lecture on derivatives: "What happens to at-the-money
options when one fattens the tails?", the answer being that they should drop in
value. 3

Effectively, but in a deeper argument, in the QF paper (Taleb and Douady 2013),
our measure of fragility has an opposite sensitivity to events around the center of
the distribution, since, by an argument of survival probability, what is fragile is
sensitive to tail shocks and, critically, should not vary in the body (otherwise it
would be broken).

24.2 missing jensen ’s inequality in analyzing option returns
Here is an error to avoid at all costs in discussions of volatility strategies or, for that
matter, anything in finance. Mr Holman seems to miss the existence of Jensen’s
inequality, which is the entire point of owning an option, a point that has been
belabored in Antifragile. One manifestation of missing the convexity effect is a
critical miscalculation in the way one can naively assume options respond to the
VIX.

3 Technical Point: Where Does the Tail Start? As we saw in 4.3, for a general class of symmetric distri-

butions with power laws, the tail starts at: ±

√
5α+
√

(α+1)(17α+1)+1
α−1 s
√

2
, with α infinite in the stochastic volatility

Gaussian case and s the standard deviation. The "tail" is located between around 2 and 3 standard devia-
tions. This flows from the heuristic definition of fragility as second order effect: the part of the distribution
is convex to errors in the estimation of the scale. But in practice, because historical measurements of STD
will be biased lower because of small sample effects (as we repeat fat tails accentuate small sample effects),
the deviations will be > 2-3 STDs.
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"A $1 investment on January 1, 2007 in a strategy of buying and rolling short-
term VIX futures would have peaked at $4.84 on November 20, 2008 -and then
subsequently lost 99% of its value over the next four and a half years, finishing
under $0.05 as of May 31, 2013." 4

This mistake in the example given underestimates option returns by up to... sev-
eral orders of magnitude. Mr Holman analyzes the performance a tail strategy
using investments in financial options by using the VIX (or VIX futures) as proxy,
which is mathematically erroneous owing to second- order effects, as the link is
tenuous (it would be like evaluating investments in ski resorts by analyzing tem-
perature futures). Assume a periodic rolling of an option strategy: an option 5 STD
away from the money 5 gains 16 times in value if its implied volatility goes up by
4, but only loses its value if volatility goes to 0. For a 10 STD it is 144 times. And,
to show the acceleration, assuming these are traded, a 20 STD options by around
210,000 times6. There is a second critical mistake in the discussion: Mr Holman’s
calculations here exclude the payoff from actual in-the-moneyness.

One should remember that the VIX is not a price, but an inverse function, an
index derived from a price: one does not buy "volatility" like one can buy a tomato;
operators buy options correponding to such inverse function and there are severe,
very severe nonlinearities in the effect. Although more linear than tail options, the
VIX is still convex to actual market volatility, somewhere between variance and
standard deviation, since a strip of options spanning all strikes should deliver the
variance (Gatheral,2006). The reader can go through a simple exercise. Let’s say
that the VIX is "bought" at 10% -that is, the component options are purchased at a
combination of volatilities that corresponds to a VIX at that level. Assume returns
are in squares. Because of nonlinearity, the package could benefit from an episode
of 4% volatility followed by an episode of 15%, for an average of 9.5%; Mr Holman
believes or wants the reader to believe that this 0.5 percentage point should be
treated as a loss when in fact second order un-evenness in volatility changes are
more relevant than the first order effect.

24.3 the inseparability of insurance and insured
One should never calculate the cost of insurance without offsetting it with returns
generated from packages than one would not have purchased otherwise.

Even had he gotten the sign right on the volatility, Mr Holman in the example
above analyzes the performance of a strategy buying options to protect a tail event
without adding the performance of the portfolio itself, like counting the cost side
of the insurance without the performance of what one is insuring that would not
have been bought otherwise. Over the same period he discusses the market rose
more than 100%: a healthy approach would be to compare dollar-for-dollar what

4 In the above discussion Mr Holman also shows evidence of dismal returns on index puts which, as we
said before, respond to volatility not tail events. These are called, in the lingo, "sucker puts".

5 We are using implied volatility as a benchmark for its STD.
6 An event this author witnessed, in the liquidation of Victor Niederhoffer, options sold for $.05 were

purchased back at up to $38, which bankrupted Refco, and, which is remarkable, without the options
getting close to the money: it was just a panic rise in implied volatility.
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an investor would have done (and, of course, getting rid of this "VIX" business and
focusing on very small dollars invested in tail options that would allow such an
aggressive stance). Many investors (such as this author) would have stayed out
of the market, or would not have added funds to the market, without such an
insurance.

24.4 the necessity of a numéraire in finance
There is a deeper analytical error.

A barbell is defined as a bimodal investment strategy, presented as investing a
portion of your portfolio in what is explicitly defined as a "numéraire repository of
value" (Antifragile), and the rest in risky securities (Antifragile indicates that such
numéraire would be, among other things, inflation protected). Mr Holman goes
on and on in a nihilistic discourse on the absence of such riskless numéraire (of
the sort that can lead to such sophistry as "he is saying one is safer on terra firma
than at sea, but what if there is an earthquake?").

The familiar Black and Scholes derivation uses a riskless asset as a baseline; but
the literature since around 1977 has substituted the notion of "cash" with that of
a numéraire , along with the notion that one can have different currencies, which
technically allows for changes of probability measure. A numéraire is defined
as the unit to which all other units relate. ( Practically, the numéraire is a basket
the variations of which do not affect the welfare of the investor.) Alas, without
numéraire, there is no probability measure, and no quantitative in quantitative
finance, as one needs a unit to which everything else is brought back to. In this
(emotional) discourse, Mr Holton is not just rejecting the barbell per se, but any
use of the expectation operator with any economic variable, meaning he should
go attack the tens of thousand research papers and the existence of the journal
Quantitative Finance itself.

Clearly, there is a high density of other mistakes or incoherent statements in the
outpour of rage in Mr Holman’s review; but I have no doubt these have been
detected by the Quantitative Finance reader and, as we said, the object of this dis-
cussion is the prevention of analytical mistakes in quantitative finance.

To conclude, this author welcomes criticism from the finance community that are
not straw man arguments, or, as in the case of Mr Holmam, violate the foundations
of the field itself.

24.5 appendix (betting on tails of distribution)
From Dynamic Hedging, pages 264-265:

A fourth moment bet is long or short the volatility of volatility. It could be achieved
either with out-of-the-money options or with calendars. Example: A ratio "backspread"
or reverse spread is a method that includes the buying of out-of-the-money options in
large amounts and the selling of smaller amounts of at-the-money but making sure the
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Figure 24.1: First Method
to Extract the Fourth Mo-
ment, from Dynamic Hedg-
ing, 1997.

Figure 24.2: Second
Method to Extract the
Fourth Moment , from
Dynamic Hedging, 1997.

trade satisfies the "credit" rule (i.e., the trade initially generates a positive cash flow).
The credit rule is more difficult to interpret when one uses in-the-money options. In that
case, one should deduct the present value of the intrinsic part of every option using the
put-call parity rule to equate them with out-of-the-money.
The trade shown in Figure 24.1 was accomplished with the purchase of both out-of-the-
money puts and out-of-the-money calls and the selling of smaller amounts of at-the-
money straddles of the same maturity.
Figure 24.2 shows the second method, which entails the buying of 60- day options in
some amount and selling 20-day options on 80% of the amount. Both trades show the
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position benefiting from the fat tails and the high peaks. Both trades, however, will have
different vega sensitivities, but close to flat modified vega.

See The Body, The Shoulders, and The Tails from section 4.3 where we assume
tails start at the level of convexity of the segment of the probability distribution to
the scale of the distribution.



25 TA I L R I S K C O N ST R A I N T S A N D
M A X I M U M E N T R O P Y ( W. D. & H .
G E M A N ) ‡

P
ortfolio selection in the financial literature has essentially

been analyzed under two central assumptions: full knowledge
of the joint probability distribution of the returns of the securi-
ties that will comprise the target portfolio; and investors’ pref-
erences are expressed through a utility function. In the real

world, operators build portfolios under risk constraints which are expressed
both by their clients and regulators and which bear on the maximal loss that
may be generated over a given time period at a given confidence level (the
so-called Value at Risk of the position). Interestingly, in the finance litera-
ture, a serious discussion of how much or little is known from a probabilistic
standpoint about the multi-dimensional density of the assets’ returns seems
to be of limited relevance.

Our approach in contrast is to highlight these issues and then adopt through-
out a framework of entropy maximization to represent the real world igno-
rance of the “true” probability distributions, both univariate and multivariate,
of traded securities’ returns. In this setting, we identify the optimal portfolio
under a number of downside risk constraints. Two interesting results are
exhibited: (i) the left-tail constraints are sufficiently powerful to override all
other considerations in the conventional theory; (ii) the “barbell portfolio”
(maximal certainty/ low risk in one set of holdings, maximal uncertainty in
another), which is quite familiar to traders, naturally emerges in our con-
struction.

25.1 left tail risk as the central portfolio constraint
Customarily, when working in an institutional framework, operators and risk tak-
ers principally use regulatorily mandated tail-loss limits to set risk levels in their

Research chapter.
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portfolios (obligatorily for banks since Basel II). They rely on stress tests, stop-
losses, value at risk (VaR) , expected shortfall (–i.e., the expected loss conditional
on the loss exceeding VaR, also known as CVaR), and similar loss curtailment
methods, rather than utility. In particular, the margining of financial transactions
is calibrated by clearing firms and exchanges on tail losses, seen both probabilis-
tically and through stress testing. (In the risk-taking terminology, a stop loss is a
mandatory order that attempts to terminate all or a portion of the exposure upon
a trigger, a certain pre-defined nominal loss. Basel II is a generally used name for
recommendations on banking laws and regulations issued by the Basel Commit-
tee on Banking Supervision. The Value-at-risk, VaR, is defined as a threshold loss
value K such that the probability that the loss on the portfolio over the given time
horizon exceeds this value is ε. A stress test is an examination of the performance
upon an arbitrarily set deviation in the underlying variables.) The information
embedded in the choice of the constraint is, to say the least, a meaningful statistic
about the appetite for risk and the shape of the desired distribution.

Operators are less concerned with portfolio variations than with the drawdown
they may face over a time window. Further, they are in ignorance of the joint prob-
ability distribution of the components in their portfolio (except for a vague notion
of association and hedges), but can control losses organically with allocation meth-
ods based on maximum risk. (The idea of substituting variance for risk can appear
very strange to practitioners of risk-taking. The aim by Modern Portfolio Theory
at lowering variance is inconsistent with the preferences of a rational investor, re-
gardless of his risk aversion, since it also minimizes the variability in the profit
domain –except in the very narrow situation of certainty about the future mean
return, and in the far-fetched case where the investor can only invest in variables
having a symmetric probability distribution, and/or only have a symmetric payoff.
Stop losses and tail risk controls violate such symmetry.) The conventional notions
of utility and variance may be used, but not directly as information about them is
embedded in the tail loss constaint.

Since the stop loss, the VaR (and expected shortfall) approaches and other risk-
control methods concern only one segment of the distribution, the negative side
of the loss domain, we can get a dual approach akin to a portfolio separation, or
“barbell-style” construction, as the investor can have opposite stances on different
parts of the return distribution. Our definition of barbell here is the mixing of
two extreme properties in a portfolio such as a linear combination of maximal
conservatism for a fraction w of the portfolio, with w ∈ (0, 1), on one hand and
maximal (or high) risk on the (1− w) remaining fraction.

Historically, finance theory has had a preference for parametric, less robust, meth-
ods. The idea that a decision-maker has clear and error-free knowledge about the
distribution of future payoffs has survived in spite of its lack of practical and theo-
retical validity –for instance, correlations are too unstable to yield precise measure-
ments. It is an approach that is based on distributional and parametric certainties,
one that may be useful for research but does not accommodate responsible risk
taking. (Correlations are unstable in an unstable way, as joint returns for assets are
not elliptical, see Bouchaud and Chicheportiche (2012) [42].)
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There are roughly two traditions: one based on highly parametric decision-making
by the economics establishment (largely represented by Markowitz [166]) and the
other based on somewhat sparse assumptions and known as the Kelly criterion
(Kelly, 1956 [142], see Bell and Cover, 1980 [15].) (In contrast to the minimum-
variance approach, Kelly’s method, developed around the same period as Markowitz,
requires no joint distribution or utility function. In practice one needs the ratio of
expected profit to worst-case return dynamically adjusted to avoid ruin. Obviously,
model error is of smaller consequence under the Kelly criterion: Thorp (1969) [250],
Haigh (2000) [119], Mac Lean, Ziemba and Blazenko [157]. For a discussion of the
differences between the two approaches, see Samuelson’s objection to the Kelly cri-
terion and logarithmic sizing in Thorp 2010 [252].) Kelly’s method is also related
to left-tail control due to proportional investment, which automatically reduces
the portfolio in the event of losses; but the original method requires a hard, non-
parametric worst-case scenario, that is, securities that have a lower bound in their
variations, akin to a gamble in a casino, which is something that, in finance, can
only be accomplished through binary options. The Kelly criterion, in addition, re-
quires some precise knowledge of future returns such as the mean. Our approach
goes beyond the latter method in accommodating more uncertainty about the re-
turns, whereby an operator can only control his left-tail via derivatives and other
forms of insurance or dynamic portfolio construction based on stop-losses. (Xu,
Wu, Jiang, and Song (2014) [266] contrast mean variance to maximum entropy and
uses entropy to construct robust portfolios.) In a nutshell, we hardwire the curtail-
ments on loss but otherwise assume maximal uncertainty about the returns. More
precisely, we equate the return distribution with the maximum entropy extension
of constraints expressed as statistical expectations on the left-tail behavior as well
as on the expectation of the return or log-return in the non-danger zone. (Note
that we use Shannon entropy throughout. There are other information measures,
such as Tsallis entropy [256] , a generalization of Shannon entropy, and Renyi en-
tropy, [137] , some of which may be more convenient computationally in special
cases. However, Shannon entropy is the best known and has a well-developed
maximization framework. )

Here, the “left-tail behavior” refers to the hard, explicit, institutional constraints
discussed above. We describe the shape and investigate other properties of the
resulting so-called maxent distribution. In addition to a mathematical result re-
vealing the link between acceptable tail loss (VaR) and the expected return in the
Gaussian mean-variance framework, our contribution is then twofold: 1) an in-
vestigation of the shape of the distribution of returns from portfolio construction
under more natural constraints than those imposed in the mean-variance method,
and 2) the use of stochastic entropy to represent residual uncertainty.

VaR and CVaR methods are not error free –parametric VaR is known to be in-
effective as a risk control method on its own. However, these methods can be
made robust using constructions that, upon paying an insurance price, no longer
depend on parametric assumptions. This can be done using derivative contracts or
by organic construction (clearly if someone has 80% of his portfolio in numéraire
securities, the risk of losing more than 20% is zero independent from all possible
models of returns, as the fluctuations in the numéraire are not considered risky).
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We use “pure robustness” or both VaR and zero shortfall via the “hard stop” or in-
surance, which is the special case in our paper of what we called earlier a “barbell”
construction.

It is worth mentioning that it is an old idea in economics that an investor can
build a portfolio based on two distinct risk categories, see Hicks (1939) [128]. Mod-
ern Portfolio Theory proposes the mutual fund theorem or “separation” theorem,
namely that all investors can obtain their desired portfolio by mixing two mutual
funds, one being the riskfree asset and one representing the optimal mean-variance
portfolio that is tangent to their constraints; see Tobin (1958) [254], Markowitz
(1959) [167], and the variations in Merton (1972) [170], Ross (1978) [202]. In our
case a riskless asset is the part of the tail where risk is set to exactly zero. Note
that the risky part of the portfolio needs to be minimum variance in traditional
financial economics; for our method the exact opposite representation is taken for
the risky one.

25.1.1 The Barbell as seen by E.T. Jaynes

Our approach to constrain only what can be constrained (in a robust manner) and
to maximize entropy elsewhere echoes a remarkable insight by E.T. Jaynes in “How
should we use entropy in economics?” [134]:

“It may be that a macroeconomic system does not move in response
to (or at least not solely in response to) the forces that are supposed
to exist in current theories; it may simply move in the direction of in-
creasing entropy as constrained by the conservation laws imposed by
Nature and Government.”

25.2 revisiting the mean variance setting

Let #X = (X1, ..., Xm) denote m asset returns over a given single period with joint
density g(#x), mean returns #µ = (µ1, ..., µm) and m× m covariance matrix Σ: Σij =
E(XiXj)− µiµj , 1 ≤ i, j ≤ m. Assume that #µ and Σ can be reliably estimated from
data.

The return on the portolio with weights #w = (w1, ..., wm) is then

X =
m

∑
i=1

wiXi ,

which has mean and variance

E(X) = #w#µT , V(X) = #wΣ#wT .

In standard portfolio theory one minimizes V(X) over all #w subject to E(X) = µ for
a fixed desired average return µ. Equivalently, one maximizes the expected return
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E(X) subject to a fixed variance V(X). In this framework variance is taken as a
substitute for risk.

To draw connections with our entropy-centered approach, we consider two stan-
dard cases:

(1) Normal World: The joint distribution g(#x) of asset returns is multivariate Gaus-
sian N(#µ, Σ). Assuming normality is equivalent to assuming g(#x) has maxi-
mum (Shannon) entropy among all multivariate distributions with the given
first- and second-order statistics #µ and Σ. Moreover, for a fixed mean E(X),
minimizing the variance V(X) is equivalent to minimizing the entropy (uncer-
tainty) of X. (This is true since joint normality implies that X is univariate
normal for any choice of weights and the entropy of a N (µ, σ2) variable is
H = 1

2 (1 + log(2πσ2)).) This is natural in a world with complete information.
( The idea of entropy as mean uncertainty is in Philippatos and Wilson (1972)
[188]; see Zhou –et al. (2013) [270] for a review of entropy in financial eco-
nomics and Georgescu-Roegen (1971) [107] for economics in general.)

(2) Unknown Multivariate Distribution: Since we assume we can estimate the
second-order structure, we can still carry out the Markowitz program, –i.e.,
choose the portfolio weights to find an optimal mean-variance performance,
which determines E(X) = µ and V(X) = σ2. However, we do not know the
distribution of the return X. Observe that assuming X is normally distributed
N (µ, σ2) is equivalent to assuming the entropy of X is maximized since, again,
the normal maximizes entropy at a given mean and variance, see [188].

Our strategy is to generalize the second scenario by replacing the variance σ2

by two left-tail value-at-risk constraints and to model the portfolio return as the
maximum entropy extension of these constraints together with a constraint on the
overall performance or on the growth of the portfolio in the non-danger zone.

25.2.1 Analyzing the Constraints

Let X have probability density f (x). In everything that follows, let K < 0 be a
normalizing constant chosen to be consistent with the risk-taker’s wealth. For any
ε > 0 and ν− < K, the value-at-risk constraints are:

(1) Tail probability:

P(X ≤ K) =
∫ K

−∞
f (x) dx = ε.

(2) Expected shortfall (CVaR):

E(X|X ≤ K) = ν− .

Assuming (1) holds, constraint (2) is equivalent to

E(XI(X≤K)) =
∫ K

−∞
x f (x) dx = εν− .
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Given the value-at-risk parameters θ = (K, ε, ν−), let Ωvar(θ) denote the set of prob-
ability densities f satisfying the two constraints. Notice that Ωvar(θ) is convex:
f1, f2 ∈ Ωvar(θ) implies α f1 + (1− α) f2 ∈ Ωvar(θ). Later we will add another con-
straint involving the overall mean.

25.3 revisiting the gaussian case

Suppose we assume X is Gaussian with mean µ and variance σ2. In principle it
should be possible to satisfy the VaR constraints since we have two free parameters.
Indeed, as shown below, the left-tail constraints determine the mean and variance;
see Figure 25.1. However, satisfying the VaR constraints imposes interesting re-
strictions on µ and σ and leads to a natural inequality of a “no free lunch” style.

Area �
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Returns
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Figure 25.1: By setting K (the
value at risk), the probability ε
of exceeding it, and the short-
fall when doing so, there is no
wiggle room left under a Gaus-
sian distribution: σ and µ are de-
termined, which makes construc-
tion according to portfolio theory
less relevant.

Let η(ε) be the ε-quantile of the standard normal distribution, –i.e., η(ε) = Φ−1(ε),
where Φ is the c.d.f. of the standard normal density φ(x). In addition, set

B(ε) =
1

εη(ε)
φ(η(ε)) =

1√
2πεη(ε)

exp{− η(ε)2

2
}.

Proposition 25.1
If X ∼ N(µ, σ2) and satisfies the two VaR constraints, then the mean and variance are
given by:

µ =
ν− + KB(ε)

1 + B(ε)
, σ =

K− ν−
η(ε)(1 + B(ε))

.

Moreover, B(ε) < −1 and limε↓0 B(ε) = −1.

The proof is in the Appendix. The VaR constraints lead directly to two linear
equations in µ and σ:

µ + η(ε)σ = K, µ− η(ε)B(ε)σ = ν− .

Consider the conditions under which the VaR constraints allow a positive mean
return µ = E(X) > 0. First, from the above linear equation in µ and σ in terms
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of η(ε) and K, we see that σ increases as ε increases for any fixed mean µ, and
that µ > 0 if and only if σ > K

η(ε) , –i.e., we must accept a lower bound on the
variance which increases with ε, which is a reasonable property. Second, from the
expression for µ in Proposition 1, we have

µ > 0 ⇐⇒ |ν−|> KB(ε).

Consequently, the only way to have a positive expected return is to accommodate
a sufficiently large risk expressed by the various tradeoffs among the risk param-
eters θ satisfying the inequality above. (This type of restriction also applies more
generally to symmetric distributions since the left tail constraints impose a struc-
ture on the location and scale. For instance, in the case of a Student T distribution
with scale s, location m, and tail exponent α, the same linear relation between

s and m applies: s = (K − m)κ(α), where κ(α) = −
i
√

I−1
2ε ( α

2 , 1
2 )

√
α
√

I−1
2ε ( α

2 , 1
2 )−1

, where I−1 is

the inverse of the regularized incomplete beta function I, and s the solution of
ε = 1

2 I αs2
(k−m)2+αs2

(
α
2 , 1

2

)
.

25.3.1 A Mixture of Two Normals

In many applied sciences, a mixture of two normals provides a useful and natu-
ral extension of the Gaussian itself; in finance, the Mixture Distribution Hypoth-
esis (denoted as MDH in the literature) refers to a mixture of two normals and
has been very widely investigated (see for instance Richardson and Smith (1995)
[200]). H. Geman and T. Ané (1996) [2] exhibit how an infinite mixture of normal
distributions for stock returns arises from the introduction of a "stochastic clock"
accounting for the uneven arrival rate of information flow in the financial markets.
In addition, option traders have long used mixtures to account for fat tails, and
to examine the sensitivity of a portfolio to an increase in kurtosis ("DvegaDvol");
see Taleb (1997) [225]. Finally, Brigo and Mercurio (2002) [34] use a mixture of two
normals to calibrate the skew in equity options.

Consider the mixture

f (x) = λN(µ1, σ2
1 ) + (1− λ)N(µ2, σ2

2 ).

An intuitively simple and appealing case is to fix the overall mean µ, and take
λ = ε and µ1 = ν−, in which case µ2 is constrained to be µ−εν−

1−ε . It then follows
that the left-tail constraints are approximately satisfied for σ1, σ2 sufficiently small.
Indeed, when σ1 = σ2 ≈ 0, the density is effectively composed of two spikes (small
variance normals) with the left one centered at ν− and the right one centered at at
µ−εν−

1−ε . The extreme case is a Dirac function on the left, as we see next.

Dynamic Stop Loss, A Brief Comment One can set a level K below which there
is no mass, with results that depend on accuracy of the execution of such a stop.
The distribution to the right of the stop-loss no longer looks like the standard
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Gaussian, as it builds positive skewness in accordance to the distance of the stop
from the mean. We limit any further discussion to the illustrations in Figure 25.2.

Ret

Probability

Figure 25.2: A dynamic stop loss
acts as an absorbing barrier, with
a Dirac function at the executed
stop.

25.4 maximum entropy
From the comments and analysis above, it is clear that, in practice, the density
f of the return X is unknown; in particular, no theory provides it. Assume we
can adjust the portfolio parameters to satisfy the VaR constraints, and perhaps
another constraint on the expected value of some function of X (e.g., the overall
mean). We then wish to compute probabilities and expectations of interest, for
example P(X > 0) or the probability of losing more than 2K, or the expected
return given X > 0. One strategy is to make such estimates and predictions under
the most unpredictable circumstances consistent with the constraints. That is, use
the maximum entropy extension (MEE) of the constraints as a model for f (x).

The “differential entropy” of f is h( f ) = −
∫

f (x) ln f (x) dx. (In general, the in-
tegral may not exist.) Entropy is concave on the space of densities for which it is
defined. In general, the MEE is defined as

fMEE = arg max
f∈Ω

h( f )

where Ω is the space of densities which satisfy a set of constraints of the form
Eφj(X) = cj , j = 1, ..., J. Assuming Ω is non-empty, it is well-known that fMEE is
unique and (away from the boundary of feasibility) is an exponential distribution
in the constraint functions, –i.e., is of the form

fMEE(x) = C−1 exp



∑
j

λjφj(x)





where C = C(λ1, ..., λM) is the normalizing constant. (This form comes from differ-
entiating an appropriate functional J( f ) based on entropy, and forcing the integral
to be unity and imposing the constraints with Lagrange mult1ipliers.) In the spe-
cial cases below we use this characterization to find the MEE for our constraints.
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In our case we want to maximize entropy subject to the VaR constraints together
with any others we might impose. Indeed, the VaR constraints alone do not admit
an MEE since they do not restrict the density f (x) for x > K. The entropy can be
made arbitrarily large by allowing f to be identically C = 1−ε

N−K over K < x < N and
letting N → ∞. Suppose, however, that we have adjoined one or more constraints
on the behavior of f which are compatible with the VaR constraints in the sense
that the set of densities Ω satisfying all the constraints is non-empty. Here Ω
would depend on the VaR parameters θ = (K, ε, ν−) together with those parameters
associated with the additional constraints.

25.4.1 Case A: Constraining the Global Mean

The simplest case is to add a constraint on the mean return, –i.e., fix E(X) = µ.
Since E(X) = P(X ≤ K)E(X|X ≤ K) + P(X > K)E(X|X > K), adding the mean
constraint is equivalent to adding the constraint

E(X|X > K) = ν+

where ν+ satisfies εν− + (1− ε)ν+ = µ.

Define

f−(x) =






1
(K−ν−) exp

[
− K−x

K−ν−

]
if x < K,

0 if x ≥ K.

and

f+(x) =






1
(ν+−K) exp

[
− x−K

ν+−K

]
if x > K,

0 if x ≤ K.

It is easy to check that both f− and f+ integrate to one. Then

fMEE(x) = ε f−(x) + (1− ε) f+(x)

is the MEE of the three constraints. First, evidently

1.
∫ K
−∞ fMEE(x) dx = ε;

2.
∫ K
−∞ x fMEE(x) dx = εν−;

3.
∫ ∞

K x fMEE(x) dx = (1− ε)ν+.

Hence the constraints are satisfied. Second, fMEE has an exponential form in our
constraint functions:

fMEE(x) = C−1 exp
[
−(λ1x + λ2 I(x≤K) + λ3xI(x≤K))

]
.
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The shape of f− depends on the relationship between K and the expected short-
fall ν−. The closer ν− is to K, the more rapidly the tail falls off. As ν− → K, f−
converges to a unit spike at x = K (Figures 25.3 and 25.4).
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Figure 25.3: Case A: Effect of dif-
ferent values of ε on the shape of
the distribution.
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Figure 25.4: Case A: Effect of dif-
ferent values of ν− on the shape of
the distribution.

25.4.2 Case B: Constraining the Absolute Mean

If instead we constrain the absolute mean, namely

E|X|=
∫
|x| f (x) dx = µ,

then the MEE is somewhat less apparent but can still be found. Define f−(x) as
above, and let

f+(x) =

{
λ1

2−exp(λ1K) exp(−λ1|x|) if x ≥ K,

0 if x < K.



25.4 maximum entropy 415

Then λ1 can be chosen such that

εν− + (1− ε)
∫ ∞

K
|x| f+(x) dx = µ.

25.4.3 Case C: Power Laws for the Right Tail

If we believe that actual returns have “fat tails,” in particular that the right tail
decays as a Power Law rather than exponentially (as with a normal or exponential
density), than we can add this constraint to the VaR constraints instead of working
with the mean or absolute mean. In view of the exponential form of the MEE, the
density f+(x) will have a power law, namely

f+(x) =
1

C(α)
(1 + |x|)−(1+α), x ≥ K,

for α > 0 if the constraint is of the form

E (log(1 + |X|)|X > K) = A.

Moreover, again from the MEE theory, we know that the parameter is obtained by
minimizing the logarithm of the normalizing function. In this case, it is easy to
show that

C(α) =
∫ ∞

K
(1 + |x|)−(1+α) dx =

1
α

(2− (1− K)−α).

It follows that A and α satisfy the equation

A =
1
α
− log(1− K)

2(1− K)α − 1
.

We can think of this equation as determining the decay rate α for a given A or,
alternatively, as determining the constraint value A necessary to obtain a particular
Power Law α.

The final MEE extension of the VaR constraints together with the constraint on
the log of the return is then:

fMEE(x) = εI(x≤K)
1

(K− ν−)
exp

[
− K− x

K− ν−

]
+ (1 − ε)I(x>K)

(1 + |x|)−(1+α)

C(α)
,

(see Figures 25.5 and 25.6).

25.4.4 Extension to a Multi-Period Setting: A Comment

Consider the behavior in multi-periods. Using a naive approach, we sum up the
performance as if there was no response to previous returns. We can see how Case
A approaches the regular Gaussian, but not Case C (Figure 25.7).
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Figure 25.5: Case C: Effect
of different values of on the
shape of the fat-tailed maxi-
mum entropy distribution.
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Figure 25.6: Case C: Effect
of different values of on the
shape of the fat-tailed max-
imum entropy distribution
(closer K).

For case A the characteristic functioncan be written:

ΨA(t) =
eiKt(t(K− ν−ε + ν+(ε− 1))− i)
(Kt− ν−t− i)(−1− it(K− ν+))

So we can derive from convolutions that the function ΨA(t)n converges to that
of an n-summed Gaussian. Further, the characteristic function of the limit of the
average of strategies, namely

lim
n→∞

ΨA(t/n)n = eit(ν++ε(ν−−ν+)), (25.1)

is the characteristic function of the Dirac delta, visibly the effect of the law of large
numbers delivering the same result as the Gaussian with mean ν+ + ε(ν− − ν+) .

As to the Power Law in Case C, convergence to Gaussian only takes place for
α ≥ 2, and rather slowly.
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Figure 25.7: Average re-
turn for multiperiod naive
strategy for Case A, that
is, assuming independence
of “sizing”, as position size
does not depend on past per-
formance. They aggregate
nicely to a standard Gaus-
sian, and (as shown in Equa-
tion (25.1)), shrink to a
Dirac at the mean value.

25.5 comments and conclusion
We note that the stop loss plays a larger role in determining the stochastic proper-
ties than the portfolio composition. Simply, the stop is not triggered by individual
components, but by variations in the total portfolio. This frees the analysis from
focusing on individual portfolio components when the tail –via derivatives or or-
ganic construction– is all we know and can control.

To conclude, most papers dealing with entropy in the mathematical finance liter-
ature have used minimization of entropy as an optimization criterion. For instance,
Fritelli (2000) [98] exhibits the unicity of a "minimal entropy martingale measure"
under some conditions and shows that minimization of entropy is equivalent to
maximizing the expected exponential utility of terminal wealth. We have, instead,
and outside any utility criterion, proposed entropy maximization as the recogni-
tion of the uncertainty of asset distributions. Under VaR and Expected Shortfall
constraints, we obtain in full generality a "barbell portfolio" as the optimal solu-
tion, extending to a very general setting the approach of the two-fund separation
theorem.

25.6 appendix/proofs

Proof of Proposition 1: Since X ∼ N(µ, σ2), the tail probability constraint is

ε = P(X < K) = P(Z <
K− µ

σ
) = Φ(

K− µ

σ
).

By definition, Φ(η(ε)) = ε. Hence,

K = µ + η(ε)σ (25.2)
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For the shortfall constraint,

E(X; X < k) =
∫ K

−∞

x√
2πσ

exp− (x− µ)2

2σ2 dx

= µε + σ
∫ (K−µ)/σ)

−∞
xφ(x) dx

= µε− σ√
2π

exp− (K− µ)2

2σ2

Since, E(X; X < K) = εν−, and from the definition of B(ε), we obtain

ν− = µ− η(ε)B(ε)σ (25.3)

Solving (25.2) and (25.3) for µ and σ2 gives the expressions in Proposition 1.

Finally, by symmetry to the “upper tail inequality” of the standard normal, we
have, for x < 0, Φ(x) ≤ φ(x)

−x . Choosing x = η(ε) = Φ−1(ε) yields ε = P(X < η(ε)) ≤
−εB(ε) or 1 + B(ε) ≤ 0. Since the upper tail inequality is asymptotically exact as
x → ∞ we have B(0) = −1, which concludes the proof.
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