
Classification
Lecture 7

Connor Dowd

April 20th, 2021



Today’s Class

1. Review
I LASSO
I Deviance vs MSE
I Cross-Validation
I R help docs – An explainer

2. KNN
3. Binomial Classificiation: Probabilities to Predictions
4. Misclassification: Sensitivity, Specificity, ROC Curve
5. Multinomial Regression



Quick Review



LASSO

The lasso penalty is the l1 norm of our parameters:
pen(β) =

∑
|βj |, which penalizes larger coefficients and non-zero

coefficients. So our estimates are:

β̂λ = argmin
β

Dev(β) + λ
p∑

j=1
|βj |



For a given model of the error terms, Dev(β) is held fixed, so we
can make comparisons within the logistic or linear regressions, but
not between them easily.

When we switch logistic → linear, we change Dev . We can still
make comparisons betwen these models but we need to ensure we
are comparing the same thing.



LASSO – MSE vs Deviance

For the logistic LASSO, our deviance is approximately:

Devlogit(β) ∝
n∑

i=1
[log(1 + exp(x ′

i β))− yix ′
i β]

While for our linear LASSO, our deviance is approximately:

Devlinear (β) ≈ 1
σ2

n∑
i=1

(y − x ′β)2 ∝ M̂SE

This difference derives from the different likelihoods each model
uses to model their different ideas about the error distribution.

But there is only one true error distribution.



Model Choice

When deciding which model to use, we used the out-of-sample
deviance to select a value of λ for each LASSO type. But we still
need to choose between these two very different models.

That choice is still driven by out of sample prediction errors. We
need to compare the prediction errors using the same yardstick.

So we could compare all the prediction errors using the binomial
deviance, or using the MSE, or using some other loss function.



Model Choice

Critically (and we will see this again), cross-validation gives us a
good understanding of our out-of-sample error.

We can answer questions like “When I build a model in this way,
what do its out of sample errors look like?”

Which means we can also answer questions like “Which model
building process has better out-of-sample predictions?”

All of this is because of the very trustworthy error distributions we
get from Cross-validation.



R help documents.

I’ve realized I should give you a quick overview of how the R help
documents are structured.

There are three main questions I turn to the help documents with.

1. Where in the output is x?
2. What do I put in the input to do y?
3. How do I do z?

By far, the help documents are most useful for (1) and (2).

?cv.glmnet



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.

2. Usage: This shows the function (and close relatives), as well
as most of the arguments to the function, and their defaults.

3. Arguments: This lists out every argument you can enter,
describing what it must be, and what it controls.

4. Details: In-depth description of the function, often including
further detail about inputs, sometimes math.

5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.

3. Arguments: This lists out every argument you can enter,
describing what it must be, and what it controls.

4. Details: In-depth description of the function, often including
further detail about inputs, sometimes math.

5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.
3. Arguments: This lists out every argument you can enter,

describing what it must be, and what it controls.

4. Details: In-depth description of the function, often including
further detail about inputs, sometimes math.

5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.
3. Arguments: This lists out every argument you can enter,

describing what it must be, and what it controls.
4. Details: In-depth description of the function, often including

further detail about inputs, sometimes math.

5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.
3. Arguments: This lists out every argument you can enter,

describing what it must be, and what it controls.
4. Details: In-depth description of the function, often including

further detail about inputs, sometimes math.
5. Value: In depth description of the output of the function.

6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.
3. Arguments: This lists out every argument you can enter,

describing what it must be, and what it controls.
4. Details: In-depth description of the function, often including

further detail about inputs, sometimes math.
5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details

7. See Also: other closely related functions. Many model tools
will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.
3. Arguments: This lists out every argument you can enter,

describing what it must be, and what it controls.
4. Details: In-depth description of the function, often including

further detail about inputs, sometimes math.
5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Basic Structure of Help Docs

1. Description: Basic explanation of the function in question.
2. Usage: This shows the function (and close relatives), as well

as most of the arguments to the function, and their defaults.
3. Arguments: This lists out every argument you can enter,

describing what it must be, and what it controls.
4. Details: In-depth description of the function, often including

further detail about inputs, sometimes math.
5. Value: In depth description of the output of the function.
6. Authors/Refs: People and places with even more details
7. See Also: other closely related functions. Many model tools

will mention “plot, predict, and coef” methods for
cv.glmnet. That implies functions like coef.cv.glmnet and
plot.cv.glmnet you can look up.

8. Examples: example code running the function on basic data.



Classification



Basic Setting

Just as in our basic prediction problems, we have data with n
observations (xi , yi) of something.

But now yi is qualitative rather than quantitative. Membership in
some category {1, ...,M}

The basic problem then is the following: Given new observation
covariates xnew

i , what is the class label ynew
i ?

The quality of any classifier can be determined by its
misclassification risk:

P[ŷnew
i 6= ynew

i ]



Motivation

How does this differ from basic logistic question of predicting
P[ynew

i = 1]?

1. We may have many categories, not just two.
2. We may have different discrete actions we take depending on

classification.
I In some domains, as P[yi = 1] changes, our actions change

smoothly.
I e.g. as P[stock x goes up] we buy more of it.

I In other domains, as P[yi = 1] changes, our actions change
suddenly.

I e.g. as P[get into college i|I apply] goes up, we switch from
“don’t apply” to “apply”, there is mostly no “apply a little bit
more”



Motivation

This leads to situations where we want to categorize, as it affects
our decisions.

We face decisions not on a spectrum, so the most useful
interpretation of our predictions may not be on that spectrum.

=⇒ classification.



Optimal Classifier

Presuming you have no preference between different types of
misclassification (LOSS FUNCTION CLAIM), there is an
optimal classifier, known as the Bayes Classifier.

ŷnew
i = argmax

j∈{1,...,M}
P[ynew

i = j |xnew
i ]

Find the prediction which is most likely (not necessarily all that
likely – e.g. P[ŷ = y ] < 0.5 is common). This will minimize the
misclassification risk.



Bayes Classifier

Unfortunately, we don’t know P[y = j |xnew
i ]. So the Bayes

classifier is in some ways an unattainable standard.

But we can estimate it!



Estimating P

There are many tools for estimating P[y |x ] given the training data.

I We can use parametric tools.
I Assume P[y |x ] is some function of unknown parameters β,

estimate those, and make predictions.
I Sound familiar? Logistic Regression does this.

I We can use non-parametric tools.
I Estimate P[y |x ] directly without any parameters.

I K Nearest Neighbors (KNN)



KNN



KNN Basics

Basic Idea: Estimate P[y |x ] locally using the labels of similar
observations in the training data.

KNN: What is the most common class near xnew?

1. Take the K nearest neighbors xi ,1, ..., xi ,K of xnew in the
training data
I Nearness is (usually) Euclidean distance:√∑p

j=1(xnew
j − xi,k,j)2

2. Estimate P[y = j |x ] =
∑K

i=1 1(yi = j)
3. Select the class j with the highest probability.



KNN – Details

This (again) is sensitive to the scale of each covariate x . So we
will rescale them all by standard deviations.

This will be sensitive to K , and we need to pick it.

I K = n – we just take the mean across the entire training data.
I K = 1 – Whatever observation happens to be closest will be

our prediction.

Cross-validation here will help.



KNN Example Data

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2

New Observation



KNN Example K = 3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2

New Observation



KNN Example K = 7

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2

New Observation

The relative ‘vote counts’ are a very crude estimate of probability.



KNN Example K = 1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2

New Observation



KNN Example

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2

New Observation



KNN Example: More Data

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2

New Observation



KNN Example K = 3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2



KNN Example K = 11

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2



KNN Example K = 31

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2



KNN – Example Base Truth
The optimal prediction scheme

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

1

2



KNN

Higher K leads to higher in-sample training error. (Proportion
incorrect).

Lower K leads to higher flexibility =⇒ overfitting and poor OOS
misclassification.



KNN

I Pros:
I Straightforward
I Easily adjust to multiple categories.
I Outperform other classifiers in settings where local details

matter
I Cons:

I Computing neighbors (just finding them) can be costly with
big n or p

I No variable selection built in
I Choosing k is tricky – Cross-validation can work – but it is

unstable.
I Remember, LASSO benefitted from stability of estimates

I Classification is very sensitive to k
I Only other output is rough local probabilities.

I Without good probabilities, assessing uncertainty is hard.



Binary Classification

Many problems can be reduced to binary classification (as above).

KNNs are a useful non-parametric classification tool.

Logits are a useful parametric classification tool.
- Remember Spam?

I Logits yield parametric decision boundaries. Easy to interpret.
I Logits are global methods. Use all the training data to inform

predictions.
I The probability estimates are more useful and more stable.

I Logits can do variable selection.



Credit Classification Example

German loan/default data. “Predict performance of new loans” –
want to predict default probability.

Going to try to use borrower and loan characteristics.

Messy Data.



Beware
This is not ‘randomly sampled’ data.

history

D
ef

au
lt

good poor terrible

1
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Beware
Consider your data sources carefully.

purpose

newcar usedcar goods/repair edu biz

1
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



German Credit LASSO
credscore = cv.glmnet(credx, default, family="binomial")
plot(credscore)

−8 −7 −6 −5 −4 −3

1.
10

1.
15

1.
20

1.
25

Log(λ)

B
in

om
ia

l D
ev

ia
nc

e

70 69 67 68 65 61 58 53 52 48 41 36 29 20 18 19 17 15 11 9 6 5 3



German Credit LASSO

sum(coef(credscore, s="lambda.1se")!=0) # 1se

## [1] 13

sum(coef(credscore, s="lambda.min")!=0) # min

## [1] 21



Decision Making

There are two ways to be wrong in this binary problem.

I False Positive predict ŷ = 1 when y = 0.
I Classify as defaulters when they are not

I False Negatives predict ŷ = 0 when y = 1.
I Classify as non-defaulters when they are.

Both mistakes are bad, but sometimes one is worse than the other.
Logistic regression gives us an estimate of P[y = 1|x ]. And the
Bayes decision rule classifies purely based on probabilities. When
P[y = 1|x ] > 0.5, classify as 1.

But instead of minimizing misclassification risk, we want to
minimize our loss.



Using probabilities for Decisions

To make optimal decisions you need to account for probabilities
and costs.

If for each loan, you make $0.25 when repaid, and lose $1 when
not, then we only expect to make ‘profits’ when P[y = 1] < 0.2.

So we may want our classifier to use a different threshold.



False Positive Rate

Much like in lecture 1, we we can think about our rate of false
positives.

I False Positive Rate = #Misclassified as 1 / #classified as 1
I False Negative Rate = #Misclassified as 0/ #Classified as 0



Sensitivity and Specificity

But we may also want to think about sensitivity and specificity.

I Sensitivity: proportion of true y = 1 classified as such.
I Specificity: proportion of true y = 0 classified as such.

A rule is sensitive if it mostly gets the 1s right. A rule is specific if
it mostly gets the 0s right.



ROC Curve
We can plot the ROC curve for different choices of threshold.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − specificity

se
ns

iti
vi

ty



Wrap up



Things to do

HW 3 is due tomorrow night.

See you Thursday



Rehash

I Classification is a different type of problem
I KNN is a useful tool for using local data to make predictions.
I Logits can also be used for classifications
I Prediction Errors in this setting are closely related to

eachother



Bye!


	Quick Review
	Classification
	KNN
	Wrap up
	Bye!

