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Quick Review



Predictions

About halfway through!



OOS performance

In sample, adding variables always improves predictive accuracy.

I IS R2 for full model (200 vars): 56%
I IS R2 for FDR cut model (25 vars): 18%

Out of Sample, we may gain predictive accuracy by dropping
variables.

I OOS R2 for the full model: -5.87.
I OOS R2 for the cut model: 0.10.

THIS IS NEGATIVE. Out-of-Sample, we would be much BETTER
off predicting the mean than with the full model.

OOS R2 estimated with k-fold cross-validation.



AIC

We can (with some assumptions) estimate OOS deviance using
Akaike’s Information Criterion. For a model M with k variables
estimated to be β̂M

AIC = 2k + Dev(β̂M) = 2k − 2log(L(β̂M |data))

This was in our basic model output.

This can help us compare models to choose one.



Stepwise

But there are too many possible subsets of our variables to
compare all of them. So we need some other method for coming
up with a subset to compare.

Stepwise regression does this. It starts with a simple model, and
“greedily” adds the best new variable repeatedly until adding a
new variable no longer improves the AIC.

Because each choice depends on the current model parameters,
small changes to the data can have big consequences for our model
choices. This instability is bad for our OOS prediction.



But AIC estimates OOS deviance/prediction errors

AIC estimates OOS deviance, and it does a good job of it, for a
given model.

But once we started using AIC to choose our models, it ceased to
be a good estimate of our deviance.

AIC was estimating the prediction errors of one model, not of a
whole procedure which picks a model.

“When a measure becomes a target, it ceases to be a good
measure” – Goodhart’s Law

We may encounter this problem again.



LASSO

LASSO is the most commonly used regularized (or penalized)
regression model. The lasso penalty is the l1 norm of our
parameters: pen(β) =

∑
|βj |, which penalizes larger coefficients

and non-zero coefficients. So our estimates are:

β̂λ = argmin
β

Dev(β) + λ
p∑

j=1
|βj |


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deviance penalty scaled sum
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LASSO

We’ve framed LASSO as the solution to an optimization, given
some weight parameter λ.

β̂LASSO = argmin
β

Dev(β) + λ
∑
|βj |

It may be important, for reference to other places, to know that
this can be rewritten as:

β̂LASSO = argmin
β

Dev(β) s.t.
∑
|βj | = ||β||1 ≤ t

Where the constraint t is a bound on our l1 norm. For any given
dataset, there is a correspondence between λ and t. So these
representations are different ways of looking at the same problem.



Cross Validation



Recap

We could, like the bootstrap, repeat our testing-training procedure
many times. But we want to guarantee each observation gets used
as an ‘out-of-sample’ observation at least once.

Instead, we will “fold” the data. We will partition it (split into
exclusive and exhaustive groups) into K different groups of
observations. Then, for k=1:K

I Use observations in group k as test data.
I Train the models on the remaining data (for every λ)
I Predict the observations in group k using those models
I Record the prediction errors for each lambda

This guarantees that each observation is left out once, and
improves the performance of our routine.



Picking K

There are several options:

I Leave-one-out Cross-validation: AKA K = n is great, but
much slower (fits every model under consideration n times)

I K = 5 corresponds to 5 different 20% leave-out samples.
I K = 20 corresponds to 20 different 5% leave-out samples.

Most people set K ∈ [5, 20]. I’ll mostly use 10.

=⇒ Optimizing K is very 3rd order. Not worth worrying about
too much beyond time considerations and some preference for
larger K .



All Together.

We have a LASSO path indexed by λ1 < λ2 < ... < λT .

Cross-Validation for λ:
For each of k = 1, ...,K folds:
1. Fit the path β̂k

λ1
, ..., β̂k

λT
using the data not in fold k. 2. Get the

fitted deviance for new data: −log P[yk |X k , β̂k
λt

] where k denotes
fold membership.

This gives us K draws of the OOS deviance for each λt .

Choose the best λ̂, and fit your model to all the data with that λ̂.



New Example: Comscore

This is from Comscore data. This data is about consumer
spending on websites. We will try to predict household internet
spending as a function of browser history.

Datanames:

I Covariates X: xweb
I outcomes Y: yspend



In R

Again, Cross-validation is very easy and relatively fast for LASSO
in R.

cv.spender = cv.glmnet(xweb,yspend)

And there is a nice plot for it too



CV LASSO plot
plot(cv.spender)
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Mechanically What is Happening?
for (k in 1:K)

1. Estimate model on all data not in fold k
2. Calculate that model’s OOS prediction errors with data in fold

k
3. Repeat for all models under consideration

So we have K estimates of deviance (MSE here) for each model.
Now:

1. Estimate overall/mean deviance for each model.
2. Estimate our estimation error (standard errors) in that

deviance.
3. Build CIs for Deviance

That plot shows the estimated mean/overall deviance for each
lambda (across K) as a red point, and it shows the error bars on
that estimate.



CV LASSO plot
plot(cv.spender)
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LASSO Outputs

Once we’ve done the cross-validation its easy to pick out our
coefficients.

sum(coef(cv.spender,s="lambda.1se") != 0)

## [1] 101

sum(coef(cv.spender,s="lambda.min") != 0)

## [1] 207

“Min” vs “1se” is to do with a concern about overfitting. The 1SE
model is the smallest model that has predictions which perform
very similarly to the true model.



LASSO Outputs
Recall, small changes in our choice don’t have a massive effect on
our coefficients, which evolve smoothly with changes in lambda.
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Cross-Validation: A general technique

Cross-validation will be a general technique that we use for model
selection the rest of this course.

The central element is that we are being careful about what data
we use to train our model and what data we use to select our
model. We do not use the same data for both.

K-fold cross validation lets us use our data maximally efficiently,
while ensuring we maintain that separation between ‘training’ and
‘testing’ data.



Cross-validation: Problems
K-fold Cross validation as laid out above is not perfect. It has
flaws.

1. The observations must be independent. Time-series or
clustering will require different (related) approaches

2. If we want to estimate the error distributions of the entire
procedure (including CV), we need a new test sample that
was held out from the entire CV model selection procedure.
(See Goodhart’s law again)

3. Using deviances as our measure of prediction error only works
within classes of models that have the same likelihood
function.

I Remember that the deviance has a constant C we’ve been
ignoring? If you change your error distribution (e.g. from
Normal to Logistic), that constant changes

I E.g. comparisons between Linear probability models (using lm
for binary outcomes) and logits (using glm family=binomial)
require care.

I Not insurmountable – you just need to think about what your
loss function actually is. The issue here is that there are two
different loss functions being imposed.
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Bias-Variance Tradeoff



Mean Squared Error
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Mean Squared Error
The Y axis was “Mean Squared Error”. This is defined as:

MSE = 1
n

n∑
i=1

(y − ŷ)2

The interior of that square can be rewritten:

y − ŷ = (y − E [y ]) + (E [y ]− ŷ) = ε+ Err(ŷ)
So the interior of the sum can be:

=⇒ (y − ŷ)2 = (ε+ Err(ŷ))2 = ε2 + 2εErr(ŷ) + Err(ŷ)2

Thus the expected MSE:

E [MSE ] = E [(y − ŷ)2] = E [ε2] + E [2εErr(ŷ)] + E [Err(ŷ)2] =

= Var(ε) + 0 + E [Err(ŷ)2]



Bias-Variance Decomposition
Var(ε) = σ2 is irreducible. So we want to minimize E [Err(ŷ)2].

Err(ŷ) = E [y ]− ŷ = (E [y ]− E [ŷ ]) + (E [ŷ ]− ŷ)

For any given model, M, (i.e. a linear model with some covariates):

B(M) = E [y ]− E [ŷ ] & Var(M) = E [ŷ ]− ŷ

B(M) is a measure of how correct M can be. This is the difference
between your model with optimal parameters and the true model.
A Bias.

Var(M) is a measure of how well we can estimate the model. How
close to the optimal parameters do we get?

=⇒ E [MSE ] = σ2 + B(M) + Var(M)



Bias-Variance Decomposition

I As we make our models more flexible (add parameters), the
Bias of the optimal parameters goes down.

I But at the same time, we have to estimate more, which is
challenging, so we increase the distance between our
estimated model, and the optimal parameters for that model.

I This is why we see a U-shape in most Cross-Validation plots
measuring out of sample performance. With too few
parameters, we have a lot of model bias. With too many
parameters, we have a lot of model variance.
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CV LASSO Plot
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Computational Notes



Brief Outline

We’re going to cover some in the weeds details, with example R
code.

I LASSO & Factors
I Cross Validation Example Code
I Sparse Matrices



LASSO & Factors

We’ve discussed LASSO at some length. It shrinks every parameter
towards 0.

I This can be an issue for factors.
I Reference level gets different treatment than other levels
I Not a major issue. But worth addressing
I Solution: Relevel factors so that the first level is irrelevant.

I Also for Fixed Effects:
I We want to fully control for some group membership.
I Shrinking would be remove that control.
I Solution: Don’t penalize FE params.



LASSO FEs in R

Instead of

mod = glmnet(xweb,yspend)

Multiply the lambda penalty by 0 for coefficients that should stay
in the model:

pen.multiplier = rep(1,ncol(xweb)) #Vector of 1s
pen.multiplier[10:20] = 0 #Replace some with 0
mod = glmnet(xweb,yspend,penalty.factor=pen.multiplier)

Now those parameters won’t be shrunk at all.

I Mostly useful for causal models.



LASSO Factors

Make NA the reference level for Factors.

# oj$brand is our factor variable.
oj$brand = factor(oj$brand,levels=c(NA,levels(oj$brand)),

exclude=NULL)

This will shrink every factor level evenly when you use a LASSO
with demo$factor.



Cross-Validation in R – By hand

Setup

n = nrow(xweb) #Number of observations
K = 10 #Number of folds
fold_id = sample(rep(1:K,length.out=n),n,replace=F) #Random fold IDs
lambda_seq = spender$lambda #Grab the lambdas glmnet likes



Cross-Validation in R – By hand
Function for estimating prediction error given a sequence λ and
fold ID.

pred_err_fun = function(k,lambdas) {
leaveout_indices = which(fold_id==k) #Find the fold
model = glmnet(xweb[-leaveout_indices,],

log(yspend[-leaveout_indices]),
lambda=lambdas) #Train

preds = predict(model,newx=xweb[leaveout_indices,]) #Predict
nlambda = length(lambdas)#Each col of preds is preds for 1 lambda
truth = log(yspend[leaveout_indices]) #True outcomes
out = numeric(nlambda) #Initialize
for (t in 1:nlambda) { #For each lambda

out[t] = mean((preds[,t]-truth)^2) #Save the squared error
}
out #Return vector MSE for each lambda.

}



Cross-Validation in R – By hand
Run function on each fold ID.

cv_mse = sapply(1:K,pred_err_fun,lambdas=lambda_seq)

Each column is one fold, each row is one lambda. Entries are the
OOS MSE with that fold/lambda combo. Lets get the mean and
sd of the OOS MSE for each lambda.

#Find mean and SE of that mean for each Row
cv_msd = apply(cv_mse,1,function(x)c(mean(x),sd(x)/sqrt(K)))
cv_msd = t(cv_msd) #apply does a nasty rotation
colnames(cv_msd) = c("msebar","sehat") #Give some names
cv_msd = as_tibble(cv_msd) #Make a DF
cv_msd$lambda = lambda_seq #Add the values of lambda
cv_msd = cv_msd %>% mutate(lb = msebar-sehat,

ub = msebar+sehat)

To plot, we want error bars that are m̄se ± sd(MSE )/
√

(K ). NB
this is not a 95% CI, it is more like a 70% CI.



Cross-Validation in R – By hand
Now we can plot.

ggplot(cv_msd,aes(x=log(lambda),y=msebar,ymin=lb,ymax=ub))+
geom_pointrange(alpha=0.5)
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Simple Triplet Matrices

Sometimes your data will be very sparse (more than two-thirds 0s).
It can then be efficient to ignore 0s when we store the data.

Usually the computer stores matrices as a big vector of numbers,
with some dimension values (nrow, ncol) saved so that it knows
where each row begins.

A simple triplet matrix only stores the indices and values of
non-zero entries to your matrix. i.e. it is made up of

row i, column j, entry value x



Example STM

## [,1] [,2]
## [1,] 0 2
## [2,] 1 0
## [3,] 0 0
## [4,] 0 3

is stored as

## row i col j val
## [1,] 1 2 2
## [2,] 2 1 1
## [3,] 4 2 3



STM for Design Matrices
We can implement this in R using the sparseMatrix type from
the Matrix package (which is auto-loaded by glmnet). Or, more
simply, we can use sparse.model.matrix to build a sparse model
matrix.

oj.sparse.matrix = sparse.model.matrix(logmove~.,data=oj)
oj.model = glmnet(oj.sparse.matrix,oj$logmove)
oj.sparse.matrix[1:5,1:5]

## 5 x 5 sparse Matrix of class "dgCMatrix"
## (Intercept) store2 store5 store8 store9
## 1 1 1 . . .
## 2 1 1 . . .
## 3 1 1 . . .
## 4 1 1 . . .
## 5 1 1 . . .



CURRENT STOP



Wrap up



Things to do

HW 3 is out and due Wednesday of next week.



Rehash

I LASSO gives us fast automatic variable selection for a given
level of penalty

I Cross Validation can help us choose that level of penalty, and
a lot more.
I We could also use AIC or other tools.
I But lasso trades computational power for those theoretical

assumptions
I We face a tradeoff between bias and variance in our model

choices
I And a lot to think about computationally



Bye!
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