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Quick Review



Deviance

Deviance refers to the distance between our fit and the data. You
generally want to minimize it.

Dev(β) = −2log(L(β|data)) + C

We can ignore C for now.

Deviance is useful for comparing models. It is a measure of GOF
that is similar to the residual sum of squares, for a broader class of
models (logistic regression, etc). It is closely related to R2

R2 = 1− D
D0

= 1− Dev(β̂))
Dev(0)



Bootstrap

Basic Procedure for data with n observations.

1. Draw n observations (with replacement) from your data at
random, forming a new sample (X ,Y )′.

2. Estimate the parameter of interest (e.g. β) in the sample
(X ,Y )′. Save that value.

3. Repeat steps (1) and (2) 5k times.
4. Use distribution of values of β̂ to calculate p-values, CIs, etc.



Out of Sample

We care about how well our model works out-of-sample.

One way to test this is to use a “validation sample”.

1. Randomly split your data into two samples
I usually named “testing” and “training”.

2. Fit your model using the “training” data
3. Test predictions on the left-out “testing” data.



Out of Sample Deviances
The difference between in and out of sample deviance is about the
sample.

Example Linear Regression

For In-Sample (IS) R2, we have observations [x1, y1], ..., [xn, yn],
which we use to fit β̂n. The deviance is:

devis(β̂n) =
n∑

i=1
(yi − x′

i β̂n)2

The Out-of-Sample (OOS) R2, we keep the same observations 1..n
to estimate β̂n, but the deviance is calculated using m new
observations.

devoos(β̂n) =
n+m∑

i=n+1
(yi − x′

i β̂n)2



Out of Sample Example 2: Semiconductors

Semiconductors manufacturing: extremely complicated, no margin
for error, hundreds of diagnostics.

We want to focus on diagnostics that are predictive of failure.

xi is a vector of 200 diagnostic signals, yi is a binary (Pass/Fail)
for a chip batch. There are 100 failures out of 1477 batches.

Logistic regression for failure of chip i is

pi = P[faili |xi ] = exp(α+ x′
iβ)/(1 + exp(α+ x′

iβ))



Example 2: Semiconductors

Full model (non-interacted, jointly estimated) has an in-sample
R2 ≈ 0.56 (based on binomial deviance).
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Semiconductor + FDR

We could consider using FDR to slim down our model. q = 0.1
yields α ≈ 0.012 cutoff. That leaves 25 variables, of which ~2.5
are “false”.

A ‘cut’ model using only those 25 variables has an R2 ≈ 0.18.

summary(cut.pvals)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000000 0.001762 0.030080 0.086693 0.092763 0.495039

But now we have a bunch of large pvalues again. One question:
Should we repeat this process?



Semiconductors Cont.

We care about out of sample performance. Let’s examine it.

In Sample R2

I R2 increases with more covariates.
Larger model =⇒ more flexible model =⇒ better in-sample
fit.

I Thus, we shouldn’t use in-sample R2 for model comparisons.

Out of Sample R2.

I “How well can this model predict data it hasn’t seen?”
I K-Fold Cross-validation will help us estimate the

out-of-sample predictive performance. Details in 30(ish) slides.



OOS performance

We may gain predictive accuracy by dropping variables.

The OOS R2 for the cut model: 0.10. (~50% of in-sample R2)

The OOS R2 for the full model: -5.87.

THIS IS NEGATIVE. Out-of-Sample, we would be much BETTER
off predicting the mean than with the full model.

Estimated by using our testing-training split method – AKA
cross-validation.



Fit plots
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OOS

I In-sample measures of model fit can be misleading.
I More variables not necessarily better for out of sample

performance

Cross validation uses OOS experiments to choose the best model.
This is a big part of big data

Selection of ‘the best’ model is at the core of big data. We are
moving into new territory here.

Before getting to selection, we need to come up with a good set of
candidate models to choose from.

HOW?



Comparing Models – A Primer



How many models are we considering?

Suppose for the time being, we ignore interactions between
variables, and nonlinearities. We are just interested in models
which include some subset of our variables. With p variables, how
many models are there?

I 2p

I For small numbers of variables, like 20, this is “only”
~1million model choices

I But it grows rapidly. With 200 variables, there are ≈ 2× 1060

models.
I If a computer can estimate 1 trillion/second, and we have 1

trillion computers, it would take more years than there are
atoms in a human body to estimate every regression.

I So we will need to ignore a few of those
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T-tests/FDR

T-tests are the source for the p-values we’ve been using for FDR
control.

We could (as we did above), estimate the full joint model (or
many marginal models) and use the pvalues from these t-tests to
choose our covariates, ditching the covariates that are insignificant,
either under standard rejection or FDR control frameworks.

But as we saw, the p-values shift as we change models. Do we
iterate?

There are other problems, like independence of p-values, data with
p > n where we can’t estimate p-values, and covariates that are
useful only with or without other variables.

Is “variable significance” really what we care about?



Stepwise Regression

Stepwise regression is an important historical model building
technique. Once we accept that we can’t estimate every subsetted
model, we ask “what if we start with an empty model and slowly
build it up?”

Stepwise Algorithm (Forward)

1. Start with the null model – no variables.
2. Enumerate all models which contain 1 more variable.
3. Estimate those models
4. Compare each of those models to the current model.
5. Pick the best model, and make it the current model.
6. Repeat steps 2-5.

When to stop? Stop when your model selection rule prefers the
current model to all candidate models. Model selection rules in a
moment.



Stepwise Regression

This is a useful heuristic search procedure, which reduces the
problem space significantly. =⇒ can be easy to estimate.

There are many variants

I Backwards: start with some maximal model, and shrink it at
each step

I Bidirectional: Start with some model, compare to all models
one parameter smaller or larger at each step

I Large step size: Check all models with 2 variables more (or
10, etc) at each step

How do we choose?



F-tests

There is a standard tool for comparing two (nested) models in
linear regression. The “F-test”.

The F-test is purely a function of the R2 and the number of
variables.

You could build a procedure out of iteratively comparing two
models.

But this will again mostly be selecting mostly for variables which
are “significant” rather than optimizing for our predictive loss.

Again, this is not really what we want.



AIC

What we care about is Out-of-Sample predictive performance.

It turns out (after a lot of theoretical work) that we can estimate
that using Akaike’s Information Criterion. For a model M with k
variables estimated to be β̂M

AIC = 2k + Dev(β̂M) = 2k − 2log(L(β̂M |data))

This was in our basic model output.



AIC

The AIC actually estimates OOS deviance – what your deviance
would be in another independent sample of size n.

In-sample deviance is too small, because the model minimizes that.
Some incredible theory work shows us that AIC ≈ OOS Deviance.

This approximation is good when n
k is very big.

In big data, that may not apply. Often k ≈ n or is bigger. In that
case, AIC overfits!

We want to minimize the AIC.



Information Criteria

There are many more information criteria. We’ll cover two briefly.

I AICc
I BIC



AIC corrected: AICc

AIC struggles when the number of parameters is too big.

An improved approximation is:

AICc = Dev(β̂M) + 2k n
n − k − 1

Notice that when n
k is big, AICc ≈ AIC . So we will generally prefer

AICc. Nptice also that it is easy to calculate AICc given AIC.



Bayesian Information Criterion: BIC

BIC = Dev(β̂M) + k log(n)

This looks like AIC (swapping a log(n) for a 2) but it comes from
a very different place.

BIC ≈ −log(P[M|data]), the probability ‘model b is true’, in a
bayesian setting.

Generally BIC will select for smaller models. Why?

Imperfect Rule of Thumb:
“AIC/AICc approximate deviance, BIC approximates truth”



Stepwise

Stepwise regression is not choosing the globally best subset of
predictors.

Remember there are 2k such models

Instead, it takes a “greedy” approach. Looking at the best option
for the immediate step, and taking that. This is computationally
much easier – but isn’t likely to give you the ‘globally’ optimal
model.

Its computationally easy?



Stepwise in R

null = glm(FAIL~1,data=SC,family=binomial)
full = glm(FAIL~.,data=SC,family=binomial)
stepwise = step(null,scope=formula(full),direction="forward",trace=0) #Default is AIC

length(coef(stepwise))

## [1] 63

Full is the largest model you would consider, and scope is it’s
formula. Feel free to include interactions to make it huge.

But be warned, even though stepwise is faster than ennumerating
every possible model, it is not necessarily ‘fast’.



Variable Selection Thus Far

Subset Selection Enumerate every possible model M, estimate β̂
for each model, choose the best.
=⇒ Completely infeasible even for small p like 50.

Stepwise Selection: A faster heuristic. Start with some base model,
find the best ‘adjacent’ model, change to that, and continue
iterating.

I Still not very fast (90+ seconds for semiconductor example)
I Not very stable. Small changes in a few observations can

change your selected model a lot. With resulting big effects
on your predictions.

I Inferential properties are extremely unclear.

What’s next? Regularization



Regularization

The general idea: Impose restrictions on β̂ to make them stable,
purposeful, and quick to estimate.

Variable selection is achieved with Estimation, not p-values.

What are our goals?

I We would like β̂ to be stable relative to small changes in data
I We would like β̂ to give the best out of sample predictions

possible
I We would like β̂ to set some coefficients to exactly 0

(dropping variables from the model)

We will penalize solutions β̂ that do not meet expectations.



Regularization

Using all predictors x1, ..., xp, the most likely (MLE) values β̂MLE
minimize deviance.

β̂MLE = argmin
β

Dev(β) = argmin
β
− 2log(L(β))/n

But β̂MLE can only be estimated when p < n, may be unstable,
and won’t have exact 0s.

The penalized version of this adds a penalty pen() which depends
on the parameter β and is scaled by some weight λ > 0.

β̂PMLE = argmin
β

(Dev(β) + λ pen(β))



Regularization

This penalty imposes a cost for solutions that don’t meet our
preferences. =⇒ β̂PMLE is biased.

What costs should we impose? What costs do we face?

I Estimation costs: This is the deviance. As our model fit
degrades, we penalize the model.

I Testing/Measurement costs: Having many parameters in the
model is costly. We should penalize coefficients that aren’t 0.

I A natural penalty then: pen(β) =
∑p

j=1 1(β 6= 0).
I This is just best subset selection again though. We can’t do it.

I OOS costs: Predictions near the unconditional mean of the
data are ‘safe’. Big coefficients push us far away from those
predictions. So we should penalize big coefficients.
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LASSO

LASSO is the most commonly used regularized (or penalized)
regression model. The lasso penalty is the l1 norm of our
parameters: pen(β) =

∑
|βj |, which penalizes larger coefficients

and non-zero coefficients. So our estimates are:

β̂λ = argmin
β

Dev(β) + λ
p∑

j=1
|βj |



For linear regression this simplifies dramatically:

β̂λ = argmin
β

 n∑
i=1

(y − x ′β)2 + λσ̂2
p∑

j=1
|βj |





LASSO

LASSO gives sparse solutions. It imposes a ‘spiky’ penalty for
coefficients. The ‘spike’ at 0 yields a preference for coefficients
that are 0. Non-zero coefficients need to be sufficiently informative
to pay the penalty.

Even though the deviance (the other part of our maximation) is
smooth, a smooth function plus a spiky one can be spiky. And the
minimum can be at that spike.



LASSO
deviance penalty scaled sum
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The LASSO ‘shrinks’ some coefficients to 0.
=⇒ Automatic variable selection.
This is why LASSO is sometimes referred to as ‘modern least
squares’.



LASSO Problems

But LASSO also shrinks the parameters that wind up being
non-zero.

In particular, it can be shown that for a given λ,

β̂j,λ = β̂j,OLS max
(
0, 1− nλ

|β̂j,OLS |

)

So when β̂j,λ is non-zero, it is ≈ nλ closer to 0 than β̂j,OLS .

This, as well as the zeroing out of coefficients, induces the bias.



LASSO in R

Very easy to estimate in R, thanks to numerous useful packages.

library(glmnet)
mod = glmnet(as.matrix(SC[,-1]),SC$FAIL, family=binomial) #~1 seconds
sum(coef(mod, s=0.01) != 0) #s = 0.01 is setting lambda

## [1] 53

So 147 coefficients are 0 with λ = 0.01.



Other Regularizations

We chose the penalty to be the sum of absolute values of β. But
there are other choices.

I Ridge regression: the l2 norm: pen(β) =
∑
β2

I This doesn’t have a spike at 0, so it doesn’t auto-select.
I Elastic Net: pen(β) = γ

∑
|β|+ (1− γ)

∑
β2

I This is ‘between’ LASSO and Ridge. It does some variable
selection.

I Many more: ‘spike and slab LASSO’, ‘gamma LASSO’, etc



LASSO Details

LASSO finds β̂λ which minimizes Dev(β) + λ
∑
|β|. How do we

pick λ?

R will estimate a sequence of λ1 < λ2 < ... < λT . We can apply
model selection tools to choose the best λ̂

LASSO path estimation: R does the following:

1. Start with small λ1 ≈ 0 such that β̂λ1 ≈ β̂MLE
2. Choose λ2, compute β̂λ2 .
3. Keep increasing λ until you obtain the null model for some

value, λT

I This is fast. Each update is easy.
I This is stable, optimal lambda may change slightly between

samples, but not much.
I This is an improved ‘stepwise’ regression.



Classic Plot
Each lambda has a different series of coefficients. There is a
classic plot illustrating. plot(mod)
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Classic Plot - In Lambda
That was against the sum of coefficients, we can also plot against
λ. plot(mod,xvar="lambda")
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Classic Plot - In Deviance Shares
Or we can plot in shares of deviance – pseudo-R2.
plot(mod,xvar="dev")
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LASSO Details pt 2 – SCALE

Covariate scale matters here. This is because x ′β has the same
effect in predictions as 2x ′β/2, but |β| is twice as large a penalty
as |β/2|.

We can recenter and rescale our covariates so that they all are
mean 0 and standard deviation 1. This will eliminate any problems
here.

Most major stats packages will do this for you.



Picking λ

We can now estimate an entire path of coefficients for every value
of λ. But we still need to choose one.

Think of λ as a signal-to-noise filter.

If there is lots of signal in your data, you want a low λ. If there is
lots of noise, you want high λ.

We will use Cross Validation to pick the best λ, but you could also
use some information criterion.

This works well because the path algorithms are relatively stable
and fast. We can quickly enumerate many candidate models, and
the one that ‘looks best’ is going to be quite near the one that is
best.



Prediction vs Interpretation

Testing frameworks are about is this model true?
We want to know what is my best guess?

None of your models will be ‘true’ for complicated high dimensional
systems. We just want a model that makes good predictions.

Parsimony or Occams Razor: If two models do similarly well in
unseen data, choose the simpler one.

I Overly simple models will ‘underfit’ the data (λ too big)
I Overly complicated models will ‘overfit’ the data (λ too small)

The goal is to find the sweet spot.



OOS Prediction based Model Selection

The recipe:

1. Find a manageable set of candidate models (such that fitting
them is fast)

2. Choose the one with best predictive performance on unseen
data

LASSO path algorithms give us (1)
OOS prediction error methods give us (2)

In particular, K-FOLD CROSS VALIDATION



Naive OOS/Cross-validation flaws

We need to estimate the prediction accuracy on unseen future
data. We’ve seen that we can split our sample into a ‘test’ and
‘training’ data sets to do this.

But this is inefficient. If your test data has 10% of the
observations:

I You only check the prediction errors with 10% of your
observation space

I You only estimate your model with 90% of the data
I How do we pick 10%? Last class – I said its a rule-of-thumb.

Unsatisfying.

K-Fold Cross-validation systematically improves on this.



K-Fold Cross Validation

We could, like the bootstrap, repeat our testing-training procedure
many times. But we want to guarantee each observation gets used
as an ‘out-of-sample’ observation at least once.

Instead, we will “fold” the data. We will partition it (split into
exclusive and exhaustive groups) into K different groups of
observations. Then, for k=1:K

I Use observations in group k as test data.
I Train the models on the remaining data (for every λ)
I Predict the observations in group k using those models
I Record the prediction errors for each lambda

This guarantees that each observation is left out once, and
improves the performance of our routine.



Picking K

There are several options:

I Leave-one-out Cross-validation: AKA K = n is great, but
much slower (fits every model under consideration n times)

I K = 5 corresponds to 5 different 20% leave-out samples.
I K = 20 corresponds to 20 different 5% leave-out samples.

Most people set K ∈ [5, 20]. I’ll mostly use 10.

=⇒ Optimizing K is very 3rd order. Not worth worrying about
too much beyond time considerations and some preference for
larger K .



All Together.

We have a LASSO path indexed by λ1 < λ2 < ... < λT .

Cross-Validation for λ:
For each of k = 1, ...,K folds:

1. Fit the path β̂k
λ1
, ..., β̂k

λT
using the data not in fold k.

2. Get the fitted deviance for new data: −log P[yk |X k , β̂k
λt

]
where k denotes fold membership.

This gives us K draws of the OOS deviance for each λt .

Choose the best λ̂, and fit your model to all the data with that λ̂.



In R

Again, Cross-validation is very easy and relatively fast for LASSO
in R.

mod = cv.glmnet(as.matrix(SC[,-1]),SC$FAIL,family=binomial)

And there is a nice plot for it too



CV LASSO plot
plot(mod)
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LASSO Outputs

Once we’ve done the cross-validation its easy to pick out our
coefficients.

sum(coef(mod,s="lambda.1se") != 0)

## [1] 1

sum(coef(mod,s="lambda.min") != 0)

## [1] 15

“Min” vs “1se” is to do with a concern about overfitting. The 1SE
model is the smallest model that has predictions which perform
very similarly to the true model.



Example 2: Comscore
That plot wasn’t the most lovely. This is from a new example
looking at Comscore data. This data is about consumer spending
on websites.

0.00 0.05 0.10 0.15 0.20 0.25

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Fraction Deviance Explained

C
oe

ffi
ci

en
ts

0 17 57 149 401 892



Comscore
plot(cv.spender)
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Wrap up



Things to do

Before Wednesday:

I HW 2

Before Thursday:

I Nothing



Rehash

I Long history of variable selection, starting with F and T-tests
I Moving into Stepwise “greedy” procedures using AIC or BIC

as guides
I Modern techniques: LASSO is a powerful tool for doing

automatic variable selection
I But it doesn’t fully solve the ‘out-of-sample’ problem.

I We use K-Fold Cross Validation to do this
I In essence, trading computational power for theoretical work

and assumptions



Bye!
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