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Today’s Class | Time permitting

1. Quick Review
I Linear Regression
I Logistic Regression

2. Deviance
3. Out-of-Sample performance
4. GLM more broadly:

I Poisson, etc.
5. Inference

I Bootstrap?
6. Preview HW2
7. Review HW1 Answers.



Quick Review



Linear Regression

Many problems involve a response or outcome (y),
And a bunch of covariates or predictors (x) to be used for
regression.

A general tactic is to deal in averages and lines.

E [y |x ] = f (x ′β)

Where x = [1, x1, x2, x3, ..., xp] is our vector of covariates. (Our
number of covariates is p again)
β = [β0, β1, β2, ..., βp] are the corresponding coefficients.
The product x ′β = β0 + β1x1 + β2x2 + · · ·+ βpxp.

For simplicity we denote x0 = 1 to estimate intercepts



Example
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Logistic Regression

Building a linear model for binary data.
Recall our original specification: E [Y |X ] = f (x ′β)

The Response y is 0 or 1, leading to a conditional mean:

E [y |x ] = P[y = 1|x ]× 1 + P[y = 0|x ]× 0 = P[y = 1|x ]

=⇒ The expectation is a probability.

The ‘logit’ link is common, for a few reasons. One big reason?

log
( p
1− p

)
= β0 + β1x1 + ...+ βK xK

This is a linear model for log odds.



Deviance

Deviance refers to the distance between our fit and the data. You
generally want to minimize it.

Dev(β) = −2log(L(β|data)) + C

We can ignore C for now.

Deviance is useful for comparing models. It is a measure of GOF
that is similar to the residual sum of squares, for a broader class of
models (logistic regression, etc).

We’ll think about deviance as a cost to be minimized.

Minimize Deviance ⇐⇒ Maximize likelihood



Bringing this full circle.

φ(x) = 1√
2π

exp
(
−x2

2

)
Given n independent observations, the likelihood becomes:

n∏
i=1

φ

(y − x ′β
σ

)
∝

n∏
i=1

exp
(
−(y − x ′β)2

2σ2

)

∝ exp
(
− 1
2σ2

n∑
i=1

(y − x ′β)2
)



This leads to Deviance of:

Dev(β) = −2log(L(β|data)) + C = 1
σ2

n∑
i=1

(y − x ′β)2 + C ′

So:
Min Deviance ⇐⇒ Max likelihood ⇐⇒ Min l2 loss

This is just a particular loss function, which is driven by the
distribution of the ε terms.



MLE for Logistic Regression
Our logistic regression has the following likelihood:

L(β) =
n∏

i=1
P[yi |xi ] =

n∏
i=1

pyi
i (1− pi )1−yi

=
n∏

i=1

(
exp(x ′i β)

1 + exp(x ′i β)

)yi ( 1
1 + exp(x ′i β)

)1−yi

Thus the deviance to minimize is:

Dev(β) = −2
n∑

i=1
(yi log(pi ) + (1− yi )log(1− pi ))

∝
n∑

i=1
[log(1 + exp(x ′i β))− yix ′i β]

This is just taking the logs and removing the factor of 2.



Back to our summary outputs. We can print the same output for
both linear and logistic regressions.

But the “dispersion parameter” is always 1 for the logistic
regression. summary(spam)

‘degrees of freedom’ is actually ‘number of observations - df’
where df is the number of coefficients estimated in the model.

Specifically df(deviance) = nobs - df(regression)

You should be able to back out number of observations from the R
output.



Dispersion parameter for Linear regression?

summary(reg.bse)

Remember our basic gaussian model was:

Y |X ∼ N(X ′β, σ2)

And the implied deviance was:

Dev(β) = 1
σ2

n∑
i=1

(y − x ′β)2 + C ′

σ is the dispersion parameter, and it is critical here. The logit has
a mean-variance link, so we don’t need the separate param.



Estimating σ

yi = x ′i β + εi ; σ2 = Var(ε)

Denote the residuals, ri = yi − x ′i β̂.

σ̂2 = 1
n − p − 1

n∑
i=1

r2
i

R calls σ̂2 the dispersion parameter.

Critically, even if we know β, we only predict sales with uncertainty.
E.g., approximately a 95% chance of sales in x ′β ± 2

√
0.48



R2

Residual Deviance, D is what we’ve minimized using x .
Null Deviance D0 is for the model without x (or more generally,
the model under the null).
i.e. ŷi = ȳ

I D0 =
∑

(yi − ȳ)2 in linear regression
I D0 = −2

∑
[yi log(ȳ) + (1− yi )log(1− ȳ)] in logits

The difference between D and D0 comes from information in x .

Proportion of deviance explained by x is called the R2 in a linear
regression, “Pseudo-R2” in logit.

R2 = D0 − D
D0

= 1− D
D0

This measures how much variability you explain with your model.

I In spam: R2 = 1− 1549/6170 = 0.75
I In OJ – reg.bse: R2 = 1− 13975/30079 = 0.54



R2 in linear regression
Recall that for linear model, deviance is the sum of squared errors
(SSE) and D0 is the total sum of squares (TSS).

R2 = 1− SSE
TSS

You may also recall that R2 = corr(y , ŷ)2.

cor(reg.bse$fitted,oj$logmove)^2

## [1] 0.5353939

For linear regression, min deviance = max corr(y , ŷ). =⇒ if y vs
ŷ is a straight line, you have a perfect fit.

Also implies that R2 (weakly) increases whenever we add another
variable.



Fit plots
fitplotdf = data.frame(y = oj$logmove,yhat= predict(reg.bse),brand=oj$brand)
ggplot(fitplotdf,aes(y=y,x=yhat,col=brand)) +

geom_jitter(alpha=0.2,size=0.2,width=0.03)+
geom_abline(intercept=0,slope=1)
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It is good practice to plot y vs ŷ . It helps you check for
specification issues (e.g. non-constant variance, non-linearities, etc)



Fit plots – logit
logit.fit.df = data.frame(spam=email$spam==1,yhat=predict(spam,type="response"))
ggplot(logit.fit.df,aes(y=yhat,x=spam,)) +

geom_violin()+ylab("Predicted P[Spam]")
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New question: how do you choose the classification threshold?
When do you send to the spam folder?



Prediction
Prediction is easy with glm.

predict(spam,newdata=email[1:4,])

## 1 2 3 4
## 2.029963 10.956507 10.034045 5.656989

But this output is x ′β. To get probabilities
exp(x ′β)/(1 + exp(x ′β)), add type="response"

predict(spam,newdata=email[1:4,],type="response")

## 1 2 3 4
## 0.8839073 0.9999826 0.9999561 0.9965191

Newdata must match the format of the original data.



Out-of-Sample Prediction

We care about how well our model works out-of-sample.

One way to test this is to use a “validation sample”.

1. Randomly split your data into two samples
I usually named “testing” and “training”.

2. Fit your model using the “training” data
3. Test predictions on the left-out “testing” data.

#Sample 1000 indices
leaveout = sample.int(nrow(email),1000)
#Train the model
spam_train = glm(spam~.,data=email[-leaveout,],family="binomial")
#Predict performance on the test data.
test_preds = predict(spam_train,newdata=email[leaveout,],type="response")



Out-of-Sample Prediction
Fit plots for those left-out observations.
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For the leave out data, we get D0 = 1360 and D = 362 for
R2 = 0.73.
Since the leave-out sample is random, your results may vary.
Note: OOS R2 is lower than in-sample R2 = 0.75



Out-of-Sample

More on this next week during model selection.

You might see notions of this in my code for predicting
vaccinations.



More GLM



Link Functions Aren’t everything

We spoken about GLM giving a basic model of:

E [y |x ] = f (x ′β)

This is the link function, allowing us to model non-linear functions
as “linear in some other domain”.

But we haven’t spoken explicitly about the error distribution yet.



Error distributions

This lack of commentary on error distributions is odd – because
the error distribution is critical to the likelihood, and the likelihood
is how we are estimating our model.

We have in fact been baking in basic assumptions about the
distributions.

I For the logit: ε ∼ Binomial(1, p)
I For the linear: ε ∼ N(0, σ2)

Asymptotically, for linear regressions we can make much weaker
statements. See “quasi-maximum likelihood” models. Beyond this
course.



Generalizing Further
If we have errors with other distributions, it is useful to take
advantage of our knowledge of those other distributions.

A common alternative distribution is the poisson.

Histogram of rpois(1000, 5)

rpois(1000, 5)
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GLM with Poisson

Once we say: ε ∼ Poisson(λ), it implies a likelihood function, and
thus can help our estimation routine. It is easy to incorporate this
new information.

mod = glm(y~.,data=df,family=poisson)

We can do the same with many other distributions:

I Easily in base-R for some: Poisson, binomial, Gamma.
I In principle with any distribution: t, Cauchy, etc.

Be aware, that sometimes this imposes a constant variance
assumption.



Inference



Sample vs Population

As we’ve seen, even with very well behaved data, our estimate is
not the same as the true value of a parameter.

A large vein of statistics is dedicated to estimating how large a gap
there might be.

Typically, this relies on some notion of asymptotic normality of the
parameter. With that in place, you can estimate a standard error,
and do fairly well.



MOAR DATA

We don’t want to do difficult theory work. We just want to know
how far away we can expect our parameter to be.

If we had a few more similar samples of data, we could estimate it
directly. We could just calculate our parameter in each sample,
and look at how much it varies.

We could break our sample into pieces, but each one will be much
smaller, and thus higher variance. How can we get more
information without doing theory?

The BOOTSTRAP.



Pretend we have 10 thousand samples

Each observation in our data was independently sampled from
some distribution.

What if every time we wanted a new sample, we just put all our
observations in an urn, drew our n of them (with replacement), or
n − 10 (without replacement) and calculated the parameter in that
sample?

We could do this ten-thousand times. And have a theory-free
distribution of possible values our sample could have taken.

This is the simplest form of the bootstrap. And it is powerful.



Example

summary(obs)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.578 9.277 9.936 9.971 10.640 12.949

bootstrap_means = replicate(10000,{
new_sample = sample(obs,length(obs),replace=T)
mean(new_sample)

})



Example

hist(bootstrap_means,breaks=100)
abline(v=quantile(bootstrap_means,c(0.025,0.975)),col=2)

Histogram of bootstrap_means

bootstrap_means
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Bootstrap Comments

This relying on the independence between observations. If there is
some dependence structure, you can still bootstrap, you just
bootstrap clusters.

This will only work well when the parameter of interest has finite
variance.

Will only capture all the sampling variation – biased samples are
still biased.



IF Time

Go over HW 2 introduction.

Go over HW 1 answers.



Wrap up



Things to do

Before Wednesday:

I HW 2



Rehash

I Regressions minimize prediction errors, loss, or deviance, or
they maximize some likelihood function.

I Deviance is a measure of model fit.
I GLM is a fairly flexible tool for modelling in a wide variety of

situations – linear only in some dimension.
I Out-of-sample performance is critical. Measuring this is a

pain.
I Bootstraps help us simulate the notion of repeated samples.



Bye!
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