
Regressions: Linear, Logit, Deviance
Lecture 3

Connor Dowd

April 6th, 2021

Today’s Class | Likely to spillover to Thursday

1. Quick Review
I FDR
I Loss

2. Regression Basics
I Single redux
I Multivariate
I Interactions
I Factors

3. Logistic Regression
4. Deviance

I Out-of-sample

Quick Review

FDR Roundup

We started with the notion that a given α, (pvalue cutoffs) can
lead to a big FDR: α→ q(α).
BH reverse that. They fix FDR, and find the relevant α. The
algorithm is the key to doing that. q → α∗(q)

Loss

I Loss is a function both of our prediction and the true outcome
I More importantly, the driving feature of loss is our experience

of making a certain error. Do we lose money? Time?
Prestige?

I Our choice of procedure is driven by this loss.
I lp(Y , Ŷ) = lp(Y − Ŷ) = lp(e) =

(
1
n
∑n

i=1 |e|p
) 1

p

I E.g. l2(e) =
√

(1
n
∑n

i=1 e2).

Regression

Motivation
Dominicks Minute Maid Tropicana

40 80 120 160 40 80 120 160 40 80 120 160

8

10

12

Week

Lo
g

S
al

es
Log Orange Juice Sales at Store 2 by Brand

What is driving sales? Brand differences? Price changes? Ads?

Motivation
Dominicks Minute Maid Tropicana

40 80 120 160 40 80 120 160 40 80 120 160

8

10

12

Week

Lo
g

S
al

es
Log Orange Juice Sales at Store 2 by Brand

Blue points are based on ongoing promotional activity.
It looks like ads are important.

Motivation

Fit a line for sales by brand controlling for promotional activity.

log(Sales) ≈ α + γBrand + βAds

α+ γb are like our baseline sales. But we can bring in β more sales
with some promotional activity.

Regression

I Regression through linear models
I Implementation in R

I Complications:
I Interaction
I Factors

I Logistic Regression
I Estimation: Maximum likelihood, Minimum Deviance

This should be mostly review, but perhaps with a different
emphasis.

Linear Models

Many problems involve a response or outcome (y),
And a bunch of covariates or predictors (x) to be used for
regression.

A general tactic is to deal in averages and lines.

E [y |x] = f (x ′β)

Where x = [1, x1, x2, x3, ..., xp] is our vector of covariates. (Our
number of covariates is p again)
β = [β0, β1, β2, ..., βp] are the corresponding coefficients.
The product x ′β = β0 + β1x1 + β2x2 + · · ·+ βpxp.

For simplicity we denote x0 = 1 to estimate intercepts

Marginals and Conditional Distributions

0.0

0.4

0.8

1.2

−0.5 0.0 0.5 1.0
log(price)

de
ns

ity

Marginal Distribution shows us that prices are widely distributed

−0.5

0.0

0.5

1.0

lo
g(

pr
ic

e)

Marginals and Conditional Distributions

0.0

0.4

0.8

1.2

−0.5 0.0 0.5 1.0
log(price)

de
ns

ity

Marginal Distribution shows us that prices are widely distributed

−0.5

0.0

0.5

1.0

Dominicks Minute Maid Tropicana
brand

lo
g(

pr
ic

e)

brand

Dominicks

Minute Maid

Tropicana

The conditionals show us that brands are doing different things.

Marginal vs Conditional

The Marginal mean (aka unconditional mean) is a simple number.

The conditional mean is a function that depends on covariates.

The data is distributed randomly around these means.

Generate some well-behaved data to demo.

X ∼ N(1.5, 0.52)

ε ∼ N(0, 0.52)

Y = 2 + 0.8X + ε

∴ Y |X ∼ N(2 + 0.8X , 0.52)

0

1

2

3

4

5

0 1 2 3
x

y

0

1

2

3

4

5

0 1 2 3
x

y

β = 0.8

1

Intercept = 2

0

1

2

3

4

5

0 1 2 3
x

y

0

1

2

3

4

5

0 1 2 3
x

y

0

1

2

3

4

5

0 1 2 3
x

y

Coefficient Selection

The simplest form of regression is known as “Ordinary Least
Squares” (OLS).

We select coefficents β to minimize the sum of the squared
prediction errors.

β̂ = argmin
β

N∑
i=1

(y − ŷ)2 = argmin
β

N∑
i=1

(y − x ′β)2

= argmin
β

N∑
i=1

(y − (β0 + β1x1 + ...βKxK))2

= argmin
β

(N∑
i=1

(y − x ′β)2
) 1

2

Implications

Standard regressions have a loss function built in alread. The l2
loss. And they minimize it.

We minimized our l2 loss and didn’t wind up at the true value β.
So the loss for β must be higher.

=⇒ The variance for the true model is usually higher than the
variance of our model’s error terms.

I See overfit next week
I This is why we compare to a t-distribution.

I We had to estimate the variance as well.

OLS vs MLE

There is a different way to choose coefficients, known as Maximum
Likelihood.

Instead of minimizing a loss function, makes assumptions about
error distribution. More later.

Basic Regressions in R

Orange Juice Sales

Three brands.

I Tropicana
I Dominicks
I Minute Maid

83 Chicagoland stores.
Demographics for each.

Price, sales (log units moved), and advertising activity (feat) on a
number of dates.

Data in oj.csv.

Price, Brand, Sales
ggplot(oj, aes(y=logmove,x=log(price),col=brand))+

geom_point()

4

6

8

10

12

−0.5 0.0 0.5 1.0
log(price)

lo
gm

ov
e

brand

Dominicks

Minute Maid

Tropicana

Sales decrease with price. Each brand has its own price strategy.

Price, Brand, Sales

ggplot(oj,aes(y=logmove,x=log(price),col=brand))+
geom_jitter(alpha=0.3,size=0.3,width=0.03)

4

6

8

10

12

−0.5 0.0 0.5 1.0
log(price)

lo
gm

ov
e

brand

Dominicks

Minute Maid

Tropicana

Sales decrease with price. Each brand has its own price strategy.

Scale

Why is this a log-log plot?

Scale
Why is this a log-log plot?

0e+00

2e+05

4e+05

6e+05

1 2 3 4
price

ex
p(

lo
gm

ov
e) brand

Dominicks

Minute Maid

Tropicana

Log Linear

We often model the mean for log(y) rather than y .

log(y) = log(a) + xβ ⇐⇒ y = aexβ

Predicted y is multiplied by eβ after x increases by 1.

Recall: log(y) = z ⇐⇒ ez = y where e ≈ 2.718.
Further, log(ab) = log(a) + log(b) and log(ab) = b log(a).

We define log = ln, the natural log. Using, e.g. log2 would only
change our intercept.

Whenever y changes on a percentage scale, use log(y).

I prices: “Orange Juice is 10% off”
I sales: “Sales are up 10%”
I Most other things that are strictly positive may warrant a log

scale.

Price Elasticity

A simple ‘elasticity’ model for orange juice sales y :

E [log(y)] = γlog(price) + x ′β

Elasticities and log-log regressions: We can interpret γ as the %
change in y associated with a 1% change in x .

In R:

coef(glm(logmove~log(price)+brand,data=oj))

(Intercept) log(price) brandMinute Maid brandTropicana
10.8288216 -3.1386914 0.8701747 1.5299428

We see that (with brand FEs), sales drop 3.1% for every 1%
increase in price.

Regression in R
That one command is capable of doing a lot of work.

reg = glm(logmove~log(price)+brand,data=oj)

I glm stands for "Generalized Linear Regression
I For this simple model, lm works too.

I y ~ a + b is the formula defining our regression.
I y ~ . will regress against everything in the dataset.
I Intercepts are implicitly included by default.

The variable reg is a list of useful things. (try names(reg)).

I summary(reg) prints a ton of information
I coef(reg) gives coefficients
I predict(reg, newdata=newdataframe) gives predictions

for new data
I newdataframe must be a dataframe with exactly the same

format as mydata. (Variable names, factor levels, etc).

Factors

The Design Matrix
coef(reg)

(Intercept) log(price) brandMinute Maid brandTropicana
10.8288216 -3.1386914 0.8701747 1.5299428

What is brandTropicana?
Our regression formulas look like β0 + β1x1 + · · ·. But brand is
not a number, so brand × β isn’t sensible.
glm, lm, most other standard routines start by creating a numeric
design matrix, which converts the factor brand into a lot of
Boolean variables.

inds = sample(nrow(oj),10) #Grabbing some random observations
oj$brand[inds]

[1] Tropicana Dominicks Tropicana Dominicks Tropicana Minute Maid
[7] Minute Maid Tropicana Tropicana Minute Maid
Levels: Dominicks Minute Maid Tropicana

The Design Matrix
They convert with model.matrix, which gives us these variables.

model.matrix(reg)[inds,]

(Intercept) log(price) brandMinute Maid brandTropicana
9053 1 1.1600209 0 1
6859 1 0.4637340 0 0
6292 1 1.2556160 0 1
9693 1 0.4574248 0 0
26364 1 1.0952734 0 1
18647 1 0.9001613 1 0
13705 1 0.9631743 1 0
23454 1 1.2208299 0 1
8418 1 0.6881346 0 1
8607 1 0.7839015 1 0

These are numeric values x which we can multiply against
coefficients β.

Intercepts

coef(reg)

(Intercept) log(price) brandMinute Maid brandTropicana
10.8288216 -3.1386914 0.8701747 1.5299428

model.matrix(reg)[1,]

(Intercept) log(price) brandMinute Maid brandTropicana
1.000000 1.353255 0.000000 1.000000

Each factor’s reference level is absorbed by the intercept. The
coefficients are now “changes relative to intercept”.

In this case, the intercept is “dominicks” brand OJ.

Releveling Factors

To check your factor’s reference level, look at the first level in the
factor levels.

levels(oj$brand)

[1] "Dominicks" "Minute Maid" "Tropicana"

You can change this with relevel (base R) or fct_relevel and
fct_reorder in the tidyverse’s forcats package.

Interactions

Interactions

Beyond Additive effects: Variables change how other variable’s act
on y .

An Interaction is the product of two covariates.

E [y |x] = ...+ βjxj + xjxkβjk

So the effect on E [y] of a unit increase in xj is βj + xkβjk

=⇒ It depends on xk !

Interactions play a massive role in statistical learning, and are often
central to social science and business questions.

I Does gender change the effect of education?
I Do older patients benefit more from a vaccine?
I How does advertisement affect price sensitivity?

Fitting interactions in R: use * in your formula.

reg.int = glm(logmove~log(price)*brand,data=oj)
coef(reg.int)

(Intercept) log(price)
10.95468173 -3.37752963
brandMinute Maid brandTropicana
0.88825363 0.96238960
log(price):brandMinute Maid log(price):brandTropicana
0.05679476 0.66576088

This model is E [log(y)] = αb + βb log(price).
A separate slope and intercept for each brand!

Elasticities wind up as: dominicks: -3.4, minute maid: -3.3,
tropicana: -2.7

Where do these numbers come from?

Advertisements

What changes when a brand is featured?
Here, we mean an in-store display promo or flier.

We could model an additive effect on sales:
E [log(sales)] = αb + 1[feat]αfeat + βb log(p)

Or that and an elasticity effect:
E [log(sales)] = αb + βb log(p) + 1[feat](αfeat + βfeat log(p))

Or a brand-specific effect on elasticity.
E [log(sales)] = αb + βb log(p) + 1[feat](αfeat + βb,feat log(p))

See the R code for each of these online.

Brand-specific Elasticities - Coefs

reg.bse = glm(logmove~feat*log(price)*brand,data=oj)
coefs = coef(reg.bse)
coefs

(Intercept) featTRUE
10.40657579 1.09440665
log(price) brandMinute Maid
-2.77415436 0.04720317
brandTropicana featTRUE:log(price)
0.70794089 -0.47055331
featTRUE:brandMinute Maid featTRUE:brandTropicana
1.17294361 0.78525237
log(price):brandMinute Maid log(price):brandTropicana
0.78293210 0.73579299
featTRUE:log(price):brandMinute Maid featTRUE:log(price):brandTropicana
-1.10922376 -0.98614093

Brand-specific Elasticities - Coefs

A tibble: 2 x 4
feat Dominicks ‘Minute Maid‘ Tropicana
<lgl> <dbl> <dbl> <dbl>
1 FALSE -2.77 0.783 0.736
2 TRUE -0.471 -1.11 -0.986

Ads seem to increase the price-sensitivity.

Minute Maid and Tropicana have big jumps.

Actual Elasticities

A tibble: 2 x 4
feat Dominicks ‘Minute Maid‘ Tropicana
<lgl> <dbl> <dbl> <dbl>
1 FALSE -2.77 -1.99 -2.04
2 TRUE -3.24 -3.57 -3.50

After marketing,

Why does marketing increase the price sensitivity? How will this
influence strategy?

Confounding
There are differential rates of advertising, which makes going from
these static coefficients, to statements about the companies,
difficult.

plot(table(oj$brand,oj$feat))

table(oj$brand, oj$feat)

Dominicks Minute Maid Tropicana

FA
LS

E
T

R
U

E

Logistic Regression

Logits

Linear regression is just one linear model. Probably not the most
used model.

Logistic Regression when y is TRUE or FALSE (1/0).

Binary Response as a prediction target:

I Profit or loss, greater or less than, pay or default
I Thumbs up or down, buy or not
I Win or not, Sick or healthy, Spam or not?

In high dimensions, simplifying to binary variables can help us
interpret.

Building a linear model for binary data.
Recall our original specification: E [Y |X] = f (x ′β)

The Response y is 0 or 1, leading to a conditional mean:

E [y |x] = P[y = 1|x]× 1 + P[y = 0|x]× 0 = P[y = 1|x]

=⇒ The expectation is a probability.

We will choose f (x ′β) to give values between 0 and 1.

Also note that the variance becomes related to the mean.

We want a binary choice model

p = P[y = 1|x] = f (β0 + β1x1 + ...+ βKxK)

Where f is a function increasing in value from 0 to 1.

f(x' beta)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
x' beta

y

We will use the ‘logit link’ function and do ‘logistic regression’.

P[y = 1|x] = ex ′β

1 + ex ′β
= exp(β0 + β1x1 + ...+ βKxK)

1 + exp(β0 + β1x1 + ...βKxK)

The ‘logit’ link is common, for a few reasons. One big reason?
Some math shows:

log
(p
1− p

)
= β0 + β1x1 + ...+ βKxK

So this is a linear model for log odds.

Spam Filters

Most inboxes use binary regression to predict whether an email is
spam.
Say y=1 for spam, and y=0 for not spam.

spam.csv has 4600 emails with word and character presence
indicators (1 if character is in message) and related info.

Logistic Regression fits p(y = 1) as a function of email content.

Very easy in R.

glm(Y ~ X+Z, data=df, family=binomial)

The argument family=binomial tells glm that spam is binary.

The response can take a few forms:

I y = 1, 1, 0, numeric vector
I y = TRUE ,FALSE ,TRUE , ... logical vector
I $y = ‘spam’,‘not’, ‘spam’,. . . $ factor vector Everything else

is the same as for linear regression.

Perfect Separation
spam = glm(spam~.,data=email,family=binomial)

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Some emails are very easy to predict. Clearly spam or not. This is
called ‘perfect separation’. It can cause some numerical instability
(convergence issues, standard errors can suffer, p-values, etc), but
mostly doesn’t matter much.

We see it here, because some words are excellent predictors.

table(email$word_george, email$spam,dnn=c("word_george","spam"))

spam
word_george 0 1
0 2016 1805
1 772 8

Interpreting Coefficients

The model is:

p
1− p = exp (β0 + β1x1 + ...+ βKxK)

So exp(βj) is the odds multiplier for a unit increase in xj .

coef(spam)[’word_george’]

word_george
-5.779841

So if the word ‘george’ occurs in an email, the odds of it being
spam are multiplied by exp(−5.8) ≈ 0.003.

What is the odds multiplier for a coefficient of 0?

Deviance

Deviance in R Summaries

The summary function gives coefficients, and a bunch more.
summary(spam)

The linear OJ regression does the same summary(reg.bse)

These are statistics telling us about our model fit. They are
important in both linear and logistic regression. Understanding
deviance will tie them together.

0

1

2

3

4

5

0 1 2 3
x

y

Estimation and Goodness-of-Fit

Two related concepts
Likelihood is a function of the unknown parameters β of a
statistical model, given data:

L(β|data) = P[data|β]

Maximum Likelihood Estimation (MLE)

β̂ = argmaxβL(β|data)

MLE estimates β̂ are the parameters that make our data most
likely.

Maximum likelihood estimation requires making statements about
distribution of error terms.

Error Distributions

Back to Gaussian linear model for a moment:

Y |X ∼ N(x ′β, σ2)

=⇒ P[Y = y |X = x] = φ

(y − x ′β
σ

)
Then we can aggregate across all observations and pick a β.

=⇒ L(β|data) = P[data|β] =
N∏

i=1
P[Y = y |X = x]

=
N∏

i=1
φ

(y − x ′β
σ

)

Where φ is the normal distribution’s pdf.

Estimation and Goodness-of-Fit

Two related concepts
Deviance refers to the distance between our fit and the data. You
generally want to minimize it.

Dev(β) = −2log(L(β|data)) + C

We can ignore C for now.

Deviance is useful for comparing models. It is a measure of GOF
that is similar to the residual sum of squares, for a broader class of
models (logistic regression, etc).

We’ll think about deviance as a cost to be minimized.

Minimize Deviance ⇐⇒ Maximize likelihood

Bringing this full circle.

φ(x) = 1√
2π

exp
(
−x2

2

)
Given n independent observations, the likelihood becomes:

n∏
i=1

φ

(y − x ′β
σ

)
∝

n∏
i=1

exp
(
−(y − x ′β)2

2σ2

)

∝ exp
(
− 1
2σ2

n∑
i=1

(y − x ′β)2
)

This leads to Deviance of:

Dev(β) = −2log(L(β|data)) + C = 1
σ2

n∑
i=1

(y − x ′β)2 + C ′

So:
Min Deviance ⇐⇒ Max likelihood ⇐⇒ Min l2 loss

This is just a particular loss function, which is driven by the
distribution of the ε terms.

MLE for Logistic Regression
Our logistic regression has the following likelihood:

L(β) =
n∏

i=1
P[yi |xi] =

n∏
i=1

pyi
i (1− pi)1−yi

=
n∏

i=1

(
exp(x ′i β)

1 + exp(x ′i β)

)yi (1
1 + exp(x ′i β)

)1−yi

Thus the deviance to minimize is:

Dev(β) = −2
n∑

i=1
(yi log(pi) + (1− yi)log(1− pi))

∝
n∑

i=1
[log(1 + exp(x ′i β))− yix ′i β]

This is just taking the logs and removing the factor of 2.

Back to our summary outputs. We can print the same output for
both linear and logistic regressions.

But the “dispersion parameter” is always 1 for the logistic
regression. summary(spam)

‘degrees of freedom’ is actually ‘number of observations - df’
where df is the number of coefficients estimated in the model.

Specifically df(deviance) = nobs - df(regression)

You should be able to back out number of observations from the R
output.

Dispersion parameter for Linear regression?

summary(reg.bse)

Remember our basic gaussian model was:

Y |X ∼ N(X ′β, σ2)

And the implied deviance was:

Dev(β) = 1
σ2

n∑
i=1

(y − x ′β)2 + C ′

σ is the dispersion parameter, and it is critical here. The logit has
a mean-variance link, so we don’t need the separate param.

Estimating σ

yi = x ′i β + εi ; σ2 = Var(ε)

Denote the residuals, ri = yi − x ′i β̂.

σ̂2 = 1
n − p − 1

n∑
i=1

r2
i

R calls σ̂2 the dispersion parameter.

Critically, even if we know β, we only predict sales with uncertainty.
E.g., approximately a 95% chance of sales in x ′β ± 2

√
0.48

R2

Residual Deviance, D is what we’ve minimized using x .
Null Deviance D0 is for the model without x (or more generally,
the model under the null).
i.e. ŷi = ȳ

I D0 =
∑

(yi − ȳ)2 in linear regression
I D0 = −2

∑
[yi log(ȳ) + (1− yi)log(1− ȳ)] in logits

The difference between D and D0 comes from information in x .

Proportion of deviance explained by x is called the R2 in a linear
regression, “Pseudo-R2” in logit.

R2 = D0 − D
D0

= 1− D
D0

This measures how much variability you explain with your model.

I In spam: R2 = 1− 1549/6170 = 0.75
I In OJ – reg.bse: R2 = 1− 13975/30079 = 0.54

R2 in linear regression
Recall that for linear model, deviance is the sum of squared errors
(SSE) and D0 is the total sum of squares (TSS).

R2 = 1− SSE
TSS

You may also recall that R2 = corr(y , ŷ)2.

cor(reg.bse$fitted,oj$logmove)^2

[1] 0.5353939

For linear regression, min deviance = max corr(y , ŷ). =⇒ if y vs
ŷ is a straight line, you have a perfect fit.

Also implies that R2 (weakly) increases whenever we add another
variable.

Fit plots
fitplotdf = data.frame(y = oj$logmove,yhat= predict(reg.bse),brand=oj$brand)
ggplot(fitplotdf,aes(y=y,x=yhat,col=brand)) +

geom_jitter(alpha=0.2,size=0.2,width=0.03)+
geom_abline(intercept=0,slope=1)

4

6

8

10

12

8 9 10 11 12 13
yhat

y

brand

Dominicks

Minute Maid

Tropicana

It is good practice to plot y vs ŷ . It helps you check for
specification issues (e.g. non-constant variance, non-linearities, etc)

Fit plots – logit
logit.fit.df = data.frame(spam=email$spam==1,yhat=predict(spam,type="response"))
ggplot(logit.fit.df,aes(y=yhat,x=spam,)) +

geom_violin()+ylab("Predicted P[Spam]")

0.00

0.25

0.50

0.75

1.00

FALSE TRUE
spam

P
re

di
ct

ed
 P

[S
pa

m
]

New question: how do you choose the classification threshold?
When do you send to the spam folder?

Prediction
Prediction is easy with glm.

predict(spam,newdata=email[1:4,])

1 2 3 4
2.029963 10.956507 10.034045 5.656989

But this output is x ′β. To get probabilities
exp(x ′β)/(1 + exp(x ′β)), add type="response"

predict(spam,newdata=email[1:4,],type="response")

1 2 3 4
0.8839073 0.9999826 0.9999561 0.9965191

Newdata must match the format of the original data.

Out-of-Sample Prediction

We care about how well our model works out-of-sample.

One way to test this is to use a “validation sample”.

1. Randomly split your data into two samples
I usually named “testing” and “training”.

2. Fit your model using the “training” data
3. Test predictions on the left-out “testing” data.

#Sample 1000 indices
leaveout = sample.int(nrow(email),1000)
#Train the model
spam_train = glm(spam~.,data=email[-leaveout,],family="binomial")
#Predict performance on the test data.
test_preds = predict(spam_train,newdata=email[leaveout,],type="response")

Out-of-Sample Prediction
Fit plots for those left-out observations.

0.00

0.25

0.50

0.75

1.00

FALSE TRUE
spam

P
re

di
ct

ed
 P

[S
pa

m
]

For the leave out data, we get D0 = 1360 and D = 362 for
R2 = 0.73.
Since the leave-out sample is random, your results may vary.
Note: OOS R2 is lower than in-sample R2 = 0.75

Out-of-Sample

More on this next week during model selection.

You might see notions of this in my code for predicting
vaccinations.

Wrap up

Things to do

Before Thursday:

I Literally nothing

Rehash

I Regressions minimize prediction errors, loss, or deviance, or
they maximize some likelihood function.

I Interpretation of coefficients depends on variables: elasticities,
levels, logs

I Factor coefficients wind up being "difference from some
reference

I Interactions allow us to model the effect of one covariate on
another

I Logistic regression lets us predict binary variables using a
linear model of log-odds

I Deviance’s are a measure of prediction error which generalize
beyond linear regressions.

I Out-of-sample performance is key.

Bye!

	Quick Review
	Regression
	Basic Regressions in R
	Factors
	Interactions
	Logistic Regression
	Deviance
	Wrap up
	Bye!

