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Today’s Class

1. Assorted Business
I Predictions
I Questions

2. Quick Review
I Regression
I False Discovery Intro

3. False Discovery Rate, More than you wanted to know
4. Loss functions
5. My prediction walkthrough
6. Homework intro (if time?)



Assorted Business



Predictions

“How many people in the US will have had at least one
dose by end of day on April 30th?”

I Prediction: 148 million
I 90% CI: [130,169] million.
I Based on CDC trend data – not what I gave you

I but clearly available on the page with target numbers.
I I pulled it in directions that felt better. Code online/later.

I You don’t always have the best data
I But you could probably still do pretty well with the data I

gave. CI calibration would be tough.



Interest



Other

I R comments
I 1-indexing
I Usually you want to save scripts, not workspaces.
I Stay organized. Folders for homeworks, etc.
I Consider using shared drives or github to collaborate

I Office hours will be Fridays at 9AM



Questions from you?



Quick Review



Regression

The basic model is as follows:

Perc.OneDose = β0 + β1Delivered .100k+ β2Perc.TwoDose + ε
Where E [ε] = 0.

We care about β1 or perhaps β2. What are they?



Testing

We can compare pvalues, which are measure of extremity, to a
pre-set threshold (α) which controls our false discovery chance.

But with lots of variables, how do we think about things?

1. No correction? pα false rejections
2. Bonferonni? 5% chance of any false rejections.

Both seem aggressive. Want a middle ground.



FDR Redux



Large Scale Testing

Notation Changed

We wish to test K simultaneous null hypothesis:

H01,H02, ...,H0K

Out of the K null hypothesis, N0 are true nulls and N1 = K − N0
are false – i.e. there is an effect.



False Discovery Rate

FD Proportion = False positives / #Significant = FD
R

We can’t know this.

We can control its expectation though: False Discovery Rate,
FDR = E [FDP].

If all tests are tested at α level, we have α = E [FD/N0], whereas
FDR = E [FD/R]

We can find in-sample analogues (ish) of these things.



FDR Control

Suppose we want to know that FDR ≤ q = 0.1.

Benjamini + Hochberg Algorithm

1. Rank your p-values smallest to largest.
2. Set p-value cutoff as α∗ = max{p(k) : p(k) ≤ q k

K }

Then FDR ≤ q – assuming approximate independence between
tests.



Rewriting that

Step two there is a mess. Lets look at it closely.

α∗ = max{p(k) : p(k) ≤ q k
K }

or (because k,K are both positive)

α∗ = max{p(k) :
p(k)K
k ≤ q}

The secret sauce here is that p(k)K is the expected number of false
discoveries, under the nulls, if p(k) were our rejection threshold.
Dividing by k - the number of discoveries with that threshold -
gives us an estimate of the FDR.



Understanding BH

I Under the null, pvalues lie along the grey line (slope 1/K ).
I Our rejection threshold is set by the green line (slope q/K ),

and we reject values under it.



FDR Roundup

We started with the notion that a given α, (pvalue cutoffs) can
lead to a big FDR: α→ q(α).

BH reverse that. They fix FDR, and find the relevant α. The
algorithm is the key to doing that. q → α∗(q)

FDR is not the only way to think about these risks. But it is a very
solid middle ground when we have many tests.

=> Principled bounds on overall errors, while maintaining power
to detect.



Example: multiple testing in GWAS

GWAS: genome-wide association studies.
Want to find genetic markers related to disease for early prevention
and monitoring.

Single-nucleotide polymorphisms (SNPs) are paired DNA locations
that vary across chromosomes. The allele that occurs most often is
“major” (A) and the other is “minor” (a).

Question: Which ones increase risk?



Cholesterol

Willer et al, Nat Gen 2013 describe a meta-analysis of GWAS for
cholesterol levels. We will focus on LDL cholesterol.

At each of 2.5 million SNPs, they fit a linear regression

E [LDL] = α+ βAF

Where AF is allele frequency for the ‘trait increasing allele’.

2.5 million SNP locations.
=> 2.5 million tests of β = 0
=> 2.5 million p-values.



All the pvalues



BH plot (log-log)

We get about 4500 SNPs where we reject the null hypothesis, and
about 5 of them we expect to be false positives.



BH Roundup

I p-values from the null distribution are uniform, and should lie
along the 1/K line if there are K of them.

I FDP is the number of false discoveries divided by number of
rejections. We can’t know it.

I
FDR = E [FDP]

we can control though.
I Fix it to be ≤ q for K tests
I rank and plot p-values against rank/K
I draw a line with slope q/K
I Reject under the line.



Loss



Predictions
Suppose you have an observation coming from some distribution.
What do you predict?

Value

D
en

si
ty

0 5 10 15

0
50

0
10

00
15

00



Some typical choices

I Mean
I Median
I Mode



Some typical choices
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Some natural questions:

1. What if we’re playing ‘price is right rules’ for your prediction?

2. What would motivate a choice of median over mean or mode?
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Formalizing loss

At its simplest, a loss function maps the truth, and your prediction,
into how unhappy you are about your error.

L(y , ŷ) =????

The most common class of loss functions only cares about the
magnitude of the error, not its location.

L(y , ŷ) = l(y − ŷ) = l(e)

This is not always a reasonable simplification.



Using loss

We’re defining a norm against a distribution. So we need to think
about all the possible values the outcome could take.

Naturally then, we’re going to plug the loss into an expectation.
That will let us make statements about our expected loss. (With
some iffy notation)

E [l(e)] = E [l(y − ŷ ] =
∫

l(y − ŷ)P[y ]dy

This should look very familiar.



Insample

Within a sample, we can use a loss function to dictate our
predictions.

We choose parameters to minimize

L(Y , Ŷ ) = L(Y , α̂+ β̂X )



lp norm

The most common norms here are known as the lp norms. Within
sample, (and with some iffy notation) this looks like:

L(Y , Ŷ ) =
(
1
n

n∑
i=1
|Y − Ŷ |p

) 1
p

Notice, we’ve thrown in a symmetry statement. The absolute value
means that lp(e) = lp(−e).

Again: This is not always a reasonable simplification.



Back to typical answers:

I Mean: corresponds to answer with lowest expected l2 loss.
I AKA: min

√
1
n
∑

(Y − ŷ)2 is the RMSE
I Median: Answer with lowest l1 loss

I AKA min 1
n
∑
|Y − Ŷ | is the MAD

I Mode: Answer with lowest l0 loss
I AKA min 1

n
∑

1(Y 6= Ŷ ) wants Exact predictions only

=> These are different statements about how much we care about
a tradeoff between infrequent large errors and frequent small errors.



How do we choose?

How many fingers do you think our dean has?

I Would you guess 10? Median/Mode?

I Would you guess 9.9? Mean?
I How do you choose?
I What if we were competing to be closest?
I What if it was a random lumberjack?
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Loss function last thoughts for now

Loss functions come from the context of a situation. No
generalizable advice here.

I Standard loss functions lean on symmetry and
location-indifference type assumptions that may not be
reasonable.

I Very important for making actionable predictions
I And important to bake in very early

I They drive every choice of statistic
I Price-is-right rules, competitions more generally are going to

screw with this.
I “Winners curse”



Homework Introduction



Week 1 HW

Dataset of ~13k reviews for some products, collected in 2012.

Reviews include product details, ratings, and plain text comments.

We will look for words associated with good/bad ratings.



Assignment online

I will now go through the code at the start, introduce you to the
datasets, run some things, and comment on various features that
may help you understand R and large datasets.



Wrap up



Things to do

Before Tuesday:

I Homework



Rehash

I False Discovery Rates can be controlled
I Understanding our loss function is critical
I You have homework



Bye!
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