
Neural Nets, Other Fancy Algs
Lecture 17

Connor Dowd

May 25th, 2021

Today’s Class

1. Review
I Targeting
I Observational Methods

2. Neural Nets
I Basic Idea
I Activation Functions
I Stochastic Gradient Descent
I Backprop
I Example

3. Other Aggressive ML things:
I GANs
I Evolutionary Algos

Review: Causality

Review: RCT

Randomization fixes this problem. It gives us the ability to say that
no “unknown” factors drove the variable “X” which is “treatment
status” – because we know the randomization drove it.

Review: TEs

An average treatment effect (ATE) is the average difference
between the potential outcome under treatment, and the potential
outcome under control.

Individual treatment effects are the individual’s difference between
potential outcomes under treatment and control.

Conditional Average Treatment Effects, are the average difference
btween potential outcome under treatment and control for some
subgroup

Review: Targeting

Targeting mostly consists of trying to identify groups with notable
(large, negative, etc) CATEs.

Many methods. We’ve looked at “T-learners” – which make
predictions about individual outcomes under treatment and
control, then estimate differences.

With estimated treatment effects for individuals, we can decide
who to target.

This needs solid out-of-sample performance to be useful.

I If you want to learn more – look into “Causal Forests”
I Which take a slightly different approach.

Review: Observational Methods IV/RD

Some observational methods solve the basic problem of causal
inference by trying to find something which is “as-if” random.

I Instrumental variables: find something that is unrelated to Y,
but can drive X

I Regression Discontinuity: take position relative to a threshold
as semi-random for individuals in the vicinity of the threshold

Both rely on the disconnect between outcome Y and
“randomness”. If there is a link between Y and the “as-if random”
variable, there will be problems. We cannot prove this assumption
true, we can only sometimes prove it false.

Review: Observational Methods DiD/SCM

Other observational methods try to counteract any bias that might
exist.

I Diff-in-Diff establishes two primary sources of problems, and
tries to eliminate them.
I Can also upgrade to triple-diff, or Diff-in-RD, etc.

I SCM tries to improve on weighting schemes in DiD.

Both of these rely on other untestable assumptions. “Parallel
trends”, etc.

Neural Nets

Basic “idea” is to build a structure ‘similar’ to a brain.1

Brains are ‘good’ at predictive tasks, so maybe we can borrow their
structure.

Stylized model:

I Each neuron in the brain has some neurons that signal it and
some which it signals

I Each neuron can be ‘inactive’ or activate (with some room for
“intensity”)

1or a computer scientist’s idea of a brain

Linear Regression Diagram

Linear Regresion New Names

Neural Nets - Simplest

Neural Nets - Small Hidden Layer

Neural Nets - Hidden Layer

Neural Nets - Two Hidden Layers

Neural Nets - Essence

Node Math

At each node, the neural net sums up its inputs (weights times the
outputs from prior layer).

Then it passes that to an activation function to produce its own
output. A common activation function is:

ReLU(x) = max(x , 0)

Activation Functions

Other common activation functions are sigmoid:

S(x) = 1
1 + e−x

Leaky ReLU:

LReLU(x) = max(0.01 ∗ x , x)

Other Activation Functions

SoftMax

SoftMax(X)i = eXi∑J
j=1 eXj

There are many more.

Node Math

Each node gets a bunch of inputs X , a bunch of weights w , and
spits out a single number. That number is a function of the vector
Xw .

We apply the activation function either to the sum
∑

Xw or the
full vector Xw .

Nodes

We repeat this at each node until we have a prediction.

Neural Nets

Estimating Neural Nets

For a given structure (layer setup, activation function), we need to
select the weights that are best. This is tricky

Suppose we have:

I 4 variables
I Two hidden layers of 5 nodes
I A bias term for each layer.

We need to estimate: (4 + 1) ∗ 5 + (5 + 1) ∗ 5 + (5 + 1) = 61
parameters. This number grows rapidly with the number of
variables, the number of layers, and the number of nodes per layer.

Estimating Neural Nets

Not only are there many parameters to estimate, there is no known
closed form to solve this general problem.

=⇒ there is no analytical solution, so we need to use a
computational optimization routine.

I Backpropagation

Optimization Routines, A brief detour

Parameter to Optimize

Lo
ss

Optimization

Parameter to Optimize

Lo
ss

Optimization

Parameter to Optimize

Lo
ss

Optimization

Parameter to Optimize

Lo
ss

Optimization

Parameter to Optimize

Lo
ss

Optimization - Pt 2

But how do we know which direction to go?

We use the data to estimate the slope whenever we stop. This tells
us which way is “downhill”.

I Gradient Descent

However, this can be very slow.

Can we speed up?

What if we only use some of the data to estimate the slope
whenever we stop?

“Stochastic Gradient Descent”

I Faster per iteration
I Somewhat more erratic

I Need more iterations?
I Usually faster overall anyhow

Optimization

Parameter to Optimize

Lo
ss

Optimization

Parameter 1

P
ar

am
et

er
 2

100

200

300

400

500

Loss

Optimizing in 2 Dimensions
p2 = p1 + annotate("point",x=-3,y=-3,col=2,size=2)
p2

Parameter 1

P
ar

am
et

er
 2

100

200

300

400

500

Loss

Optimizing in 2D

Parameter 1

P
ar

am
et

er
 2

100

200

300

400

500

Loss

Optimizing in 2D

Parameter 1

P
ar

am
et

er
 2

100

200

300

400

500

Loss

Optimizing in 2D

Parameter 1

P
ar

am
et

er
 2

100

200

300

400

500

Loss

Optimizing in 64 dimensions

Each derivative we want to compute is more work.

But beyond that, for linear regression, derivatives are
straightforward.

The derivative

∂Ŷ
∂β1

= X1

And the error derivatives are similarly easy.

Neural Nets

Backpropagation

The idea behind backpropagation is that we can understand the
effect of the last set of nodes on our errors. Those derivatives are
easy to compute.

And the derivatives for the second to last set of nodes depend
solely on the last set of nodes. And so forth.

I We can “propagate” the error terms backwards from the
output to the weights at the very beginning.
I I promise this is a bigger reveal than it seems.

I Go read more if you want more depth.
I This is backpropagation

Backpropagation

Backpropagation allows us to compute the derivatives of our error
with respect to weights arbitrarily deep in our neural net.

This is critical for our ability to optimize those weights, and thus
for us to estimate them.

Iris Data
iris = as_tibble(iris)
iris

A tibble: 150 x 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
... with 140 more rows

Neural Nets - Benchmarking

holdout_ind = sample(nrow(iris),0.2*nrow(iris))
test = iris[holdout_ind,]
train = iris[-holdout_ind,]
library(ranger)
forest = ranger(Species~.,data=train)
pred_forest = predict(forest,data=test)$prediction
mean(pred_forest == test$Species)

[1] 0.9333333

Basic Neural Nets
library(neuralnet)
nn0 = neuralnet(Species~.,data=train,hidden=0)
pred_nn0 = predict(nn0,newdata=test)
pred_nn0

[,1] [,2] [,3]
[1,] -0.452203089 0.71351634 0.73886700
[2,] 1.106475284 -0.19269222 0.08652068
[3,] 1.011263108 0.01050910 -0.02198016
[4,] 0.820956863 0.45901557 -0.28007150
[5,] 0.832333881 0.42532347 -0.25779696
[6,] 0.225195432 0.38041967 0.39460787
[7,] -0.143312523 0.38277284 0.76072814
[8,] 0.883294918 0.13033955 -0.01358311
[9,] -0.086419263 0.10806558 0.97878385
[10,] 1.009936748 0.13313195 -0.14278820
[11,] 0.156939609 0.71857188 0.12416082
[12,] 0.824137524 0.33243775 -0.15681579
[13,] 0.800760568 0.39122265 -0.19214183
[14,] -0.117737500 0.56617127 0.55186023
[15,] 0.862196553 0.29148637 -0.15384898
[16,] 1.218105728 -0.42411882 0.20619963
[17,] 0.076832319 0.53017481 0.39277013
[18,] 0.126268367 0.45553133 0.41801149
[19,] 0.909005434 0.24809185 -0.15708324
[20,] -0.035122627 0.16546674 0.86967307
[21,] 0.993544033 -0.05263950 0.05917414
[22,] -0.269489548 0.53071979 0.73877620
[23,] -0.012024823 0.34422086 0.66758053
[24,] -0.002782735 0.03627395 0.96684569
[25,] 0.809928421 0.35909679 -0.16893060
[26,] 0.900329817 -0.02528606 0.12517177
[27,] 0.108219980 0.17599726 0.71569062
[28,] 0.874196490 0.26639356 -0.14079748
[29,] 0.964304280 0.08979689 -0.05399689
[30,] -0.193929793 0.92389508 0.26987267

Basic Neural Nets

class_index = apply(pred_nn0,1,which.max)
class_nn0 = levels(iris$Species)[class_index]
mean(class_nn0 == test$Species)

[1] 0.8666667

Basic Neural Nets

Bigger NN

nn1 = neuralnet(Species~.,data=train,hidden=5)
pred_nn1 = predict(nn1,newdata=test)
class_index = apply(pred_nn1,1,which.max)
class_nn1 = levels(iris$Species)[class_index]
mean(class_nn1 == test$Species)

[1] 0.9333333

Bigger NN

Two Layers

nn2 = neuralnet(Species~.,data=train,hidden=c(5,5))
pred_nn2 = predict(nn2,newdata=test)
class_index = apply(pred_nn2,1,which.max)
class_nn2 = levels(iris$Species)[class_index]
mean(class_nn2 == test$Species)

[1] 0.9666667

Two Layers

Multinomial Deviance

A somewhat approximate function.

multinom_deviance = function(probs,actual,epsilon=0.00001) {
out = as.integer(actual)
#Grab the probability corresponding to the event that happens.
prob_event = sapply(1:length(actual),

function(index) probs[index,out[index]])
#Make sure the probability is between 0 and 1.
if (epsilon) {

prob_event[prob_event >= 1] = 1-epsilon
prob_event[prob_event <= 0] = epsilon

}
-2*sum(log(prob_event))

}

OOS Deviances

multinom_deviance(pred_nn0,test$Species)

[1] 18.98888

multinom_deviance(pred_nn1,test$Species)

[1] 29.15948

multinom_deviance(pred_nn2,test$Species)

[1] 23.82508

Tuning Parameters

Like forests, trees, LASSO, KNN, and other models we’ve
encountered, Neural Nets have several “tuning parameters” we
need to pick in order to use the model.

I Forests: number of trees, tree depth, variable dropout rate
I Trees: tree depth
I LASSO: penalty parameter
I KNN: Number of nearby points to examine k
I Neural Nets: Number of hidden layers, connections between

hidden layers, activation functions, nodes per layer, training
thresholds, and more.

Choosing Tuning Parameters

As with the other models, we need some way to choose these
parameters.

Once again, if we care about out-of-sample performance, we
should use. . .

I Cross-validation.

There are (again) a wide variety of theoretical tools you could use.
But for most settings, CV will do as well – and is an excellent swiss
army knife.

Other ML algorithms

As should be transparent, these models can become arbitrarily
complicated.

Why not add 10 more layers and 10 more nodes to each
layer?

Two problems become extremely important in ML

I How do I find good parameter estimates?
I How do I prevent overfitting?

Optimization

The first question is about the mechanics of an actual optimization
routine.

The second question is about preventing that routine from going
to far.

I All about optimization.

Optimization Routines

There are a variety of techniques for helping with this.

I Generative Aversarial Networks (GANs)
I Evolutionary Algorithms
I Etc

GANs

Essence:

1. Build a model that generates fake data
2. Build a model that tries to detect fake data
3. Have them compete, determine performance of each.
4. Iterate and repeat

I Each model has incentives to understand DGP well.
I Over 1000s of iterations, will converge to something that

works well

Evolutionary Algorithms

Essence:

1. Build 1000 models. Test performance.
2. Remove the worst 200, duplicate the best 200. (Selection)
3. Transplant some features across different models ()
4. Randomly change some features of each model (Mutation)
5. Repeat

I Again – we are creating incentives for model performance.
Over 1000s of iterations, can find things that work well.

Optimization

Optimization/estimation is a key element of more complicated
models.

Linear models are everywhere because they are easy to
estimate.

The two models above are based on some of the most successful
methods of optimization – evolution and competition.

I Used by well known entities like nature, capitalism, and
science

Wrap up

Homework 7 is due tomorrow.

On Thursday I’ll try to review the whole of this course in 90
minutes.

See you Thursday!

