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Today’s Class

1. Review
I RCTs
I Individual TEs

2. RCTs: Targeting
3. Observational Methods: IV

I RD
4. Observational Methods: Diff-in-Diff

I SCM
5. HW6 Review



RCTs



RCTs



Similarity
Typically the ATE is:

ÂTE = ȳ1 − ȳ0

But we could also define it as the average across individual
treatment effects.

ÃTE = 1
n

n∑
i=1

T̂E i

With a lot of rewriting of sums – we can show that when our
individual treatment effects use a constant mean to predict
counterfactuals:

ÃTE = ÂTE



Proof in Data

ybar0 = mean(jtpa$y[jtpa$offer == 0])
ybar1 = mean(jtpa$y[jtpa$offer == 1])
ybar1-ybar0

## [1] 1159.433

jtpa_est = jtpa %>%
mutate(y1 = y*offer+(1-offer)*ybar1,

y0 = y*(1-offer)+offer*ybar0) %>%
mutate(TE = y1-y0)

mean(jtpa_est$TE)

## [1] 1159.433

But maybe we can improve on the mean as a prediction.



ATE from predictions:
#Build Treat and control dfs
jtpa_cont = jtpa %>% filter(offer == 0)
jtpa_treat = jtpa %>% filter(offer == 1)
#Estimate treat and control models
mod_treat = ranger(y~.-offer,data=jtpa_treat)
mod_cont = ranger(y~.-offer,data=jtpa_cont)
#Predict counterfactuals for data from other model
jtpa_cont$confact = predict(mod_treat,data = jtpa_cont)$predictions
jtpa_treat$confact = predict(mod_cont,data = jtpa_treat)$predictions
#Estimate TEs
jtpa_cont$TE = jtpa_cont$confact - jtpa_cont$y
jtpa_treat$TE = jtpa_treat$y - jtpa_treat$confact
#Recombine
jtpa_est = rbind(jtpa_cont,jtpa_treat)
mean(jtpa_est$TE) #ATE

## [1] 1155.634



Individual TEs
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Individual TEs, Do we care?

It looks like some fraction of individuals lost ~$50k by engaging in
this program. Not to mention the program cost to the government.

I What if we could target the program to people who benefit?
I In other settings, like marketing, we may wish to target groups

for whom the expense of advertising is less than the gain in
revenue from those individuals.

=⇒ Targeting. Can we use the RCT data for targeting?



Targeting

The goal of using targeting is to identify subpopulations who
benefit more.

This will always be about averages in some subgroup – we can’t
predict outliers. Consequentially, there may be excluded individuals
who benefit or suffer from exclusion.

I Do not forget about this.



Targeting

It is also at times very questionable, concerning, and even illegal to
target some groups. Particularly if you are advertising financial
products, or developing a government program.

I Importantly, you can wind up targeting (e.g. race) even if you
don’t observe relevant variables directly
I Zip code can be a strong proxy.

I I’m going to drop variables for now – (and rerun prior code)

jtpa = jtpa %>% select(-male,-black,-hispanic)



Simple Targeting

Take an observation, predict outcome under treatment and control,
take the difference, compare to some threshold.



Simple Targeting

pred_treat = predict(mod_treat,data=jtpa_est)$predictions
pred_cont = predict(mod_cont ,data=jtpa_est)$predictions

jtpa_est$te_pred = pred_treat-pred_cont



Simple Targeting
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Simple Targeting – Smoothed Conditional Means
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Simple Targeting – Bin Scatter
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Simple Targeting – A threshold

Suppose we picked a cutoff of $0. We can look at which predicted
treatment effects are below 0, and which estimated treatment
effects are below 0, and think about performance.

jtpa_est = jtpa_est %>% mutate(predte0 = te_pred > 0,
TE0 = TE > 0)

table(jtpa_est$TE0,jtpa_est$predte0,deparse.level=2)

## jtpa_est$predte0
## jtpa_est$TE0 FALSE TRUE
## FALSE 1288 4405
## TRUE 824 4687



Simple Targeting - Quick test

chisq.test(jtpa_est$TE0,jtpa_est$predte0)

##
## Pearson’s Chi-squared test with Yates’ continuity correction
##
## data: jtpa_est$TE0 and jtpa_est$predte0
## X-squared = 107.26, df = 1, p-value < 2.2e-16

So these aren’t unrelated.



Simple Targeting – A threshold

That felt like our classification work. Could we use an ROC curve?

It will take some modification. For starters, our thresholds aren’t
now restricted to 0,1.

But more importantly, we aren’t observing the true outcome of the
classification – even that is a prediction.

I Easier to look at the mean ATE in the two groups that our
classification threshold produces.

I Also important to use OOS predictions. (One step at a time)



Simple Targeting - Measuring Performance

Continuing with our Threshold of 0 for a moment. Lets calculate
mean ATE for each group our predictions and threshold create.

jtpa_TEs = jtpa_est %>%
group_by(offer,predte0) %>%
summarize(y=mean(y)) %>%
pivot_wider(names_from = predte0, values_from = y)

jtpa_TEs

## # A tibble: 2 x 3
## # Groups: offer [2]
## offer ‘FALSE‘ ‘TRUE‘
## <dbl> <dbl> <dbl>
## 1 0 18520. 14222.
## 2 1 14503. 16592.



Simple Targeting - Measuring Performance

Find the actual “ATE” for each subpopulation:

jtpa_TEs[2,2:3]-jtpa_TEs[1,2:3]

## FALSE TRUE
## 1 -4017.017 2369.809

So for the group the proposed policy would block, the ATE was
substantially negative, and for the group it would try to target, the
ATE was much more positive than for the entire population.

I Substantial Improvement in our performance. IF it holds out
of sample.



Simple Targeting

But first – we should consider other thresholds. . .

Going to plot out possible other thresholds, and the “gain” in
performance from using those thresholds.

“Net Gain” is going to be “benefit-(avoided loss)”. For an
indiscriminate policy (all eligible), this is the pure ATE.

For a policy targeting some group and blocking some group (of
equal size), this is “ATE(targeted group)-ATE(blocked group)”.

I Notice – if we block a group which would benefit – this is a
loss here. (We are assuming no cost of the policy – big loss
assumptions baked in)



Simple Targeting - ROC
Built a function, critical elements below

threshold_ATES = function(threshold,y,predte,
treatment,MC=0,FC=0) {

n = length(predte)
targets = predte > threshold
ATE_treat = mean(y[treatment == 1 & targets == 1])-

mean(y[treatment == 0 & targets == 1])
ATE_untreat = mean(y[treatment == 1 & targets == 0])-

mean(y[treatment == 0 & targets == 0])
ntreat = sum(targets)
nuntreat = n-ntreat
gain = ntreat*ATE_treat-nuntreat*ATE_untreat
gain = gain-MC*ntreat-FC
gain = gain/n
c(threshold,ATE_treat,ATE_untreat,ntreat,nuntreat,gain)

}



Gain
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## [1] 573.0293



Costs

Suppose we had some cost for each person treated (call it $300).
And a fixed cost ($1000).

Where is the cutoff?

Changes our “gains” function.



New plot
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## [1] 573.0293



Interpretation

I First gains plot was “average benefits to individuals of
targeting over full treatment” as a function of thresholds

I Second plot was “average benefits to individuals above costs
of targeting over full treatment” as a function of thresholds

But maybe we aren’t currently implementing anything?

I Then it would be inappropriate to subtract off the ATE for the
untreated group.



New plot
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## [1] 1014.397
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OOS Targeting measures.

USE CROSS VALIDATION.



OOS Targeting

OOS_tepreds = function(holdout_ind,data,formula = y~.-offer) {
holdout = data[holdout_ind,]
train = data[-holdout_ind,]
jtpa_cont = train %>% filter(offer == 0)
jtpa_treat = train %>% filter(offer == 1)
#Estimate treat and control models
mod_treat = ranger(y~.-offer,data=jtpa_treat)
mod_cont = ranger(y~.-offer,data=jtpa_cont)
pred_treat = predict(mod_treat,data=holdout)$predictions
pred_cont = predict(mod_cont ,data=holdout)$predictions
te_pred = pred_treat-pred_cont
cbind(holdout_ind,te_pred)

}



Kfold CV

k = 20
fold_ids = sample(rep(1:k,length.out = nrow(jtpa)))
hold_indices = lapply(1:k,function(foldk) which(fold_ids == foldk))
oos_preds = lapply(hold_indices,OOS_tepreds,data=jtpa)
jtpa_est = jtpa
jtpa_est$oos_tepreds = NA
for (i in 1:k){

jtpa_est$oos_tepreds[oos_preds[[i]][,1]] = oos_preds[[i]][,2]
}



Plots
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## [1] -1633.808



Targeting

I Powerful tool in many domains
I Optimal Policy Design
I Marketing
I Medical treatment choice
I Many more

I Care and Caution needed
I Discrimination issues
I OOS/overfitting issues

I We may think we are finding good targeting things – and
really be failing

I Our standard tools for examining and improving predictions
will help here.



RCT Wrapup

RCTs can have problems arise in several ways.

I Placebo effects: I know I recieved fancy treatment
I Spillover effects: My friend got tutoring and I benefit from

that
I and others.

They can be great – but they aren’t flawless.



Observational Causal Inference

Frequently we care about causal issues in contexts where we can’t
run an experiment.

There are still tools for trying to assess a causal effect. They will
rely on something being “as if” random.



Instrumental Variables

The simplest example here is “instrumental variables”.

Recall, when we use an RCT, we assume some random number
generator influences X without having any way to effect Y, and
without being affected by Y.

I Thus we can use the RNG output to predict Y only because of
the causal effect of X



RCT DAG



Instrumental Variables

IV takes the same idea. What if I had some other variable – not a
random number – which affects X, but can’t affect Y or be
affected by Y. Then I could predict Y as a function of that random
variable – and any relationship would be only because of X.



IV DAG



IV - Example

Many Examples out there.

One classic example is testing the relationship between lead and
crime (or other things like test scores)

Essentially, we can look at a city’s proximity to lead foundries to
predict their usage of lead pipes. Then we can try to use the
proximity to lead foundries to predict crime.

“In the absence of other plausible relationships between lead
foundry proximity and crime, any effect we find comes from the
lead”.

https://www.sciencedirect.com/science/article/abs/pii/S0014498316300109
https://www.sciencedirect.com/science/article/abs/pii/S0014498316300109


IV - Estimation

Simplest method (“2SLS”) runs a linear regression between Z and
X, getting βX , then another regression between Z and Y, getting
βY .

The estimated effect of X on Y is βY /βX .



IV - Problems

I Weak IV: If βX is near 0, our estimates for the effect head
towards∞ or −∞. This is a bigger problem than it may seem.
I Z needs to be relevant to X

I Exclusion: If Z has other channels for affecting Y, then we
can’t interpret this as the causal effect of X on Y.
I E.g. if lead foundries disproportionately went out of business,

causing unemployed workers to form mobs that committed
crimes.



IV - Other Uses

Implicitly, that 2SLS procedure of dividing one coefficient by
another is how we estimated “average treatment effect on the
treated” on Tuesday.

Divide the ATE by the fraction recieving treatment



Regression Discontinuity

Regression discontinuity is similar to IV.

It takes advantage of some policy threshold, on one side of which
individuals receive treatment, and on one side of which they don’t.



RD Example

Classic examples involve looking at students.

I E.g. Some schools have a GPA cutoff for being put on
academic probation. We may want to know the effect of
‘academic probation’ on
I dropout rates
I future GPA
I Etc



RD



RD



RD - Estimation

Typically you use nonparametric tools (local linear regressions
above), with carefully chosen bandwidths (choose with CV if you
like).

That will let you estimate E [Y |X = threshold ,T = 1] and for
T = 0 (i.e. the intercept on each side). Then we take the
difference.



RD - Notes

RD gives you a Conditional Average Treatment Effect – the RD
estimate of the treatment effect is the estimated average
treatment effect for individuals at the threshold.



RD - Problems

RD assumes individuals are fundamentally similar on either side of
the threshold.

I But if individuals are aware of the threshold, and can control
their position relative to it, then they may not be
fundamentally similar
I Individuals on right side may have chosen to be there
I And on the left side, not chosen to be on the right side
I Selection problems



Difference-in-Differences

Suppose we observe a state implement some policy.

I E.g. California imposes a large tax ($0.25) on cigarettes.

And we want to know the effect of the cigarette tax on
consumption.

What could we do?



Difference-in-Differences
Recall the cigarette data. Per capita cigarette consumption in 38
states over 30 years. California policy implemented in 1989.

df = read_csv("https://codowd.com/bigdata/lectures/l13/cigarettes.csv")
df

## # A tibble: 31 x 40
## year AL AR CA CO CT DE GA IA ID IL IN KS
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1970 89.8 100. 123 125. 120 155 110. 108. 102. 125. 135. 114
## 2 1971 95.4 104. 121 126. 118. 161. 116. 108. 108. 126. 139. 103.
## 3 1972 101. 104. 124. 134. 111. 156. 117 109. 126. 127. 149. 111
## 4 1973 103. 108 124. 138. 109. 155. 120. 111. 122. 124. 156 115.
## 5 1974 108. 110. 127. 133. 112. 151. 124. 116. 126. 132. 160. 119.
## 6 1975 112. 115. 127. 131 110. 148. 123. 120. 123. 132. 162. 123.
## 7 1976 116. 119. 128 134. 113. 153 126. 124. 125. 134. 167. 128.
## 8 1977 117. 123. 126. 132 117. 153. 128. 126. 125 134 173 128.
## 9 1978 123 127. 126. 129. 118. 156. 131. 127. 123. 137. 151. 127.
## 10 1979 121. 126. 122. 132. 117. 150. 131 124. 118. 135. 149. 126.
## # ... with 21 more rows, and 27 more variables: KY <dbl>, LA <dbl>, ME <dbl>,
## # MN <dbl>, MO <dbl>, MS <dbl>, MT <dbl>, NC <dbl>, ND <dbl>, NE <dbl>,
## # NH <dbl>, NM <dbl>, NV <dbl>, OH <dbl>, OK <dbl>, PA <dbl>, RI <dbl>,
## # SC <dbl>, SD <dbl>, TN <dbl>, TX <dbl>, UT <dbl>, VA <dbl>, VT <dbl>,
## # WI <dbl>, WV <dbl>, WY <dbl>



Quick Plot
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Idea: State Differences

We could look at the difference between California’s consumption
and consumption in other states after the policy takes effect.

I Suppose California was randomly selected for the policy – this
is how we would run an RCT analysis.

I But suppose California already consumed a different amount –
we would be biased by the scale of pre-existing differences.



Idea: Time Differences

We could look at the difference between California’s consumption
before and after the policy takes effect.

I This would avoid concerns about differences between states.
I But if there was some kind of time trend, we would be adding

a bias from the time trend.



Quick Plot
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Difference-in-Difference

Diff-in-diff says: “why not both?”

I We can look at the difference between California and other
states, and see how it changes over time.
I Or we could look at each state’s changes over time, and see

how California compares to other states.
I These are equivalent.



Diff-in-Diff: Year means in treatment and control groups
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Diff-in-Diff: Difference between year means
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Diff-in-Diff

The difference looks to have gotten bigger - so there was probably
an effect. The tax probably reduced consumption.



Diff-in-Diff: Notes

I Relies on the ‘parallel trends’ assumption.
I Both treatment and control groups have time trends that are

similar.
I In that case, we can estimate the treatment effect.

I Usually relies on naive means in each of the treatment and
control groups.
I I.e. equal weighted means



Synthetic Controls

Synthetic controls builds on Diff-in-Diff by saying “can we improve
those weights?”

I This should sound familiar.

We may be able to find weights for the control group that make it
better at predicting the treatment group.

I This will let us relax the ‘parallel trends’ assumption somewhat
I It will also improve the statistical efficiency.



Synthetic Controls

I’m not going to go through code here. SCM is mostly beyond the
scope of this class.

I But its useful for you because the basic idea is familiar
I “Can we improve those weights for out of sample prediction”



Observational Causal Inference Wrapup

RCTs, IV, RD all rely on “exogenous variation” coming from
something. Variation which is unrelated to the outcome of interest.

I RCTs: Varation from a random number generator
I IV: Variation from some instrument
I RD: Variation from randomness around some threshold

Diff-in-diff and SCM rely on finding the two sources of bias, and
trying to eliminate them.

I Bias 1: our treated unit is fundamentally different
I Bias 2: out treated time periods are fundamentally different

These are different approaches with different strengths and
weaknesses.



Causal Inference Wrapup

There is no magic bullet.

We have questions that desperately need answers.

We have data. That data may be able to help. But it may only
mislead us.

I Critical to make decisions and implement policies which fail
gracefully
I We want things that work wonderfully if we’re right about the

world
I But which aren’t tremendously destructive if we’re wrong.



HW 6 Review

If we have time I’ll review HW6 in a minute.



Wrap up

Homework 7 will be posted this afternoon, due next Wednesday. It
is about causal inference.

Prediction competition 3 submissions must be in by midnight
tomorrow.

Next Tuesday we will look Neural Nets, and next Thursday I’ll try
to review the whole of this course in 90 minutes.

See you next week!


