Causal Inference 1: RCTs Lecture 15

Connor Dowd

May 18th, 2021

Today's Class

1. Review

- Winsorizing
- Bayes
- Predictions Contest 2
- 2. Observational Data
- 3. RCTs: Average Treatment Effects
- 4. RCTs: Heterogenous Treatment Effects
- 5. RCTs: Targeting?
- 6. HW5 Review?

Review

Winsorizing

The standard routine does the following.

- 1. Pick some quantile (e.g. 1%).
- 2. Find that quantile e.g. find the 99%ile abs(logerror)
- 3. Set values higher than that quantile to that quantile.

Bayes Rule

$P[\beta|X] \propto P[X|\beta]P[\beta]$

- $P[\beta|X]$ is referred to as the posterior
- $P[X|\beta]$ is the *likelihood* (we've seen before)
- $P[\beta]$ is the prior

Systematizing Uncertainty

Primary Sources of Uncertainty in Modeling

- 1. Within the model, there is uncertainty.
 - What are parameter values
 - What value will an observation take
- 2. We are not certain if the model is correct
 - Should we use a different model
 - Should we average with a different model
- 3. We don't know if the data is correct
 - Is there a clerical error?
 - Is there measurement error?
 - E.g. Covid Case counts in the US last March woefully undercounted.

Predictions 2 - Daily Case Counts

Predictions 2 - Sundays only

Predictions 2 - Actual Predictions

Predictions 2 - MSE Winners

Predictions 2 - Price-is-Right Winners

Predictions 2 - Wrapup

```
Actual result: 27655
```

- MSE Winners: Caden Kalinowski, Cagdas Okay, Matias Pietruszka
- PIR Winners: Frank Li, Caden, Amy Maldonado

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.282e+03 2.602e+03 -0.493 0.625

preda 9.537e-01 6.718e-02 14.196 1.31e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2829 on 33 degrees of freedom
```

Multiple R-squared: 0.8593, Adjusted R-squared: 0.855 F-statistic: 201.5 on 1 and 33 DF, p-value: 1.311e-15

Predictions 3

New competition posted (this morning).

Purely optional. Not graded. No canvas component.

US Sunday case counts *this sunday*. Two numbers:

- 1. Prediction
- 2. P[20% prediction error]

Possibly 1 more *optional* competition. Would likely run into the summer.

Observational Data

We have a question:

Do job training programs for the unemployed improve worker's earnings?

We have data:

Job training uptake, future earnings

Can we answer the question?

Formalizing This

Formalizing This

Formalizing This

In Context

 Either Path A or Path B can't exist, for every other possible variable U.

Problem

If we have either (possibly unobserved) variables U that affect both X and Y, or Y might affect X, identifying causal effects of X on Y is *impossible* with your data.

Why? We can't disentangle the separate possible sources of changes.

E.g. Suppose extremely hard working individuals are more likely to *apply* for job training, and have higher future incomes. Or any other of a number of possible suppositions.

Assumption

In observational data, it is hard to guarantee "No other variables have causal effects on both X and Y" and that "Y doesn't drive X".

- We will see some settings, on Thursday, where we can make these assumptions more reasonable.
 - ► IV
 - RD
 - Diff-in-Diff
- But they will still be assumptions.

For now, we turn to randomized controlled trials.

RCTs solve this problem, by introducing a variable which selects X, without having any relationship with Y – a random number.

RCTs

RCTs

RCTs work because they force a treatment that is *unrelated* to any other possible variable, and which isn't being caused by Y.

So we can rule out the things we were worried about.

In the early 90s, a federal job training program ("JTPA") ran an RCT where some people (\sim 20k) were given offers immediately and some had eligibility delayed by 18 months *at random*.

There are a wide variety of outputs you could look at. We will look at the effect on income over the following 30 months on adults (\sim 11k people).

First, some summary stats

JTPA Summary Stats

```
jtpa %>% select(-c(9:14)) %>%
group_by(offer) %>%
summarize(across(everything(),mean))
```

A tibble: 2 x 8 ## offer y train male hs black hispanic married ## <dbl> <dbl: ## 1 0 15041. 0.0145 0.458 0.700 0.255 0.110 0.26 1 16200. 0.642 0.454 0.712 0.262 ## 2 0.109 0.280

Summary Stats 2

```
jtpa %>% select(c(2,9:14)) %>%
  group_by(offer) %>%
  summarize(across(everything(),mean))
```

##	#	A tibb	ole: 2 x 7	7				
##		offer	wkless13	AFDC	classroom	OJT_JSA	f2sms	age
##		<dbl></dbl>						
##	1	0	0.462	0.189	0.296	0.437	0.267	31.1
##	2	1	0.465	0.186	0.304	0.431	0.277	30.9

Comments

There are some weird things going on.

```
summary(as.factor(jtpa$age))
      0 23.5 27.5 32.5 40 49.5
##
##
    441 2638 2288 2714 2200 923
summary(as.factor(jtpa$married))
##
           0 0.2111608 0.3352851
                                           1
        7495
                   517
                              247
                                       2945
##
summary(as.factor(jtpa$wkless13))
##
           0 0.4073359 0.5332298
                                           1
        5395
                                       4631
##
                   454
                              724
```

Comments 2

"Treatment" here is an offer for access to the JTPA.

Uptake (train) is not identical to offer of treatment.

jtpa %>% group_by(offer) %>%
 summarize(train = mean(train))

A tibble: 2 x 2
offer train
<dbl> <dbl>
1 0 0.0145
2 1 0.642

Comments 3

What treatment IS is not uniform across genders

```
jtpa %>% group_by(male) %>%
    select(male,OJT_JSA,classroom,train) %>%
    summarize(across(everything(),mean))
```

```
## # A tibble: 2 x 4
## male OJT_JSA classroom train
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 0 0.374 0.384 0.446
## 2 1 0.504 0.203 0.419
```

 OJT: on-job-training, JSA: job-search assistance, classroom skills training. Observational Data - Mean Difference on uptake

We could look at difference between those who use and don't use program.

Remember – there may be selection driving this.

smod = summary(lm(y~train,data=jtpa))
signif(smod\$coefficients,3)

##Estimate Std. Error t value Pr(>|t|)## (Intercept)1460021069.600.00e+00## train27903198.762.21e-18

RCTs - Mean Difference

Take the difference in means between group assigned treatment and group assigned control.

- Average Treatment Effect: effect of offer (AKA intention-to-treat)
- We can test for difference from 0, build Cls, etc for this difference in means.

smod = summary(lm(y~offer,data=jtpa))
signif(smod\$coefficients,3)

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	15000		275		54.70	0.000000
##	offer	1160		336		3.45	0.000567

RCT - complications

Basic Mean difference is unbiased on average across universes where you ran this experiment.

- But what if there was some residual variation in other variables.
 - Like, people who were AFDC recipients were more likely to recieve treatment, by chance.
- Alternately, what if we are interested in the effect on some subpopulation? E.g. Gender differences?
- Finally, uptake in treatment group was like 60%. So the treatment effect must be larger for people who used the program. Can we figure that out?

RCT – Subgroup Analysis

smod = summary(lm(y~offer*male,data=jtpa))
signif(smod\$coefficients,3)

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	12200		367		33.20	8.84e-231
##	offer	1240		449		2.77	5.62e-03
##	male	6210		543		11.40	3.87e-30
##	offer:male	-126		664		-0.19	8.50e-01

RCT – Basic Controls

smod = summary(lm(y~.,data=jtpa[,-c(3,12,11,13)]))
signif(smod\$coefficients,3)

##		Estimate	Std.	Error	t value	Pr(> t)
##	(Intercept)	12900.0		654.0	19.800	1.47e-85
##	offer	1100.0		320.0	3.430	6.04e-04
##	male	4510.0		324.0	13.900	1.13e-43
##	hs	3730.0		345.0	10.800	4.03e-27
##	black	-1350.0		362.0	-3.720	2.01e-04
##	hispanic	-464.0		497.0	-0.933	3.51e-01
##	married	3300.0		358.0	9.220	3.43e-20
##	wkless13	-6650.0		331.0	-20.100	1.96e-88
##	AFDC	-1810.0		424.0	-4.260	2.08e-05
##	age	11.7		15.2	0.768	4.43e-01

Interactions? What is the model we should choose?

RCTs - ATT

We could try to look at the average treatment effect on the treated.

uptake = mean(jtpa\$train[jtpa\$offer == 1]) # ~64% smod = summary(lm(y~offer,data=jtpa))\$coefficients smod[2,1]/uptake #Scale up Coef by uptake rate.

[1] 1806.969

 Uncertainty there is not just uncertainty internal to linear model – but also around uptake. Bootstrap for Cls if you like.

RCTs - Big Data?

How is this related to this course?

- 1. Entirely about predictions.
 - Obscured by simplicity of analysis
- 2. That was *Average* treatment effects. What about individual TEs?
 - But effects are heterogenous (we saw that in gender)
 - We can estimate the TE for any given individual. (Some may be negative)
 - This gives us Conditional Average Treatment Effects (CATEs)
- 3. We may want to build targeting policies based on RCTs.
 - E.g. I run an RCT of some ad campaign.
 - 3.1 Run RCT
 - 3.2 Identify CATEs
 - 3.3 Find *optimal* policy for targeting ads.
 - 3.4 Profit

TEs are predictions?

$$\widehat{ATE} = \left[\frac{1}{n_1}\sum_{i: T=1} y_i\right] - \left[\frac{1}{n_0}\sum_{i: T=0} y_i\right] = \bar{y}_1 - \bar{y}_0$$

But suppose we define each individual's treatment effect as the sum of their observed outcome, and the *unobserved* counterfactual outcome where their treatment status was flipped:

$$\widehat{TE}_i = y_i(1) - y_i(0)$$

To do this, we would need to make a prediction about y_i in the unobserved counterfactual.

Prediction in Counterfactual

Suppose for the counterfactual, we predict the mean outcome from the other group.

$$\hat{y}_i(T_i-1)=\bar{y}_{T_i-1}$$

Then (for a treated observation i), we have:

$$\widehat{TE}_i = y_i - \overline{y}_0$$

And for an untreated observation, similarly:

$$\widehat{TE}_i = \overline{y}_1 - y_i$$

Similarity

We could then, form a new estimate of the ATE:

$$\widetilde{ATE} = \frac{1}{n} \sum_{i=1}^{n} \widehat{TE}_{i}$$

With a lot of rewriting of sums - we can show that:

$$\widetilde{ATE} = \widehat{ATE}$$

Proof in Data

```
ybar0 = mean(jtpa$y[jtpa$offer == 0])
ybar1 = mean(jtpa$y[jtpa$offer == 1])
ybar1-ybar0
```

```
## [1] 1159.433
```

[1] 1159.433

How does this affect our interpretation of 'controls' and of 'subgroup analysis'?

We can do the same basic exercise, where 'controls' or subgroup analyses affect *our counterfactual predictions* and rewrite our ATE estimate as a mean of individual treatment effects. First off, purely for calculating ATEs, this suggests a simple heuristic:

- If we can improve our OOS predictions for either treatment or control, we can improve our ATE estimate
 - We've seen a lot of ways one could improve a prediction in this course.

ATE from predictions:

```
#Build Treat and control dfs
jtpa_cont = jtpa %>% filter(offer == 0)
jtpa_treat = jtpa %>% filter(offer == 1)
#Estimate treat and control models
mod_treat = ranger(y~.-offer,data=jtpa_treat)
mod_cont = ranger(y~.-offer,data=jtpa_cont)
#Predict counterfactuals for data from other model
jtpa_cont$confact = predict(mod_treat,data = jtpa_cont)$pre
jtpa treat$confact = predict(mod cont,data = jtpa treat)$
#Estimate TEs
jtpa_cont$TE = jtpa_cont$confact - jtpa_cont$y
jtpa_treat$TE = jtpa_treat$y - jtpa_treat$confact
#Recombine
jtpa_est = rbind(jtpa_cont,jtpa_treat)
mean(jtpa_est$TE) #ATE
```

```
## [1] 1165.806
```

ATE from Predictions

We could use *any* of the many routines we've seen, and the many more you will encounter for our *counterfactual predictions*.

- KNN
- Forests
- Logit
- LASSO
- Boosted Models
- Bagged Models
- Other Ensemble Models

Once this is a prediction problem – we can do a lot.

TEs

But we could also use those TE estimates from individuals.

Individual TEs

Individual TEs

There is a lot of variation around our mean of 1165.8059295 in benefits. The standard deviation is $1.588022\times10^4.$

Is this variation in individual TEs sensible?

- Probably? \$50k effects either way seem large, but only a small portion, 0.0107997, experience that scale.
- Intuitively, some individuals got training that was beneficial, and some spent time doing training that they could have spent *working* at other jobs that pay. So some loss seems about right.

It looks like some fraction of individuals lost ${\sim}\$50k$ by engaging in this program. Not to mention the program cost to the government.

- What if we could target the program to people who benefit?
- In other settings, like marketing, we may wish to target groups for whom the expense of advertising is less than the gain in revenue from those individuals.
- \implies Targeting. Can we use the RCT data for targeting?

Targeting

We estimated treatment effects for individuals in an experiment.

- This means we had to predict the unobserved counterfactual
- But it also means we witnessed the outcome for one treatment possibility.

To do targeting we need to:

- 1) Make predictions for individuals under treatment
- 2) Make predictions for individuals under control
- 3) Estimate TEs for each individual
- 4) Compare TEs to some threshold (\$0? \$1k?) to determine eligibility.

Targeting

- 1. Fully a counterfactual exercise.
- 2. We need good OOS predictions
 - ▶ We may want to do some CV to determine performance
- 3. We need something to compare to. "Opportunity Costs"

Talk more Thursday.

RCTs are not good at identifying the mechanisms for effects.

This is because identifying a specific mechanism means establishing a link from X to that mechanism, from that mechanism to Y, and the lack of links between X and Y through other mechanisms.

You need multiple overlapping RCTs to do this kind of thing – each looking at different things.

An Aside: RCTs and Mechanisms

HW 5 Review (if time)

Wrap up

Things to do

Homework 6 is due tomorrow. New prediction competition was released yesterday – purely optional.

On Thursday we will:

- 1. Wrap up targeting/RCTs
- 2. Briefly encounter a few 'observational' causal methods:
 - a. Instrumental Variables
 - a. Useful for "Intention to Treat" vs "Average effect on Treated"
 - b. Regression Discontinuity
 - c. Diff-in-Diff
 - a. SCM

Bye!