
Data Cleaning
Lecture 13

Connor Dowd

May 11th, 2021

Today’s Class

1. Review
I Ensembles
I Boosting

2. Data Cleaning Basics
3. Dates
4. Wide vs long data
5. Merges/Joins
6. NAs, NaN, etc.
7. Predictions 2

I CI vs PI
I Sundays
I My forecast
I Ensemble PIs

Review

Weighted – Example

Suppose I have two models: - M1 always predicts ŷ1 = M1(X) = ȳ
- M2 uses p variables and linear regression to predict
ŷ2 = M2(X) = β̂0 + β̂1x1 + ...+ β̂pxp

These are not equivalently good. M2 is likely better (not always –
see overfitting again).

We could plug them both into our naive average, and get a
prediction.

Inverse Variance Weights

The basic idea is that a single measure of the prediction errors of
each model can help us generate the best weights.

The models with the smallest average errors should get the most
weight, and the models with the largest average errors should get
the least weight.

If you are minimizing MSE, this will look like weights which are
proportional to the “precision" (aka the inverse of the variance).

Procedure

1. Estimate K models M1, ...,MK
2. Use cross-validation (k-fold) to estimate OOS errors for each

model.
3. Calculate average OOS error MSEk for each model.
4. Find weights w ∝ MSEk such that

∑
wk = 1

5. Make your predictions using those weights

This will be reasonably quick. For K models and m folds in the
cross validation, you’ll only need to fit Km models. The weights
pop out analytically.

Boosting

Boosting – Ensembles 2

Boosting changes things up slightly. It says “we want to do a
better job of predicting when we are wrong”.

Thus far, we have been giving each tree slightly different data, and
averaging across each tree.

But each tree still was optimizing the same thing – mean
prediction error1 :

1
n

n∑
i=1

l(ŷ , y) = 1
n

n∑
i=1

1(ŷ 6= y)

1This could be MSE, etc depending on the model.

Boosting Insight 1

Some observations are harder to predict.

We want to build a model that predicts everything well.

We can give more weight to observations that are hard to predict.

1
n

n∑
i=1

1(ŷ 6= y) =
n∑

i=1

1
n1(ŷ 6= y)

The weights ideally sum to 1, but we need not have each weight
be 1

n . Feel familiar?

Boosting Algorithm

1. Start with a class of models F (e.g. tree, glm, etc). And
weights wi = 1

n
2. Fit a model Mk in that class using those weights.
3. Find the prediction error for each observation from that model.
4. Increase the weights for observations where predictions were

most wrong, decrease the weights for observations where
predictions were most correct.

5. Repeat steps 2-4 until you’ve built K models.

Model MK will be using weights based on how poorly each
previous model did at predicting each observation.

Boosting Trees
ggplot(grid,aes(x=x1,y=x2,col=preds1))+geom_point()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.25

0.50

0.75

preds1

Boosting GAM
ggplot(grid,aes(x=x1,y=x2,col=preds3))+geom_point()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.2

0.3

0.4

0.5

0.6

preds3

Data Cleaning

Data Cleaning 101

Rules:

1. Keep looking at the data

2. Make small changes.
3. Test your changes before you overwrite variables.
4. Don’t overwrite actual files unless you’re certain.
5. Don’t throw away potentially useful data.

Data Cleaning 101

Rules:

1. Keep looking at the data
2. Make small changes.

3. Test your changes before you overwrite variables.
4. Don’t overwrite actual files unless you’re certain.
5. Don’t throw away potentially useful data.

Data Cleaning 101

Rules:

1. Keep looking at the data
2. Make small changes.
3. Test your changes before you overwrite variables.

4. Don’t overwrite actual files unless you’re certain.
5. Don’t throw away potentially useful data.

Data Cleaning 101

Rules:

1. Keep looking at the data
2. Make small changes.
3. Test your changes before you overwrite variables.
4. Don’t overwrite actual files unless you’re certain.

5. Don’t throw away potentially useful data.

Data Cleaning 101

Rules:

1. Keep looking at the data
2. Make small changes.
3. Test your changes before you overwrite variables.
4. Don’t overwrite actual files unless you’re certain.
5. Don’t throw away potentially useful data.

Basics

What is data cleaning?

(A) We get raw data – which consists of all kinds of nonsense and
structure

(B) We want to have a matrix x to model an outcome y with.

To get from A →B$, we may need to remove some struc-
ture, build our own structure, deal with missing values, get
rid of irrelevant data, add in relevant variables, deal with
sampling design, and more. This is cleaning.

Basics

What is data cleaning?

(A) We get raw data – which consists of all kinds of nonsense and
structure

(B) We want to have a matrix x to model an outcome y with.
To get from A →B$, we may need to remove some struc-
ture, build our own structure, deal with missing values, get
rid of irrelevant data, add in relevant variables, deal with
sampling design, and more. This is cleaning.

Formats

CSVs aren’t everything

Data you want comes in many forms.E.g. See SCF

I flat: CSV, arrow, parquet, etc
I compressed: .zip, .RData, etc
I proprietary: .xlsx, STATA, SAS, etc
I Internet-standards (scraped): html, json, etc

Converting between these is non-trivial and critical.

I But there are mostly packages for this – so a google search
will typically solve your problems, and I’ll assume you can get
to a data.frame or two.

https://www.federalreserve.gov/econres/scfindex.htm

Other Formats

Most other non-trivial data formats are an entire courses worth of
material. E.g.How to deal with:

- paragraphs of text
- Images

At a high level. My advice for those situations at the moment is to
train a model (or borrow a pre-trained one) that can deal with
those things.

Images

For example, Images are really just a matrix with a color at each
point. Detecting a face or something in that matrix is well
explored at this point, and well beyond what we can cover here.

I We can use other people’s plug-and-play models for face
detection as inputs.
I E.g. run that model to determine “is there a face”, then use

“face-presence” as a variable.

Text

Text models are similar. Well explored, mostly beyond the time we
have in this course. But you can take someone else’s sentiment
analysis, or subject analysis as an input to your models very easily.

Models are Legos

I want you to see models as building blocks. We have some goal,
we can combine 10 models to build inputs that we throw into an
11th model to help us with our goals.

1. This is a multi-step thing.
2. Most of the time, good use of data involves doing a good job

constructing other pieces from it.

Dates

Seconds since 1970

Most dates are stored as an integer value representing the number
of seconds since 12:00:00 AM on Jan 1, 1970.

time = Sys.time()
time

[1] "2021-05-11 12:39:32 CDT"

as.integer(time)

[1] 1620754772

Days since 1970

date = Sys.Date()
date

[1] "2021-05-11"

as.integer(date)

[1] 18758

This is the number of days since Jan 1, 1970.

Advantages

The great thing about setting up variables like this, is that we can
easily determine the gap between two dates.

newtime = Sys.time()
newtime-time

Time difference of 0.009299994 secs

That is how long it took to run the code in the middle there.

Beyond this – it is also a specific, definitely identified time.

Problems

I don’t care about the number of seconds or days since 1970.

For basically this reason, dates are notorious to work with. They
are usally stored in a format which is focused on being good at
things that we don’t care about.

Subsecond accuracy also going to require other things. . .

Other Formats

You may be used to this format:

date = "2021-05-11 8:05:32 AM"
is.character(date)

[1] TRUE

This is a character. I can understand what it is saying, but it can’t
be added and subtracted.

Moreover, it is underidentified.

I Is this date in November or May? Need more info.
I Is this time during Business hours in NYC?

I Need timezone info.
I Including Daylight Savings

Dates in R

Tidyverse has the only good package for working with dates I’ve
encountered.

library(lubridate)

Package comes with a host of useful functions for dealing with
dates. E.g. I can convert characters to “Dates”.

date = "2021-05-11"
ymd(date) #This doesn’t look different, but it is.

[1] "2021-05-11"

Example

as.integer(ymd(date))

[1] 18758

as.integer(date)

Warning: NAs introduced by coercion

[1] NA

Example: CDC Data
Posted Data from my prediction

cases = read_csv("https://codowd.com/bigdata/predictions/cdc_cases.csv",skip=2)

##
-- Column specification --
cols(
State = col_character(),
Date = col_character(),
‘New Cases‘ = col_double(),
‘7-Day Moving Avg‘ = col_double()
)

head(cases$Date)

[1] "May 6 2021" "May 5 2021" "May 4 2021" "May 3 2021" "May 2 2021"
[6] "May 1 2021"

https://codowd.com/bigdata/predictions/cdc_cases.csv

Example

cases = cases %>%
mutate(Date=mdy(Date))

head(cases$Date)

[1] "2021-05-06" "2021-05-05" "2021-05-04" "2021-05-03" "2021-05-02"
[6] "2021-05-01"

head(as.integer(cases$Date))

[1] 18753 18752 18751 18750 18749 18748

Example

I care about the day of week – going to focus on Sundays

cases = cases %>%
mutate(dow = wday(Date))

head(cases$dow)

[1] 5 4 3 2 1 7

These are “Thurs”,“Weds”,“Tues”,“Mond”,“Sun”,“Sat”
respectively.

Example Etc

Other functions for year, month, etc.

cases = cases %>% mutate(months = month(Date))
head(cases$months)

[1] 5 5 5 5 5 5

Fixed Effects

We haven’t discussed Fixed Effects.

But if you wanted Month and Year fixed effects, using the month
and year functions to create columns, converting those columns to
factors and using those factors as inputs would do it.

cases = cases %>% mutate(years = year(Date))
head(cases$years)

[1] 2021 2021 2021 2021 2021 2021

Fixed Effects

But if you wanted Month by Year (AKA Month x Year) fixed
effects, you need to combine both.

cases = cases %>% mutate(m_y = paste0(months,"-",years))
sample(cases$m_y,5)

[1] "7-2020" "10-2020" "8-2020" "3-2020" "2-2021"

That will give us a character again. Which can become a factor,
etc.

Wide vs Long

Panel Data

A reasonably common data structure is known as ‘panel data’.

In this setting, we have a number of units (e.g. States) which we
observe. We also have a number of times at which we observe
those units. There are some number of variables we observe.

There are many ways you could store this information.

Wide
Wide makes each unit a column and each time a row. Then it
stores our variable of interest in the cells.

cigs = read_csv("cigarettes.csv")
cigs

A tibble: 31 x 40
year AL AR CA CO CT DE GA IA ID IL IN KS
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1970 89.8 100. 123 125. 120 155 110. 108. 102. 125. 135. 114
2 1971 95.4 104. 121 126. 118. 161. 116. 108. 108. 126. 139. 103.
3 1972 101. 104. 124. 134. 111. 156. 117 109. 126. 127. 149. 111
4 1973 103. 108 124. 138. 109. 155. 120. 111. 122. 124. 156 115.
5 1974 108. 110. 127. 133. 112. 151. 124. 116. 126. 132. 160. 119.
6 1975 112. 115. 127. 131 110. 148. 123. 120. 123. 132. 162. 123.
7 1976 116. 119. 128 134. 113. 153 126. 124. 125. 134. 167. 128.
8 1977 117. 123. 126. 132 117. 153. 128. 126. 125 134 173 128.
9 1978 123 127. 126. 129. 118. 156. 131. 127. 123. 137. 151. 127.
10 1979 121. 126. 122. 132. 117. 150. 131 124. 118. 135. 149. 126.
... with 21 more rows, and 27 more variables: KY <dbl>, LA <dbl>, ME <dbl>,
MN <dbl>, MO <dbl>, MS <dbl>, MT <dbl>, NC <dbl>, ND <dbl>, NE <dbl>,
NH <dbl>, NM <dbl>, NV <dbl>, OH <dbl>, OK <dbl>, PA <dbl>, RI <dbl>,
SC <dbl>, SD <dbl>, TN <dbl>, TX <dbl>, UT <dbl>, VA <dbl>, VT <dbl>,
WI <dbl>, WV <dbl>, WY <dbl>

Long
Long has many rows. In particular, if there are n units, T times,
and 1 variable we observe, Long has nT rows and 3 columns.

cigs_long

A tibble: 1,209 x 3
year State purchases
<dbl> <chr> <dbl>
1 1970 AL 89.8
2 1970 AR 100.
3 1970 CA 123
4 1970 CO 125.
5 1970 CT 120
6 1970 DE 155
7 1970 GA 110.
8 1970 IA 108.
9 1970 ID 102.
10 1970 IL 125.
... with 1,199 more rows

Converting Wide-to-Long and back

There are many different ways to pivot. Tidvyverse has a number
of builtin tools. You could write something to do it by hand. Etc.

cigs_long =cigs %>%
pivot_longer(cols = !year,

names_to="State",
values_to="purchases")

cigs_wide = cigs_long %>%
pivot_wider(names_from = State,

values_from = purchases)

Complications

That looked nice and smooth.

As soon as you have complications, like missing values, or other
nonsense, it gets worse.

Merges/Joins

Multiple Sources

Sometimes you have two different sources of information.

E.g. Zillow home data – we have a pile of characteristics for each
home. We also have sale prices and sale dates for each home.

Why are these separate?

Looking at Zillow Data
sales

A tibble: 90,275 x 3
parcelid logerror transactiondate
<dbl> <dbl> <date>
1 11016594 0.0276 2016-01-01
2 14366692 -0.168 2016-01-01
3 12098116 -0.004 2016-01-01
4 12643413 0.0218 2016-01-02
5 14432541 -0.005 2016-01-02
6 11509835 -0.270 2016-01-02
7 12286022 0.044 2016-01-02
8 17177301 0.164 2016-01-02
9 14739064 -0.003 2016-01-02
10 14677559 0.0843 2016-01-03
... with 90,265 more rows

Each place could be sold multiple times.

Looking at Zillow Data
prop

A tibble: 2,985,217 x 58
parcelid airconditioning~ architecturalst~ basementsqft bathroomcnt
<dbl> <dbl> <lgl> <dbl> <dbl>
1 12544196 NA NA NA 1
2 12864620 NA NA NA 2
3 13113622 NA NA NA 0
4 11031288 NA NA NA 1
5 14223664 NA NA NA 2
6 11626844 1 NA NA 6
7 17101366 NA NA 216 1.5
8 11512387 NA NA NA 2
9 13883603 NA NA NA 2
10 13133189 NA NA NA 0
... with 2,985,207 more rows, and 53 more variables: bedroomcnt <dbl>,
buildingclasstypeid <dbl>, buildingqualitytypeid <dbl>,
calculatedbathnbr <dbl>, decktypeid <dbl>, finishedfloor1squarefeet <dbl>,
calculatedfinishedsquarefeet <dbl>, finishedsquarefeet12 <dbl>,
finishedsquarefeet13 <dbl>, finishedsquarefeet15 <dbl>,
finishedsquarefeet50 <dbl>, finishedsquarefeet6 <dbl>, fips <chr>,
fireplacecnt <dbl>, fullbathcnt <dbl>, garagecarcnt <dbl>,
garagetotalsqft <dbl>, hashottuborspa <lgl>, heatingorsystemtypeid <dbl>,
latitude <dbl>, longitude <dbl>, lotsizesquarefeet <dbl>, poolcnt <dbl>,
poolsizesum <dbl>, pooltypeid10 <lgl>, pooltypeid2 <lgl>,
pooltypeid7 <dbl>, propertycountylandusecode <chr>,
propertylandusetypeid <dbl>, propertyzoningdesc <chr>,
rawcensustractandblock <chr>, regionidcity <dbl>, regionidcounty <dbl>,
regionidneighborhood <dbl>, regionidzip <dbl>, roomcnt <dbl>,
storytypeid <dbl>, threequarterbathnbr <dbl>, typeconstructiontypeid <lgl>,
unitcnt <dbl>, yardbuildingsqft17 <dbl>, yardbuildingsqft26 <dbl>,
yearbuilt <dbl>, numberofstories <dbl>, fireplaceflag <lgl>,
structuretaxvaluedollarcnt <dbl>, taxvaluedollarcnt <dbl>,
assessmentyear <dbl>, landtaxvaluedollarcnt <dbl>, taxamount <dbl>,
taxdelinquencyflag <chr>, taxdelinquencyyear <dbl>,
censustractandblock <dbl>

But they have a lot of properties already, with stable
characteristics. Much easier to store these things separately.

Merges

But we want to use the characteristics to predict sales qualities. So
we need all the data combined.

This is a merge.

Merge Problems: Non-perfect Match

nrow(prop)

[1] 2985217

nrow(sales)

[1] 90275

We do not have a sale for every property. In many situations, we
may not have property characteristics for every sale (not a problem
here).

Merge Problems: Non-perfect Match

In this case, we don’t care about non-matched properties. We
want a training data set. We will subset to the data in the sales
(our outcome).

Sales data without characteristics would pose a larger concern.
But only accepting “matched” values helps.

Merge Problems: Duplicates

sum(duplicated(sales$parcelid))

[1] 125

And we have some duplicates.

The easiest thing to do with duplicates is to throw them away.

STOP

Merge Problems: Duplicates

Throwing away duplicates could cause problems. What kind of
problems?

If homes that sell frequently are fundamentally different from those
that don’t, and are important to our target questions, then
throwing them out may bias our whole procedure.

What then? Keep all sales if it won’t break your model.

Joins

There are a few basic Joins between Data A and B:

I Left Join: Keep all data in A, add in data from B when
available.

I Right Join: Keep all data in B, add in data from A when
available

I Inner Join: Keep all observations that are in both A and B
I Outer Join: Keep all observations. Set NA for missing columns

for data that isn’t in both datasets.

We can’t build a model using characteristics to predict sales errors
without data in A and B, so we want an inner join.

Joining
data = inner_join(sales,prop,by=c(parcelid="parcelid"))
data

A tibble: 90,275 x 60
parcelid logerror transactiondate airconditioning~ architecturalst~
<dbl> <dbl> <date> <dbl> <lgl>
1 11016594 0.0276 2016-01-01 1 NA
2 14366692 -0.168 2016-01-01 NA NA
3 12098116 -0.004 2016-01-01 1 NA
4 12643413 0.0218 2016-01-02 1 NA
5 14432541 -0.005 2016-01-02 NA NA
6 11509835 -0.270 2016-01-02 1 NA
7 12286022 0.044 2016-01-02 NA NA
8 17177301 0.164 2016-01-02 NA NA
9 14739064 -0.003 2016-01-02 NA NA
10 14677559 0.0843 2016-01-03 NA NA
... with 90,265 more rows, and 55 more variables: basementsqft <dbl>,
bathroomcnt <dbl>, bedroomcnt <dbl>, buildingclasstypeid <dbl>,
buildingqualitytypeid <dbl>, calculatedbathnbr <dbl>, decktypeid <dbl>,
finishedfloor1squarefeet <dbl>, calculatedfinishedsquarefeet <dbl>,
finishedsquarefeet12 <dbl>, finishedsquarefeet13 <dbl>,
finishedsquarefeet15 <dbl>, finishedsquarefeet50 <dbl>,
finishedsquarefeet6 <dbl>, fips <chr>, fireplacecnt <dbl>,
fullbathcnt <dbl>, garagecarcnt <dbl>, garagetotalsqft <dbl>,
hashottuborspa <lgl>, heatingorsystemtypeid <dbl>, latitude <dbl>,
longitude <dbl>, lotsizesquarefeet <dbl>, poolcnt <dbl>, poolsizesum <dbl>,
pooltypeid10 <lgl>, pooltypeid2 <lgl>, pooltypeid7 <dbl>,
propertycountylandusecode <chr>, propertylandusetypeid <dbl>,
propertyzoningdesc <chr>, rawcensustractandblock <chr>, regionidcity <dbl>,
regionidcounty <dbl>, regionidneighborhood <dbl>, regionidzip <dbl>,
roomcnt <dbl>, storytypeid <dbl>, threequarterbathnbr <dbl>,
typeconstructiontypeid <lgl>, unitcnt <dbl>, yardbuildingsqft17 <dbl>,
yardbuildingsqft26 <dbl>, yearbuilt <dbl>, numberofstories <dbl>,
fireplaceflag <lgl>, structuretaxvaluedollarcnt <dbl>,
taxvaluedollarcnt <dbl>, assessmentyear <dbl>, landtaxvaluedollarcnt <dbl>,
taxamount <dbl>, taxdelinquencyflag <chr>, taxdelinquencyyear <dbl>,
censustractandblock <dbl>

IDs

How did we do this?

We had a unique ID for each property. The parcelid. This ID was
present in both datasets. So if we saw the same ID in each dataset,
we knew the property was the same and we could match it.

Sometimes this happens. And when it does, it becomes very easy
to combine information across different sources.

I IDFA: unique ID for each apple device
I SSN: unique ID for most US taxpayers
I URL: unique ID for most websites
I IP Address: unique ID for most web-capable devices

IDs pt 2

But often we don’t have this information for some of the data we
are using.

Methods:

1. Try to reconstruct an Identifier.
I SSNs historically were relatively easy to identify if you knew

birthdate and place of birth.
2. Match on other dimensions.

I Maybe you don’t observe SSN in any of your data. Or place of
birth.

I But you see a billing address, a name, and a phone number.
I We can match on those dimensions too.

IDs

Matching on other characteristics becomes tricky. The ideal is to
say you have a match when multiple characteristics are all identical.

In practice, even this is unlikely.

I Is “Connor Dowd” the same as “Connor J Dowd”, or “Connor
M Dowd” or “connor dowd”?

I Billing addresses may leave off apartment numbers, etc.
I One of the datasets may be missing one or more details. Does

“1(800)333-2283” = NA?

IDs

But these things add up. Even if the address is an apartment
building with 5k people in it, you’ve narrowed things down from 7
billion to 5k. Now how many are named “Connor” or “Dowd”?

Matching on these things rapidly becomes more art than science.
There are many resources I can point you to if you have more Qs.

Privacy In two minutes

Privacy in data is mostly out of bounds for this class.

I If you are publishing data, you need to be careful about what
you include that people could use to match with.
I “Anonymising” by dropping e.g. names, is not enough

I The recommended procedure is to add some noise to your
data before publishing if you’re worried
I E.g. Randomly change 2 digits in each phone number,

randomly adjust numbers by small amounts, randomly drop
some data and add in a few fake data points

NAs

What is NA?

Usually NA denotes missingness. We don’t know whether or not
home 1235532 has a fireplace. So we don’t put TRUE and we don’t
put FALSE, we put NA.

Once again, much like duplicates, the standard advice is to drop
observations with some NA values.

Dropping NAs

Dropping NA observations tends to be justified by the following
assumption:

I The data is missing at random

That is – the observations where we don’t know are more like a
clerical error than a selection issue. It is not that missing
observations are fundamentally different, it is that someone forgot
to check a box.

This is frequently implausible.

Dropping NAs Nevertheless
Even under that assumption, dropping those observations can be
devastating to your sample size.

data %>% drop_na()

A tibble: 0 x 60
... with 60 variables: parcelid <dbl>, logerror <dbl>,
transactiondate <date>, airconditioningtypeid <dbl>,
architecturalstyletypeid <lgl>, basementsqft <dbl>, bathroomcnt <dbl>,
bedroomcnt <dbl>, buildingclasstypeid <dbl>, buildingqualitytypeid <dbl>,
calculatedbathnbr <dbl>, decktypeid <dbl>, finishedfloor1squarefeet <dbl>,
calculatedfinishedsquarefeet <dbl>, finishedsquarefeet12 <dbl>,
finishedsquarefeet13 <dbl>, finishedsquarefeet15 <dbl>,
finishedsquarefeet50 <dbl>, finishedsquarefeet6 <dbl>, fips <chr>,
fireplacecnt <dbl>, fullbathcnt <dbl>, garagecarcnt <dbl>,
garagetotalsqft <dbl>, hashottuborspa <lgl>, heatingorsystemtypeid <dbl>,
latitude <dbl>, longitude <dbl>, lotsizesquarefeet <dbl>, poolcnt <dbl>,
poolsizesum <dbl>, pooltypeid10 <lgl>, pooltypeid2 <lgl>,
pooltypeid7 <dbl>, propertycountylandusecode <chr>,
propertylandusetypeid <dbl>, propertyzoningdesc <chr>,
rawcensustractandblock <chr>, regionidcity <dbl>, regionidcounty <dbl>,
regionidneighborhood <dbl>, regionidzip <dbl>, roomcnt <dbl>,
storytypeid <dbl>, threequarterbathnbr <dbl>, typeconstructiontypeid <lgl>,
unitcnt <dbl>, yardbuildingsqft17 <dbl>, yardbuildingsqft26 <dbl>,
yearbuilt <dbl>, numberofstories <dbl>, fireplaceflag <lgl>,
structuretaxvaluedollarcnt <dbl>, taxvaluedollarcnt <dbl>,
assessmentyear <dbl>, landtaxvaluedollarcnt <dbl>, taxamount <dbl>,
taxdelinquencyflag <chr>, taxdelinquencyyear <dbl>,
censustractandblock <dbl>

Dropping NAs
colMeans(apply(data,2,is.na))[1:24]

parcelid logerror
0.000000000 0.000000000
transactiondate airconditioningtypeid
0.000000000 0.681185267
architecturalstyletypeid basementsqft
1.000000000 0.999523678
bathroomcnt bedroomcnt
0.000000000 0.000000000
buildingclasstypeid buildingqualitytypeid
0.999822764 0.364563833
calculatedbathnbr decktypeid
0.013093326 0.992711160
finishedfloor1squarefeet calculatedfinishedsquarefeet
0.924054279 0.007322071
finishedsquarefeet12 finishedsquarefeet13
0.051830518 0.999634450
finishedsquarefeet15 finishedsquarefeet50
0.960520631 0.924054279
finishedsquarefeet6 fips
0.995336472 0.000000000
fireplacecnt fullbathcnt
0.893580726 0.013093326
garagecarcnt garagetotalsqft
0.668379950 0.668379950

NAs
Some of those columns were entirely missing observations. We can
probably ditch those columns.

But some of them just had a lot of missing observations. Like
fireplacecnt, which is missing in 89% of homes.

It seems likely that it is not missing at random.

table(data$fireplacecnt,useNA="ifany")

##
1 2 3 4 5 <NA>
8165 1106 312 21 3 80668

It seems likely that people without fireplaces didn’t enter a number
for fireplace count. Dropping those observations would be a
mistake. Most of them are just 0s.

NAs

Instead, what you should do is try to also model the NAs.

For some model types and variables this is difficult. We could
probably just make NA a 0 for fireplacecnt. But what about for
airconditioningtype which is just a factor anyhow? Or for
Square footage, where it definitely exists?

NAs

For factor variables, this is straightforward. Just make one of your
levels “NA”. But what about Square footage?

A good rule of thumb can be to replace NA with a value that is
impossible. E.g. replace NA with -1 for square footage.

1. This will be easily spotted by others using the data, so you
don’t screw them up.

2. For flexible model types, the model can now just try to make
predictions when square footage is negative.
I E.g. for tree/forest model or KNN, if the model wants it can

easily partition those observations away from everything else.

NAs
na_helper = function(x) {

if (is.factor(x)) {
levels(x) = c("-1",levels(x))
x[is.na(x)] = -1

}
if (is.logical(x)) {

x = x*1
x[is.na(x)] = -1

}
if (is.character(x)) {

x[is.na(x)] = "-1"
}
if (is.numeric(x)) {

x[is.na(x)] = -1
}
x

}

NAs

prop2na = prop2 %>% mutate(fips = as.numeric(fips))
prop2na = prop2na %>% mutate(across(where(is.character),as.factor))
prop2na = prop2na %>% mutate(across(everything(),na_helper))

This will not work as well for a linear model – where its predictions
for square footage -1 affect its predictions for square footage of
2000.

Predictions 2

My forecast
My forecast was very straightforward.

small = cases %>% filter(dow == 1 | dow == 5) #Pull out Thursdays and sundays
small %>% filter(Date > "2021-04-25") %>% select(‘New Cases‘, Date)

A tibble: 3 x 2
‘New Cases‘ Date
<dbl> <date>
1 44766 2021-05-06
2 37885 2021-05-02
3 60196 2021-04-29

37885*(44766/60196)

[1] 28173.96

Log Diff-in-Diff

Diff in Diff says that the change between April 29th and May 6th
is going to be the same as the change between May 2 and May 9.
This is a presumption that the trends hold.

Log Diff-in-Diff says that the percent change from April 29th to
May 6th will be the same as the percent change from May 2 to
May 9.

logdiff = log(44766)-log(60196)
logsun = log(37885)
logpred = logsun + logdiff
pred = exp(logpred)
pred

[1] 28173.96

Picking That

I also checked to see if the log diff-in-diff model using Thursday’s
7-day averages was better. It wasn’t.

This was extremely easy to do out of sample because there was
nothing estimated. Each week, I purely take 3 numbers from the
prior 8 days to predict sunday.

Additionally, this was automatically adaptive to sundays. Its a
week-on-week change times the last sunday. Any “sunday fixed
effect” gets incorporated automatically.

Sundays are Important
A lot of models looked tuned to predict an average next day (or
3rd day away), rather than a Sunday.

ggplot(cases,aes(x=Date,y=‘New Cases‘,fill=dow==1))+
geom_col(size=0.1)

0e+00

1e+05

2e+05

3e+05

2020−01 2020−07 2021−01
Date

N
ew

 C
as

es dow == 1

FALSE

TRUE

Price-Is-Right

There was no real wrong answer here. I decided that I would use
the 20th percentile for my prediction. A lot of people seemed to
have similarly ad hoc procedures.

I predicting is different in competitions

But a big difference was confidence interval percentiles vs
predictive interval percentiles.

CI vs PI
Let me illustrate the difference with some made up data.

n = 100
x = rnorm(n)
y = rnorm(n)+2*x
df = data.frame(x=x,y=y)

ggplot(df,aes(x=x,y=y))+
geom_point()+
geom_smooth(method="lm",se=T)

‘geom_smooth()‘ using formula ’y ~ x’

−4

0

4

−2 −1 0 1 2
x

y

Probabilities

When you have an unbiased distribution of errors
(i.e. out-of-sample distribution) for a model, getting event
probabilities becomes somewhat straightforwards.

Take your prediction. Add those errors. See how often thing
happens.

Almost all of you did something like this. Well done.

Ensemble Probabilities

What do you do if you have 10 models though? Find probability
under each model – then combine.

1. Build each model.
2. Get honest error distributions for each model.
3. Predict P[event] given error distributions for each model
4. Combine P[event|M1], ...,P[event|M10] in a “sensible way”

Sensible?

If you’re averaging these models for your predictions, you can
average these probabilities.

What I’m trying to avoid is the following procedure:

1. Build each model.
2. Average to get ensemble prediction
3. Look at distribution of predictions around average to

determine uncertainty

And other similar mistakes. We are uncertain about the best
model, and each model has beliefs about P[event]. We need to
combine them well.

Model Uncertainty

What if we only built one model?

I How much do you trust it?

If you had a model telling you that tomorrow the stock price for
Apple was guaranteed to go up 50%, does that tell you about
Apple or about the model?

If a guy at a casino tells you he has a system, and you should bet
it all on red for certain winnings, are you now certain of winnings if
you bet it all on red?

Model Uncertainty

More broadly, we want to know about the ways in which our
models might fail that are relevant.

So an important question is “how often does this model fail in
ways relevant to this questions?”

For models that are reasonably certain about an event – this will
dominate our uncertainty. E.g. we don’t know the guy at the
casino, so our difficulty trusting him dominates the chance that we
don’t win on red.

Model Uncertainty

Why does this matter?

Models in big data settings can become reasonably certain about
events not happening, or happening. They have a lot of data, they
have a model, the two combine for a lot of certainty.

But the model being certain does not mean you need to be certain.
The data wants to trick you

And in competitive settings, like a casino, or the stock market, “the
data wants to trick you” is less a metaphor than you might think.

Wrap up

Things to do

Homework 5 is due tomorrow.

See you Thursday.

Bye!

	Review
	Boosting
	Data Cleaning
	Formats
	Dates
	Wide vs Long
	Merges/Joins
	STOP
	NAs
	Predictions 2
	Wrap up
	Bye!

