
Boosting and Block-CV
Lecture 12

Connor Dowd

May 6th, 2021

Today’s Class

1. Review
I Trees
I Bagging
I Forests

2. Other Basic Ensemble Methods
I Weighted Averages

3. Boosting
4. Moving Block CV

I For predicting the future.

Review

Trees

|

Trees

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

y

0

1

Example – B1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.00

0.25

0.50

0.75

1.00
preds

Example – B7

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.00

0.25

0.50

0.75

1.00
preds

Averaged across 7 models

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.25

0.50

0.75

preds

Random Forests

Forests take the notion of Bagging, and make some minor
improvements – mostly in the name of speed.

By introducing variation into the variables under consideration,
they create even more instability between trees.

But it turns out, because we are averaging across our trees, this
leads to improvements in predictive power.

They search across a wider range of models.

Forests

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.00

0.25

0.50

0.75

1.00
preds

Other Ensembles

Weighted Averages

So far, to make a prediction ŷ using covariates X and multiple
models M1, ...,Mk we’ve been using a simple average.

ŷavg = 1
K

K∑
k=1

Mk(X) =
K∑

k=1

1
K Mk(X)

But some of these basic models are better than others.

Weighted – Example

Suppose I have two models: - M1 always predicts ŷ1 = M1(X) = ȳ
- M2 uses p variables and linear regression to predict
ŷ2 = M2(X) = β̂0 + β̂1x1 + ...+ β̂pxp

These are not equivalently good. M2 is likely better (not always –
see overfitting again).

We could plug them both into our naive average, and get a
prediction.

Weighted – Example

ŷavg = ŷ1 + ŷ2
2 = M1(x) + M2(x)

2 = ȳ
2 + β̂0 + β̂1x1 + ...+ β̂pxp

2

Notice – this will take our regression predictions, and pull them
towards the mean. Essentially “shrinking” our predictions towards
the low-variance mean.

Its even shrinking all the coefficients. You could show that our
prediction is identical to a linear prediction where we’ve halved
each coefficient, except the intercept.

Weighted – Example

But this naive average doesn’t make a ton of sense. We have
reasons to believe these models perform at different levels.

Or alternately, perhaps “shrinking” the regression predictions
towards the mean is a very good idea. But we may want to figure
out how much shrinkage is best.

With two models, this is perhaps straightforward. We need to pick
one parameter, w . Our weights will be w1 = w and w2 = 1− w .

Weighted – Example

This will yield predictions

ŷweighted =
2∑

k=1
wkMk(X) = wȳ + (1− w)X ′β̂

When w = 0, we use the pure regression coefficients. When
w = 1, we use purely the mean.

How to choose? We’ve seen this before. Cross validation can help
us out.

I Just create a sequence of 100 possible weights, iterate
through them with a hold out sample, find the weight w that
has the best out of sample performance.

Weighted – Example

But what about when we have k = 10, 000? Now we need a vector
of k weights w which sum to 1. In theory cross-validation could
still help us find the optimal weights by iterating through – but it
will be very slow. We need to optimize across too many
dimensions.

So then what?

I Precision Weights. (AKA Inverse Variance Weights)

Cross-validation still critical. But we will use it differently.

Inverse Variance Weights

The basic idea is that a single measure of the prediction errors of
each model can help us generate the best weights.

The models with the smallest average errors should get the most
weight, and the models with the largest average errors should get
the least weight.

If you are minimizing MSE, this will look like weights which are
proportional to the “precision" (aka the inverse of the variance).

Procedure

1. Estimate K models M1, ...,MK
2. Use cross-validation (k-fold) to estimate OOS errors for each

model.
3. Calculate average OOS error MSEk for each model.
4. Find weights w ∝ MSEk such that

∑
wk = 1

5. Make your predictions using those weights

This will be reasonably quick. For K models and m folds in the
cross validation, you’ll only need to fit Km models. The weights
pop out analytically.

Further improvements.
Our new predictions are:

M(X) =
K∑

k=1

1
wk

Mk(X) = ωM

Where ω is a diagonal matrix with entries ωk,k = wk and M is a
vector with entries Mk = Mk(X).

There may be some correlation between predictions coming from
different models. In principle, we can further optimize by looking at
the the full covariance matrix of out-of-sample prediction errors Σ̂.

MΣ(X) = Σ̂M

Much like hedge funds like to upweight stocks that are
uncorrelated with other stocks to ‘hedge’ against market risk, this
upweights predictions whose errors are uncorrelated with other
prediction’s errors.

Why stop there?

The weighted average includes the constraint that our weights sum
to 1, but otherwise, it looks a lot like:

M(X) = wM

This is a linear model. We could just. . . estimate a linear model
on top of our models.

Or we could. . . build a tree on top. Or a forest.

Comments

Purely for prediction purposes, including many different model
types, and being flexible about when you rely on each, is incredibly
valuable.

But the risk of overfitting to your holdout sample quickly grows
high.

The recommended procedure in these settings, where you are using
anything beyond the naive average or variance weighted avrage, is
usually to have 3 partitions of your data.

1. In-In-sample, used to build each of the K sub-models.
2. Holdout A – used to build the ensemble model by estimating

the OOS error of each of the K sub-models.
3. Holdout B – pure holdout – can be used to compare a few

different ensemble ideas, or simply to benchmark your whole
procedure.

Boosting

Example Data: Zillow Zestimates

Predict Zillow’s zestimate’s log-error using a bunch of covariates.

Why? Predicting this can improve our overall prediction.

Predicting Errors

If we look at our predictions and try to predict the errors that
remain, we can adjust our naive predictions.

But this is fundamentally difficult. If it were straightforward to
predict the errors we were making with the model we were using,
we already would have done it.

Boosting – Ensembles 2

Boosting changes things up slightly. It says “we want to do a
better job of predicting when we are wrong”.

Thus far, we have been giving each tree slightly different data, and
averaging across each tree.

But each tree still was optimizing the same thing – mean
prediction error1 :

1
n

n∑
i=1

l(ŷ , y) = 1
n

n∑
i=1

1(ŷ 6= y)

1This could be MSE, etc depending on the model.

Boosting Insight 1

Some observations are harder to predict.

We want to build a model that predicts everything well.

We can give more weight to observations that are hard to predict.

1
n

n∑
i=1

1(ŷ 6= y) =
n∑

i=1

1
n1(ŷ 6= y)

The weights ideally sum to 1, but we need not have each weight
be 1

n . Feel familiar?

Boosting Algorithm

1. Start with a class of models F (e.g. tree, glm, etc). And
weights wi = 1

n
2. Fit a model Mk in that class using those weights.
3. Find the prediction error for each observation from that model.
4. Increase the weights for observations where predictions were

most wrong, decrease the weights for observations where
predictions were most correct.

5. Repeat steps 2-4 until you’ve built K models.

Model MK will be using weights based on how poorly each
previous model did at predicting each observation.

Boosted Predictions

How to make a prediction?

I We don’t want to use M1 – it makes a lot of mistakes MK
doesn’t.

I We don’t want to use MK – it may be overfit to oddball
observations.

Average across each of the K models.

Boosting

#Package
library(mboost)
#Tree version
mod1 = blackboost(y~.,data=df,family=Binomial())
#GLM
mod2 = glmboost(y~.,data=df,family=Binomial())
#GAM (relative of trees)
mod3 = gamboost(y~.,data=df,family=Binomial())

#Make predictions
grid$preds1 = predict(mod1,newdata=grid,type="response")
grid$preds2 = predict(mod2,newdata=grid,type="response")
grid$preds3 = predict(mod3,newdata=grid,type="response")

Boosting Trees
ggplot(grid,aes(x=x1,y=x2,col=preds1))+geom_point()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.25

0.50

0.75

preds1

Boosting GLM
ggplot(grid,aes(x=x1,y=x2,col=preds2))+geom_point()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.30

0.35

0.40

preds2

Boosting GAM
ggplot(grid,aes(x=x1,y=x2,col=preds3))+geom_point()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

0.2

0.3

0.4

0.5

0.6

preds3

Comments

I Different approach to improving prediction errors
I Takes advantage of some ability to determine what

observations are difficult
I e.g. “outlier detection”

I Slow – fitting 1000s of models
I Not ‘embarassingly parallel’

I Each model depends on output of prior model – tasks aren’t
easily split up

I But ‘mboost’ can parallelize for you
I Can be used with any model type.

Cross-Validation 2: Time Series

K-Fold Cross Validation:

A refresher

1. Break data into k partitions
2. Estimate model on data in all but one partition
3. Find prediction errors using left-out partition
4. Repeat 2-3 until each partition has been held out once

This basic procedure is fine for a wide variety of settings. But we
need to be careful about step (1).

Independence

When our observations are independent, we can randomly choose
where to split our data up.

k = 5
partitions = sample(rep(1:k,length.out=n))

But when there is some dependence structure, as in time series we
need to be more careful to retain that structure.

We don’t want to pair March 15th, 2020 with May 2, 2021 in a
random sample.

Goal Oriented CV

Suppose we have a goal – that goal is to predict something a week
in the future.

We have data from ~400 days. That means there were ~390 times
we could have predicted a week into the future.

I We can replicate what we are doing with the data we have.

Rolling block CV

Suppose you have a model for predicting a week into the future,
which uses data from the past month.

We can estimate that model based on days 1-30, and see how
wrong its forecast for day 37 is.

And then again for days 2-31 and day 38.

And so forth.

This will let us use real OOS predictions for doing model selection
and development.

Rolling block CV

If you wanted to predict a certain day of the week. . . that might
cut the number of these samples you have down quite a bit – from
~300 to ~50.

More broadly, looking at the (not well commented) code I posted
for my initial prediction exercise may help.

Rolling Block

n_pred = function(day1,lag=30,lead=30,square=F) {
min = day1-lag
pred_day = day1+lead #less than 5 day window, more than 3.
data = data %>% filter(days <= day1 & days >= min)
mod = lm(one_dosers~days,data=data)
if (square) mod = lm(one_dosers~days+days.sq,data=data)
newdat = data.frame(days=pred_day,days.sq=pred_day^2)
pred = predict(mod,newdata=newdat)
pred

}

Rolling Block

pred_true_err = function(day1,lag=30,lead=30,square=F) {
pred = n_pred(day1,lag,lead,square)
true = data$one_dosers[data$days == day1+lead]
err = pred-true
today = data$one_dosers[data$days == day1]
perc.err = err/(pred-today)
c(day1+lead,pred,true,err,perc.err)

}

Wrap up

Things to do

Predictions.

Homework 5 will be posted tonight. Due next wednesday.

See you Tuesday.

Bye!

	Review
	Other Ensembles
	Boosting
	Cross-Validation 2: Time Series
	Wrap up
	Bye!

